1
|
Du X, Wang B, Wang H, Li Q, Li X, Hu P, Lai Q, Fan H. Is the regulation of lamotrigine on depression in patients with epilepsy related to cytokines? Heliyon 2024; 10:e33129. [PMID: 39022060 PMCID: PMC11252738 DOI: 10.1016/j.heliyon.2024.e33129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives The purpose of this study was to analyze the effects of lamotrigine on peripheral blood cytokines and depression in patients with epilepsy and to explore the possible mechanism by which lamotrigine regulates depression in patients with epilepsy. Methods 50 healthy people, 72 patients treated with lamotrigine (LTG group) and 72 patients treated with valproate were enrolled (VPA group). Cytokine levels in the peripheral blood of the subjects were measured and their level of depression was scored according to the self-rating Depression Scale (SDS), Hamilton Depression Scale (HAMD) and Chinese version of Epilepsy Depression Scale (c-NDDI-E). The cytokine levels and depression scale scores were compared between the three groups. The correlation between cytokine levels and depression scale scores was analyzed. Results The levels of IL-1β, IL-2, IL-6, and TNF-α and the SDS, HAMD, and c-NDDI-E scores in healthy group was lower than that in epileptic group. After 6 months of treatment, the difference valule of IL-1β、IL-6、TNF-α、SDS and HAMD before and after treatment in LTG group significantly higher than that in VPA group. Correlation analysis showed that the SDS scores were correlated with the levels of IL-1β and TNF-α, and the HAMD scores were correlated with the levels of TNF-α. Multiple linear regression analysis showed that the HAMD scores were correlated with the levels of TNF-α. Conclusion Lamotrigine can inhibit peripheral blood inflammation and improve depression in epileptic patients. Lamotrigine improved depressive mood in epileptic patients, which may be related to reduced TNF-α levels.
Collapse
Affiliation(s)
- Xin Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
- Department of Neurology, First People's Hospital of Xuzhou, Xuzhou City, China
| | - Bingbing Wang
- Department of Neurology, Suining County People's Hospital, Xuzhou City, China
| | - Heng Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Qingyun Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Xinyu Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Peng Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Qingwei Lai
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| |
Collapse
|
2
|
Dell'Osso L, Nardi B, Massoni L, Gravina D, Benedetti F, Cremone IM, Carpita B. Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders? Curr Med Chem 2024; 31:3447-3472. [PMID: 37226791 DOI: 10.2174/0929867330666230523155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Francesca Benedetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| |
Collapse
|
3
|
Kośmider K, Kamieniak M, Czuczwar SJ, Miziak B. Second Generation of Antiepileptic Drugs and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043873. [PMID: 36835284 PMCID: PMC9964930 DOI: 10.3390/ijms24043873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Epilepsy is a chronic disease of the central nervous system characterized by recurrent epileptic seizures. As a result of epileptic seizure or status epilepticus oxidants are excessively formed, which may be one of the causes of neuronal death. Given the role of oxidative stress in epileptogenesis, as well as the participation of this process in other neurological conditions, we decided to review the latest state of knowledge regarding the relationship between selected newer antiepileptic drugs (AEDs), also known as antiseizure drugs, and oxidative stress. The literature review indicates that drugs enhancing GABA-ergic transmission (e.g., vigabatrin, tiagabine, gabapentin, topiramate) or other antiepileptics (e.g., lamotrigine, levetiracetam) reduce neuronal oxidation markers. In particular, levetiracetam may produce ambiguous effects in this regard. However, when a GABA-enhancing drug was applied to the healthy tissue, it tended to increase oxidative stress markers in a dose-dependent manner. Studies on diazepam have shown that it exerts a neuroprotective effect in a "U-shaped" dose-dependent manner after excitotoxic or oxidative stress. Its lower concentrations are insufficient to protect against neuronal damage, while higher concentrations produce neurodegeneration. Therefore, a conclusion follows that newer AEDs, enhancing GABA-ergic neurotransmission, may act similarly to diazepam, causing neurodegeneration and oxidative stress when used in high doses.
Collapse
|
4
|
Mahdi WA, AlGhamdi SA, Alghamdi AM, Imam SS, Alshehri S, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington's Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain. Molecules 2023; 28:1402. [PMID: 36771072 PMCID: PMC9921215 DOI: 10.3390/molecules28031402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD). METHODS To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. RESULTS The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. CONCLUSION The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Almaniea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Kumar V, Singh C, Singh A. Neuroprotective Potential of Hydroalcoholic Extract of Centella asiatica Against 3-Nitropropionic Acid-Induced Huntington's Like Symptoms in Adult Zebrafish. Rejuvenation Res 2022; 25:260-274. [PMID: 36150031 DOI: 10.1089/rej.2022.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease. 3-Nitropropionic acid (3-NP) causes increased reactive oxygen species production and neuroinflammation. Centella asiatica (CA) is a strong antioxidant. The aim of this study is to investigate the effect of hydroalcoholic extract of C. asiatica (HA-CA) on 3-NP-induced HD in adult zebrafish. Adult zebrafish (∼5-6 months old) weighing 470 to 530 mg was used and treated with 3-NP (5 mg/kg intraperitoneal [i.p.]). The animals received HA-CA (80 and 100 mg/L) daily for up to 28 days in water. Tetrabenazine (3 mg/kg i.p.) was used as a standard drug. We have done an open field test (for locomotor activity), a novel tank diving test (for anxiety), and a light and dark tank test (for memory), followed by biochemical analysis (acetyl-cholinesterase [AchEs], nitrite, lipid peroxidation [LPO], and glutathione [GSH]) and histopathology to further confirm memory dysfunctions. 3-NP-treated zebrafish exhibit reductions in body weight, progressive neuronal damage, cognition, and locomotor activity. The HA-CA group significantly reduced the 3-NP-induced increase in LPO, AchEs, and nitrite levels while decreasing GSH levels. Oral administration of HA-CA (80 or 100 mg/L) significantly reduces 3-NP-induced changes in body weight and behaviors, in addition to neuroinflammation in the brain by lowering tumor necrosis factor-α and interleukin-1β levels. Moreover, HA-CA significantly decreases the 3-NP-induced neuronal damage in the brain. HA-CA ameliorates neurotoxicity and neurobehavioral deficits in 3-NP-induced HD-like symptoms in adult zebrafish.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| |
Collapse
|
6
|
Filgrastim, a Recombinant Form of Granulocyte Colony-stimulating Factor, Ameliorates 3-nitropropionic Acid and Haloperidol-induced Striatal Neurotoxicity in Rats. Neurotox Res 2022; 40:2089-2102. [PMID: 36385437 DOI: 10.1007/s12640-022-00604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Striatal neurotoxicity is the pathological hallmark for a heterogeneous group of movement disorders like Tardive dyskinesia (TD) and Huntington's disease (HD). Both diseases are characterized by progressive impairment in motor function. TD and HD share common features at both cellular and subcellular levels. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor (GCSF), shows neuroprotective properties in in-vivo models of movement disorders. This study seeks to evaluate the neuroprotective effect of filgrastim in haloperidol and 3-NP-induced neurotoxicity in rats. The study was divided into two: in study one, rats were administered with haloperidol for 21 days, filgrastim at the dose of (20, 40, 60 µg/kg,s.c.) was administered once a day before haloperidol treatment and the following parameters (orofacial movements, rotarod, actophotometer) were performed to assess TD. Similarly, in the second study, rats were administered with 3-NP for 21 days, filgrastim at a dose of (20 and 40 µg/kg, s.c.) was administered, and the following parameters (rotarod, narrow beam walk, and open field test) were assessed for HD. On the 22nd day, animals were sacrificed and cortex and striatum isolated for oxidative stress (LPO, GSH, SOD, catalase, and nitrate) marker assessment. Results revealed that haloperidol and 3-NP treatment significantly impaired motor coordination, and oxidative defense inducing TD and HD-like symptoms. Treatment with filgrastim significantly averted haloperidol and 3-NP-induced behavioral and biochemical alterations. Conclusively, the neuroprotective effect of filgrastim is credited to its antioxidant properties. Hence, filgrastim might be a novel therapeutic candidate for the management of TD and HD.
Collapse
|
7
|
Chandolia P, Rahi V, Kumar P. Neuroprotective effect of silymarin against 3-Nitropropionic acid-induced neurotoxicity in rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100130. [PMID: 36568269 PMCID: PMC9780065 DOI: 10.1016/j.crphar.2022.100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 12/27/2022] Open
Abstract
(HD) Huntington's disease is a severe hereditary catastrophic neurological disease with an autosomal dominant heritable changes manifested by cognitive, behavioural, and motor progression deficits, resulting in death. Several mechanisms are involved in the pathogenesis of this complex and rare disease, including excitotoxicity, mitochondrial dysfunction, neurotransmitters imbalance, and oxidative stress. Silymarin was selected as an investigational drug, due to its numerous activities in current research, it possesses substantial antioxidant and neuroprotective functionalities. The present research attempts, i.p. injections of 3-NPA (10 mg/kg) were given for 21 days to trigger Huntington-like symptoms in rats. The percentage fluctuations in body weight, the footfall counts, and the time required to transverse the beam and motor functions were analyzed at multiple time points. Oxidative stress markers like MDA/LPO, GSH, protein, nitrite, catalase, and superoxide dismutase levels were examined in the striatum region. The current study results conclusively demonstrate that chronic 3-NPA administration significantly decreased the body weight and showed marked abnormalities in motor coordination, locomotion, and increased striatal generation of free radicals. Furthermore, treatment with silymarin (100 & 200 mg/kg/p.o.), mitigated 3-NPA triggered behavioural and biochemical alterations. Our study results could conclude that Silymarin may be advantageous and might develop an adjuvant treatment for the management of Huntington's disease.
Collapse
Affiliation(s)
- Priyanka Chandolia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India,Corresponding author. Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
8
|
Kadir A, Singh J, Rahi V, Kumar P. Berberine Ameliorate Haloperidol and 3-Nitropropionic Acid-Induced Neurotoxicity in Rats. Neurochem Res 2022; 47:3285-3297. [PMID: 35876936 DOI: 10.1007/s11064-022-03677-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
Berberine due to its antioxidant properties, has been used around the globe significantly to treat several brain disorders. Also, oxidative stress is a pathological hallmark in neurodegenerative diseases like Huntington's disease (HD) and Tardive dyskinesia (TD). Berberine an alkaloid from plants has been reported to have neuroprotective potential in several animal models of neurodegenerative diseases. Hence, this study aims to evaluate the neuroprotective effect of berberine in the animal model of 3-nitropropionic acid (3-NP) induced HD and haloperidol induced tardive dyskinesia with special emphasis on its antioxidant property. The study protocol was divided into 2 phases, first phase involved the administration of 3-NP and berberine at the dose of (25, 50, and 100 mg/kg) intraperitoneally (i.p) and orally (p.o.) respectively for 21 days, and the following parameters (rotarod, narrow beam walk and photoactometer) as a measure of motor activity and striatal and cortical levels of (LPO, GSH, SOD, catalase, and nitrate) evaluated as a measure of oxidative stress were assessed for HD. Similarly in the second phase, TD was induced by using haloperidol, for 21 days and berberine at the dose of (25, 50, and 100 mg/kg) was administered, and both physical and biochemical parameters were assessed as mentioned for the HD study. The resultant data indicated that berberine attenuate 3-NP and haloperidol-induced behavioral changes and improved the antioxidant capcity in rodents. Hence berberine might be a novel therapeutic candidate to manage TD & HD.
Collapse
Affiliation(s)
- Abdul Kadir
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Jasdeep Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
9
|
Afzal M, Sayyed N, Alharbi KS, Alzarea SI, Alshammari MS, Alomar FA, Alenezi SK, Quazi AM, Alzarea AI, Kazmi I. Anti-Huntington's Effect of Rosiridin via Oxidative Stress/AchE Inhibition and Modulation of Succinate Dehydrogenase, Nitrite, and BDNF Levels against 3-Nitropropionic Acid in Rodents. Biomolecules 2022; 12:1023. [PMID: 35892333 PMCID: PMC9329716 DOI: 10.3390/biom12081023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Rosiridin is a compound extracted from Rhodiola sachalinensis; water extracts of Rhodiola root elicit positive effects on the human central nervous system and improve brain function. They are also thought to be beneficial to one's health, in addition to being antioxidants. The present study aims to evaluate the anti-Huntington's effect of rosiridin against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like effects in rats. Materials and Methods: The acute toxicity in rats was elucidated to track the conceivable toxicities in the rats. The effectiveness of rosiridin at a dosage of 10 mg/kg was evaluated against several dose administrations of 3-NPA-induced HD-like symptoms in the rats for 22 days. At the end of the study, behavioral parameters were assessed as a hallmark for the cognitive and motor functions in the rats. Similarly, after the behavioral assessment, the animals were sacrificed to obtain a brain tissue homogenate. The prepared homogenate was utilized for the estimation of several biochemical parameters, including oxidative stress (glutathione, catalase, and malondialdehyde), brain-derived neurotrophic factor and succinate dehydrogenase activity, and the glutamate and acetylcholinesterase levels in the brain. Furthermore, inflammatory mediators linked to the occurrence of neuroinflammation in rats were evaluated in the perfused brain tissues. Results: The rosiridin-treated group exhibited a significant restoration of behavioral parameters, including in the beam-walk test, latency in falling during the hanging wire test, and percentage of memory retention during the elevated plus-maze test. Further, rosiridin modulated several biochemical parameters, including oxidative stress, pro-inflammatory activity, brain-derived neurotrophic factor, nitrite, and acetylcholinesterase as compared to disease control group that was treated with 3-NPA. Conclusions: The current study exhibits the anti-Huntington's effects of rosiridin in experimental animal models.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India;
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Mohammed Salem Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anwarulabedin Mohsin Quazi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Abdulaziz I. Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
The Interconnected Mechanisms of Oxidative Stress and Neuroinflammation in Epilepsy. Antioxidants (Basel) 2022; 11:antiox11010157. [PMID: 35052661 PMCID: PMC8772850 DOI: 10.3390/antiox11010157] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
One of the most important characteristics of the brain compared to other organs is its elevated metabolic demand. Consequently, neurons consume high quantities of oxygen, generating significant amounts of reactive oxygen species (ROS) as a by-product. These potentially toxic molecules cause oxidative stress (OS) and are associated with many disorders of the nervous system, where pathological processes such as aberrant protein oxidation can ultimately lead to cellular dysfunction and death. Epilepsy, characterized by a long-term predisposition to epileptic seizures, is one of the most common of the neurological disorders associated with OS. Evidence shows that increased neuronal excitability—the hallmark of epilepsy—is accompanied by neuroinflammation and an excessive production of ROS; together, these factors are likely key features of seizure initiation and propagation. This review discusses the role of OS in epilepsy, its connection to neuroinflammation and the impact on synaptic function. Considering that the pharmacological treatment options for epilepsy are limited by the heterogeneity of these disorders, we also introduce the latest advances in anti-epileptic drugs (AEDs) and how they interact with OS. We conclude that OS is intertwined with numerous physiological and molecular mechanisms in epilepsy, although a causal relationship is yet to be established.
Collapse
|
11
|
Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, Westrin Å, Lindqvist D. Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One 2021; 16:e0259591. [PMID: 34735532 PMCID: PMC8568274 DOI: 10.1371/journal.pone.0259591] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/21/2021] [Indexed: 01/25/2023] Open
Abstract
Background Plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) is an immunogenic molecule and a novel biomarker of psychiatric disorders. Some previous studies reported increased levels of ccf-mtDNA in unmedicated depression and recent suicide attempters, while other studies found unchanged or decreased ccf-mtDNA levels in depression. Inconsistent findings across studies may be explained by small sample sizes and between-study variations in somatic and psychiatric co-morbidity or medication status. Methods We measured plasma ccf-mtDNA in a cohort of 281 patients with depressive disorders and 49 healthy controls. Ninety-three percent of all patients were treated with one or several psychotropic medications. Thirty-six percent had a personality disorder, 13% bipolar disorder. All analyses involving ccf-mtDNA were a priori adjusted for age and sex. Results Mean levels in ccf-mtDNA were significantly different between patients with a current depressive episode (n = 236), remitted depressive episode (n = 45) and healthy controls (n = 49) (f = 8.3, p<0.001). Post-hoc tests revealed that both patients with current (p<0.001) and remitted (p = 0.002) depression had lower ccf-mtDNA compared to controls. Within the depressed group there was a positive correlation between ccf-mtDNA and “inflammatory depression symptoms” (r = 0.15, p = 0.02). We also found that treatment with mood stabilizers lamotrigine, valproic acid or lithium was associated with lower ccf-mtDNA (f = 8.1, p = 0.005). Discussion Decreased plasma ccf-mtDNA in difficult-to-treat depression may be partly explained by concurrent psychotropic medications and co-morbidity. Our findings suggest that ccf-mtDNA may be differentially regulated in different subtypes of depression, and this hypothesis should be pursued in future studies.
Collapse
Affiliation(s)
- Johan Fernström
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, Sweden
- * E-mail:
| | - Lars Ohlsson
- Department of Biomedical Science, Malmö University, Health and Society, Malmö, Sweden
| | - Marie Asp
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, Sweden
| | - Eva Lavant
- Department of Biomedical Science, Malmö University, Health and Society, Malmö, Sweden
| | - Amanda Holck
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, Sweden
| | - Cécile Grudet
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
| | - Åsa Westrin
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Sweden
| | - Daniel Lindqvist
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Sweden
| |
Collapse
|
12
|
Jain V, Pareek A, Bhardwaj YR, Sinha SK, Gupta MM, Singh N. Punicalagin and ellagic acid containing Punica granatum L. fruit rind extract prevents vincristine-induced neuropathic pain in rats: an in silico and in vivo evidence of GABAergic action and cytokine inhibition. Nutr Neurosci 2021; 25:2149-2166. [PMID: 34369317 DOI: 10.1080/1028415x.2021.1954293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives: We aimed to investigate the protective potential of Punica granatum L. fruit rind extract (PFE) containing punicalagin (10.3% W/W), ellagic acid (EA) (2.7%W/W) in vincristine (75 µg/kg i.p.)- induced neuropathic pain in Wistar rats.Methods: Docking simulation studies were done on the three-dimensional (3D) structure of the GABAA and PPAR γ receptor for the binding of EA as well as punicalagin docking studies on TNF-α, and IL-6. The Present Study conceptualized a test battery to evaluate the behavioral, biochemical and histological changes.Results: Vincristine -induced significant cold allodynia, mechanical hyperalgesia, and functional deficit on 12th and 21st days. It also increased in the levels of TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), and MPO (Myeloperoxidase). Administration of PFE (100 and 300 mg/kg, p.o.), EA (50 mg/kg), and gabapentin (100 mg/kg) attenuated Vincristine-induced behavioral and biochemical changes significantly (P < .05). PFE showed better antinociceptive activity to EA. The histopathological evaluation also revealed the protective effects of PFE. Pretreatment of bicuculline (selective antagonist of GABAA receptors) reversed antinociceptive action of PFE, but administration of γ aminobutyric acid potentiated the action of PFE. PPAR-γ antagonist BADGE did not modify the effect of PFE. Docking results revealed that EA properly positioned into GABA and PPARγ binding site and acts as a partial agonist. Docking score of Punicalagin found to be - 9.02 kcal/mol and - 8.32 kcal/mol on IL-6 and TNFα respectively.Discussion: Conclusively, the attenuating effect of PFE may be attributed to the GABAergic system, cytokine inhibition, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.,Department of Pharmacy, Banasthali University, Banasthali, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali University, Banasthali, India
| | | | - Saurabh Kumar Sinha
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad & Tobago, West Indies
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
13
|
Samra YA, Amin MN, Said E. Cardio-protective impact of gabapentin against doxorubicin-induced myocardial toxicity in rats; emphasis on modulation of inflammatory-apoptotic signaling. Int Immunopharmacol 2021; 90:107125. [PMID: 33199237 DOI: 10.1016/j.intimp.2020.107125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Cardiotoxicity is one of the most commonly encountered adverse effects observed alongside the therapeutic use of doxorubicin (DOX), thus curbing its therapeutic utility. METHODS The current study was conducted to evaluate the cardioprotective effect of gabapentin (Gaba), a Ca + 2 channel blocker with emerging pharmacological merits, against DOX-induced cardiotoxicity. Gaba was orally administered at two dose levels (10 and 30 mg/kg) for 21 days parallel to DOX injection. RESULTS DOX induced significant functional, biochemical, and histopathological injury to the myocardium. Gaba treatment revealed a cardioprotective effect as manifested in the significant restoration of electrocardiogram parameters, including the heart rate, ST segment elevation, QRS and T wave amplitudes, and QT and PR intervals. The biomarkers of myocardial injury, namely serum creatine kinase, aspartate aminotransferase, and lactate dehydrogenase activities, significantly declined as well as the concomitant improvement of the myocardial oxidative status. Mechanistically, Gaba treatment significantly reduced the myocardial contents of c-Jun N-terminal kinase (JNK), the major modulator of inflammatory/apoptotic signaling. However, the myocardial contents of the apoptotic biomarkers caspase-8 and TRAIL also significantly declined. In isolated cardiomyocytes, Gaba treatment maintained the morphological characteristics of the cardiomyocytes and preserved their spontaneous beating characteristics. Nevertheless, the protein expression of caspase-8, JNK 1/2, and CD95L significantly declined with Gaba treatment. CONCLUSION Gaba confers cardioprotective effects against DOX-induced myocardial injury and cardiotoxicity by modulating the inflammatory/apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
14
|
Eskandari N, Boroujeni ME, Abdollahifar MA, Piryaei A, Khodagholi F, Mirbehbahani SH, Siroosi S, Moghaddam MH, Aliaghaei A, Sadeghi Y. Transplantation of human dental pulp stem cells compensates for striatal atrophy and modulates neuro-inflammation in 3-nitropropionic acid rat model of Huntington's disease. Neurosci Res 2020; 170:133-144. [PMID: 33359180 DOI: 10.1016/j.neures.2020.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Stem cell-based therapy has recently offered a promising alternative for the remedy of neurodegenerative disorders like Huntington's disease (HD). Herein, we investigated the potential ameliorative effects of implantation of dental pulp stem cells (DPSCs) in 3-nitropropionic acid (3-NP) rat models of HD. In this regard, human DPSCs were isolated, culture-expanded and implanted in rats lesioned with 3-NP. Post-transplantation examinations revealed that DPSCs were able to survive and augment motor skills and muscle activity. Histological analysis showed DPSCs treatment hampered the shrinkage of the striatum along with the inhibition of gliosis and microgliosis in the striatum of 3-NP rat models. We also detected the downregulation of Caspase-3 and pro-inflammatory cytokines such as TNF and IL-1β upon DPSCs grafting. Overall, these findings imply that the grafting of DPSCs could repair motor-skill impairment and induce neurogenesis, probably through the secretion of neurotrophic factors and the modulation of neuroinflammatory response in HD animal models.
Collapse
Affiliation(s)
- Neda Eskandari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shokoofeh Siroosi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Sadeghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomy & Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Thakur V, Jamwal S, Kumar M, Rahi V, Kumar P. Protective Effect of Hemin Against Experimental Chronic Fatigue Syndrome in Mice: Possible Role of Neurotransmitters. Neurotox Res 2020; 38:359-369. [PMID: 32506340 DOI: 10.1007/s12640-020-00231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Chronic fatigue syndrome (CFS) is a disorder characterized by persistent and relapsing fatigue along with long-lasting and debilitating fatigue, myalgia, cognitive impairment, and many other common symptoms. The present study was conducted to explore the protective effect of hemin on CFS in experimental mice. Male albino mice were subjected to stress-induced CFS in a forced swimming test apparatus for 21 days. After animals had been subjected to the forced swimming test, hemin (5 and 10 mg/kg; i.p.) and hemin (10 mg/kg) + tin(IV) protoporphyrin (SnPP), a hemeoxygenase-1 (HO-1) enzyme inhibitor, were administered daily for 21 days. Various behavioral tests (immobility period, locomotor activity, grip strength, and anxiety) and estimations of biochemical parameters (lipid peroxidation, nitrite, and GSH), mitochondrial complex dysfunctions (complexes I and II), and neurotransmitters (dopamine, serotonin, and norepinephrine and their metabolites) were subsequently assessed. Animals exposed to 10 min of forced swimming session for 21 days showed a fatigue-like behavior (as increase in immobility period, decreased grip strength, and anxiety) and biochemical alteration observed by increased oxidative stress, mitochondrial dysfunction, and neurotransmitter level alteration. Treatment with hemin (5 and 10 mg/kg) for 21 days significantly improved the decreased immobility period, increased locomotor activity, and improved anxiety-like behavior, oxidative defense, mitochondrial complex dysfunction, and neurotransmitter level in the brain. Further, these observations were reversed by SnPP, suggesting that the antifatigue effect of hemin is HO-1 dependent. The present study highlights the protective role of hemin against experimental CFS-induced behavioral, biochemical, and neurotransmitter alterations.
Collapse
Affiliation(s)
- Vandana Thakur
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Sumit Jamwal
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Mandeep Kumar
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India.
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
16
|
Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol Res 2019; 150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
17
|
Yan BC, Wang J, Rui Y, Cao J, Xu P, Jiang D, Zhu X, Won MH, Bo P, Su P. Neuroprotective Effects of Gabapentin Against Cerebral Ischemia Reperfusion-Induced Neuronal Autophagic Injury via Regulation of the PI3K/Akt/mTOR Signaling Pathways. J Neuropathol Exp Neurol 2019; 78:157-171. [PMID: 30597043 DOI: 10.1093/jnen/nly119] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gabapentin (GBP), an analgesic, adjunct antiepileptic, and migraine prophylactic drug, reduces neuronal injury induced by cerebral ischemia reperfusion (IR). However, the underlying biological molecular mechanism of GBP neuroprotection is not clear. In this study, we confirmed that dose-dependent (75 and 150 mg/kg) GBP treatment could significantly reduce IR-induced neuronal death. IR-induced neuronal death was inhibited by pretreatment with 150 mg/kg GBP in a middle cerebral artery occlusion rat model. In addition, 150 mg/kg GBP treatment remarkably promoted the levels of antioxidants and reduced the autophagy of neurons in the infarct penumbra. Moreover, the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway was activated by pretreatment with 150 mg/kg GBP, as detected by Western blot analyses. In vitro, pretreatment of PC12 cells with 450 µM GBP significantly reduced cell death induced by oxygen-glucose deprivation, increased antioxidant function, and reduced the levels of autophagy and reactive oxygen species via activation of the PI3K/Akt/mTOR pathway. This neuroprotection by GBP was inhibited significantly by 10 µM LY294002. In summary, dose-dependent pretreatment with GBP protected against cerebral IR injury via activation of the PI3K/Akt/mTOR pathway, which provided a neuroprotective function to inhibit oxidative stress-related neuronal autophagy.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University.,Department of Neurology, Affiliated Hospital, Yangzhou University.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Jie Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanggang Rui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University
| | - Jianwen Cao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University
| | - Pei Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University
| | - Dan Jiang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University
| | - Xiaolu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University
| | - Peiqing Su
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical college of Yangzhou University
| |
Collapse
|
18
|
Sharma S, Raj K, Singh S. Neuroprotective Effect of Quercetin in Combination with Piperine Against Rotenone- and Iron Supplement-Induced Parkinson's Disease in Experimental Rats. Neurotox Res 2019; 37:198-209. [PMID: 31654381 DOI: 10.1007/s12640-019-00120-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by selective dopaminergic neuronal loss. Rotenone is a neurotoxin that selectively destroys dopaminergic neurons, leading to PD-like symptoms. Quercetin possesses antioxidant, anti-inflammatory, and neuroprotective properties but a major drawback is its low bioavailability. Therefore, the present study was designed to evaluate the neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced model of PD. Rotenone was administered at a dose of 1.5 mg/kg through an intraperitoneal route with iron supplement at a dose of 120 μg/g in diet from day 1 to day 28. Pre-treatment with quercetin (25 and 50 mg/kg, p.o.), piperine (2.5 mg/kg, p.o.) alone, quercetin (25 mg/kg, p.o.) in combination with piperine (2.5 mg/kg), and ropinirole (0.5 mg/kg, i.p.) was administered for 28 days 1 h prior to rotenone and iron supplement administration. All behavioral parameters were assessed on weekly basis. On the 29th day, all animals were sacrificed and striatum was isolated for biochemical (LPO, nitrite, GSH, mitochondrial complexes I and IV), neuroinflammatory (TNF-α, IL-1β, and IL-6), and neurotransmitter (dopamine, norepinephrine, serotonin, GABA, glutamate) estimation. Quercetin treatment attenuated rotenone- and iron supplement-induced motor deficits and biochemical and neurotransmitter alterations in experimental rats. However, combination of quercetin (25 mg/kg) with piperine (2.5 mg/kg) significantly enhanced its neuroprotective effect as compared with treatment with quercetin alone. The study concluded that combination of quercetin with piperine contributed to superior antioxidant, anti-inflammatory, and neuroprotective effect against rotenone- and iron supplement-induced PD in experimental rats.
Collapse
Affiliation(s)
- Shakshi Sharma
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
19
|
Premoli I, Rossini PG, Goldberg PY, Posadas K, Green L, Yogo N, Pimstone S, Abela E, Beatch GN, Richardson MP. TMS as a pharmacodynamic indicator of cortical activity of a novel anti-epileptic drug, XEN1101. Ann Clin Transl Neurol 2019; 6:2164-2174. [PMID: 31568714 PMCID: PMC6856596 DOI: 10.1002/acn3.50896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022] Open
Abstract
Objective Transcranial magnetic stimulation (TMS) produces characteristic deflections in the EEG signal named TMS‐evoked EEG potentials (TEPs), which can be used to assess drug effects on cortical excitability. TMS can also be used to determine the resting motor threshold (RMT) for eliciting a minimal muscle response, as a biomarker of corticospinal excitability. XEN1101 is a novel potassium channel opener undergoing clinical development for treatment of epilepsy. We used TEPs and RMT to measure the effects of XEN1101 in the human brain, to provide evidence that XEN1101 alters cortical excitability at doses that might be used in future clinical trials. Methods TMS measurements were incorporated in this Phase I clinical trial to evaluate the extent to which XEN1101 modulates TMS parameters of cortical and corticospinal excitability. TEPs and RMT were collected before and at 2‐, 4‐, and 6‐hours post drug intake in a double‐blind, placebo‐controlled, randomized, two‐period crossover study of 20 healthy male volunteers. Results Consistent with previous TMS investigations of antiepileptic drugs (AEDs) targeting ion channels, the amplitude of TEPs occurring at early (15–55 msec after TMS) and at late (150–250 msec after TMS) latencies were significantly suppressed from baseline by 20 mg of XEN1101. Furthermore, the RMT showed a significant time‐dependent increase that correlated with the XEN1101 plasma concentration. Interpretation Changes from baseline in TMS measures provided evidence that 20 mg of XEN1101 suppressed cortical and corticospinal excitability, consistent with the effects of other AEDs. These results support the implementation of TMS as a tool to inform early‐stage clinical trials.
Collapse
Affiliation(s)
- Isabella Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pierre G Rossini
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | - Louise Green
- Clinical Research Facility, King's College Hospital, London, UK
| | - Noah Yogo
- Clinical Research Facility, King's College Hospital, London, UK
| | - Simon Pimstone
- Xenon Pharmaceuticals Inc., Burnaby, Canada.,Department of General Internal Medicine, University of British Columbia, Vancouver, Canada
| | - Eugenio Abela
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
20
|
Holper L, Ben-Shachar D, Mann JJ. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur Neuropsychopharmacol 2019; 29:986-1002. [PMID: 31320210 DOI: 10.1016/j.euroneuro.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH-dehydrogenase) and complex IV (cytochrome-c-oxidase) are reported to be affected by drugs used to treat psychiatric or neurodegenerative diseases, including antidepressants, antipsychotics, anxiolytics, mood stabilizers, stimulants, antidementia, and antiparkinsonian drugs. We conducted meta-analyses examining the effects of each drug category on complex I and IV. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar were searched for studies published between 1970 and 2018. Of 3105 screened studies, 68 articles covering 53 drugs were included in the meta-analyses. All studies assessed complex I and IV in rodent brain at the level of enzyme activity. Results revealed that selected antidepressants increase or decrease complex I and IV, antipsychotics and stimulants decrease complex I but increase complex IV, whereas anxiolytics, mood stabilizers, antidementia, and antiparkinsonian drugs preserve or even enhance both complex I and IV. Potential contributions to the drug effects were found to be related to the drugs' neurotransmitter receptor profiles with adrenergic (α1B), dopaminergic (D1/2), glutaminergic (NMDA1,3), histaminergic (H1), muscarinic (M1,3), opioid (OP1-3), serotonergic (5-HT2A, 5-HT2C, 5-HT3A) and sigma (σ1) receptors having the greatest effects. The findings are discussed in relation to pharmacological mechanisms of action that might have relevance for clinical and research applications.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, USA
| |
Collapse
|
21
|
Correale J, Marrodan M, Ysrraelit MC. Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines 2019; 7:biomedicines7010014. [PMID: 30791637 PMCID: PMC6466454 DOI: 10.3390/biomedicines7010014] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple Sclerosis (MS) is a major cause of neurological disability, which increases predominantly during disease progression as a result of cortical and grey matter structures involvement. The gradual accumulation of disability characteristic of the disease seems to also result from a different set of mechanisms, including in particular immune reactions confined to the Central Nervous System such as: (a) B-cell dysregulation, (b) CD8+ T cells causing demyelination or axonal/neuronal damage, and (c) microglial cell activation associated with neuritic transection found in cortical demyelinating lesions. Other potential drivers of neurodegeneration are generation of oxygen and nitrogen reactive species, and mitochondrial damage, inducing impaired energy production, and intra-axonal accumulation of Ca2+, which in turn activates a variety of catabolic enzymes ultimately leading to progressive proteolytic degradation of cytoskeleton proteins. Loss of axon energy provided by oligodendrocytes determines further axonal degeneration and neuronal loss. Clearly, these different mechanisms are not mutually exclusive and could act in combination. Given the multifactorial pathophysiology of progressive MS, many potential therapeutic targets could be investigated in the future. This remains however, an objective that has yet to be undertaken.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, FLENI, Buenos Aires 1428, Argentina.
| | | | | |
Collapse
|
22
|
Kumar P, Sharma G, Gupta V, Kaur R, Thakur K, Malik R, Kumar A, Kaushal N, Katare OP, Raza K. Oral Delivery of Methylthioadenosine to the Brain Employing Solid Lipid Nanoparticles: Pharmacokinetic, Behavioral, and Histopathological Evidences. AAPS PharmSciTech 2019; 20:74. [PMID: 30631981 DOI: 10.1208/s12249-019-1296-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to orally deliver methylthioadenosine (MTA) to the brain employing solid lipid nanoparticles (SLNs) for the management of neurological conditions like multiple sclerosis. The stearic acid-based SLNs were below 100 nm with almost neutral zeta potential and offered higher drug entrapment and drug loading. Cuprizone-induced demyelination model in mice was employed to mimic the multiple sclerosis-like conditions. It was observed that the MTA-loaded SLNs were able to maintain the normal metabolism, locomotor activity, motor coordination, balancing, and grip strength of the rodents in substantially superior ways vis-à-vis plain MTA. Histopathological studies of the corpus callosum and its subsequent staining with myelin staining dye luxol fast blue proved the potential of MTA-loaded SLNs in the remyelination of neurons. The pharmacokinetic studies provided the evidences for improved bioavailability and enhanced bioresidence supporting the pharmacodynamic findings. The studies proved that SLN-encapsulated MTA can be substantially delivered to the brain and can effectively remyelinate the neurons. It can reverse the multiple sclerosis-like symptoms in a safer and effective manner, that too by oral route.
Collapse
|
23
|
Flores-Hernández J, Garzón-Vázquez JA, Hernández-Carballo G, Nieto-Mendoza E, Ruíz-Luna EA, Hernández-Echeagaray E. Striatal Neurodegeneration that Mimics Huntington's Disease Modifies GABA-induced Currents. Brain Sci 2018; 8:E217. [PMID: 30563250 PMCID: PMC6316731 DOI: 10.3390/brainsci8120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a degenerative disease which produces cognitive and motor disturbances. Treatment with GABAergic agonists improves the behavior and activity of mitochondrial complexes in rodents treated with 3-nitropropionic acid to mimic HD symptomatology. Apparently, GABA receptors activity may protect striatal medium spiny neurons (MSNs) from excitotoxic damage. This study evaluates whether mitochondrial inhibition with 3-NP that mimics the early stages of HD, modifies the kinetics and pharmacology of GABA receptors in patch clamp recorded dissociated MSNs cells. The results show that MSNs from mice treated with 3-NP exhibited differences in GABA-induced dose-response currents and pharmacological responses that suggests the presence of GABAC receptors in MSNs. Furthermore, there was a reduction in the effect of the GABAC antagonist that demonstrates a lessening of this GABA receptor subtype activity as a result of mitochondria inhibition.
Collapse
Affiliation(s)
- Jorge Flores-Hernández
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, México.
| | | | | | - Elizabeth Nieto-Mendoza
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, México, FES-Iztacala, Av. de Los Barrios #1, Los Reyes Iztacala, Tlalnepantla C.P.54090, México.
| | - Evelyn A Ruíz-Luna
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, México.
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, México, FES-Iztacala, Av. de Los Barrios #1, Los Reyes Iztacala, Tlalnepantla C.P.54090, México.
| |
Collapse
|
24
|
Yosri H, Said E, Elkashef WF, Gameil NM. Modulatory role of gabapentin against ovalbumin-induced asthma, bronchial and airway inflammation in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:18-25. [PMID: 30286334 DOI: 10.1016/j.etap.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Allergic asthma is a type of chronic immune-mediated inflammatory lung disorders with constantly increased worldwide prevalence. Gabapentin is an L-type calcium channel blocker used essentially as antiepileptic and recently has been indicated for management of post-operative and neuropathic pains as an anti-inflammatory. The current study was conducted to evaluate the anti-inflammatory and anti-allergic properties of gabapentin in a mouse-model of Ovalbumin-induced allergic asthma. Mice received OVA (10 mg) adsorbed on Al(OH)3 on days 0 and 7 and were challenged by exposure to nebulized OVA solution (1%) form days 14-16. Asthma induction was associated with significant biochemical, oxidative and inflammatory imbalance. Daily oral gabapentin (50 mg/kg), significantly reduced lung inflammatory cells counts', serum LDH and catalase activities and lung/body weight index. Moreover, gabapentin significantly increased lung GSH concentration and enhanced SOD activity. Lung contents of TNFα, IL-4 and IL-13 significantly declined as well. IL-13; is the major contributor to airway hyper-responsiveness; the charetrestic hallmark of asthma and IL-4; a major chemoattractant cytokine. Lung histopathology significantly improved parallel to the biochemical improvements. In conclusion; Gabapentin's modulatory effect on IL-4, IL-13 and TNFα activities accounts for the observed anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Haidy Yosri
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Wagdi F Elkashef
- Dep. of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Kumar P, Sharma G, Gupta V, Kaur R, Thakur K, Malik R, Kumar A, Kaushal N, Raza K. Preclinical Explorative Assessment of Dimethyl Fumarate-Based Biocompatible Nanolipoidal Carriers for the Management of Multiple Sclerosis. ACS Chem Neurosci 2018; 9:1152-1158. [PMID: 29357233 DOI: 10.1021/acschemneuro.7b00519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease in which myelin sheath damage occurs due to internal and external factors. MS especially affects the young population. Dimethyl fumarate (DMF) is a promising agent for MS treatment, although it is associated with concerns such as poor brain permeation, multiple dosing, and gastrointestinal flushing. The present study attempts to evaluate the preclinical performance of specially designed DMF-based lipoidal nanoparticles in a cuprizone-induced demyelination model in rodents. The studies proved the efficacy of lipid-based nanoparticles containing DMF in a once-a-day dosage regimen over that of thrice-a-day plain DMF administration on crucial parameters like motor coordination, grip strength, mortality, body weight, and locomotor activity. However, neither blank lipid nor blank neuroprotective (vitamins A, D, and E) loaded nanoparticles were able to elicit any desirable behavioral response. Histopathological studies showed that the designed once-a-day DMF nanomedicines were well tolerated and rejuvenated the myelin sheath vis-à-vis the plain DMF thrice-a-day regimen. These findings provide proof of concept for a biocompatible nanomedicine for MS with tremendous promise for effective brain delivery and patient compliance on the grounds of a reduction in the dosage frequency.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan, India 305817
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Varun Gupta
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India 160014
| | - Ramanpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India 160014
| | - Kanika Thakur
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan, India 305817
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India 160014
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, India 160014
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan, India 305817
| |
Collapse
|
26
|
Affiliation(s)
- Ursula Geronzi
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Liachenko S, Ramu J, Paule MG, Hanig J. Comparison of quantitative T 2 and ADC mapping in the assessment of 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology 2018; 65:52-59. [PMID: 29427612 DOI: 10.1016/j.neuro.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
To assess the relative performance of MRI T2 relaxation and ADC mapping as potential biomarkers of neurotoxicity, a model of 3-nitropropionic acid (NP)-induced neurodegeneration in rats was employed. Male Sprague-Dawley rats received NP (N = 20, 16-20 mg/kg, ip or sc) or saline (N = 6, 2 ml/kg, ip) daily for 3 days. MRI was performed using a 7 T system employing quantitative T2 and ADC mapping based on spin echo pulse sequence. All maps were skull stripped and co-registered and the changes were quantified using baseline subtraction and anatomical segmentation. Following the in vivo portion of the study, rat brains were histologically examined. Four NP-treated rats were considered responders based on their MRI and histology data. T2 values always increased in the presence of toxicity, while ADC changes were bidirectional, decreasing in some lesion areas and increasing in others. In contrast to T2 in some cases, ADC did not change. The effect sizes of T2 and ADC signals suggestive of neurotoxicity were 2.64 and 1.66, respectively, and the variability of averaged T2 values among anatomical regions was consistently lower than that for ADC. The histopathology data confirmed the presence of neurotoxicity, however, a more detailed assessment of the correlation of MRI with histology is needed. T2 mapping provides more sensitive and specific information than ADC about changes in the rat brain thought to be associated with neurotoxicity due to a higher signal-to-noise ratio, better resolution, and unidirectional changes, and presents a better opportunity for biomarker development.
Collapse
Affiliation(s)
- Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States.
| | - Jaivijay Ramu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Joseph Hanig
- Center for Drug Evaluation and Research, US Food and Drug Administration, White Oak, MD, United States
| |
Collapse
|
28
|
Finsterer J, Scorza FA. Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival. Epilepsy Res 2017; 136:5-11. [PMID: 28732239 DOI: 10.1016/j.eplepsyres.2017.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Antiepileptic drugs (AEDs) exhibit adverse and beneficial effects on mitochondria, which have a strong impact on the treatment of patients with a mitochondrial disorder (MID) with epilepsy (mitochondrial epilepsy). This review aims at summarizing and discussing recent findings concerning the effect of AEDs on mitochondrial functions and the clinical consequences with regard to therapy of mitochondrial epilepsy and of MIDs in general. METHODS Literature review. RESULTS AEDs may interfere with the respiratory chain, with non-respiratory chain enzymes, carrier proteins, or mitochondrial biogenesis, with carrier proteins, membrane-bound channels or receptors and the membrane potential, with anti-oxidative defense mechanisms, with morphology, dynamics and survival of mitochondria, and with the mtDNA. There are AEDs of which adverse effects outweigh beneficial effects, such as valproic acid, carbamazepine, phenytoin, or phenobarbital and there are AEDs in which beneficial effects dominate over mitochondrial toxic effects, such as lamotrigine, levetiracetam, gabapentin, or zonisamide. However, from most AEDs only little is known about their interference with mitochondria. CONCLUSIONS Mitochondrial epilepsy might be initially treated with AEDs with low mitochondrial toxic potential. Only in case mitochondrial epilepsy is refractory to these AEDs, AEDs with higher mitochondrial toxic potential might be tried. In patients carrying POLG1 mutations AEDs with high mitochondrial toxic potential are contraindicated.
Collapse
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, (EPM/UNIFESP), São Paulo, Brazil.
| |
Collapse
|
29
|
Sarangi SC, Kakkar AK, Kumar R, Gupta YK. Effect of lamotrigine, levetiracetam & topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in rats. Indian J Med Res 2017; 144:104-111. [PMID: 27834333 PMCID: PMC5116881 DOI: 10.4103/0971-5916.193296] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background & objectives: Though newer antiepileptic drugs are considered safer than conventional antiepileptics, the effects of lamotrigine, levetiracetam and topiramate on neurobehavioural functions are yet to be established. This study evaluated neurobehavioural parameters and oxidative stress markers in brain tissue of rats treated with lamotrigine, levetiracetam and topiramate compared to sodium valproate. Methods: Five groups of male Wistar rats were treated respectively with normal saline (control), sodium valproate (370 mg/kg), lamotrigine (50 mg/kg), levetiracetam (310 mg/kg) and topiramate (100 mg/kg) for 45 days. Neurobehavioural parameters were assessed using elevated plus maze (EPM), actophotometer, rotarod, passive avoidance and Morris water maze (MWM) at baseline and at the end of treatment. Oxidative stress parameters [malondialdehyde (MDA), reduced glutathione (GSH) and superoxide dismutase (SOD)] were estimated in rat brain at the end of treatment. Results: Valproate and lamotrigine showed no significant effect on learning and memory in passive avoidance and MWM tests. However, levetiracetam and topiramate reduced retention memory significantly as compared to control (P<0.01) and lamotrigine (P<0.05) groups. Performances on EPM, rotarod and actophotometer were not significantly different between the groups. In comparison to control group, MDA was higher in the levetiracetam and topiramate (360.9 and 345.9 nmol/g of homogenized brain tissue, respectively) groups. GSH and SOD activity were significantly reduced by valproate and levetiracetam treatment. Lamotrigine did not induce significant oxidative stress. Interpretation & conclusions: Long-term and therapeutic dose treatment with levetiracetam and topiramate significantly impaired learning and memory, which was not seen with valproate and lamotrigine in rats. Levetiracetam, topiramate and valproate augmented oxidative stress, whereas lamotrigine has little effect on it. These antiepileptic drugs are used in clinical practice, hence pharmacovigilance studies are required to evaluate their safety profile.
Collapse
Affiliation(s)
| | - Ashish Kumar Kakkar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi; Department of Pharmacology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Ritesh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Yogendra Kumar Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Kaur B, Prakash A. Ceftriaxone attenuates glutamate-mediated neuro-inflammation and restores BDNF in MPTP model of Parkinson's disease in rats. ACTA ACUST UNITED AC 2017; 24:71-79. [PMID: 28245954 DOI: 10.1016/j.pathophys.2017.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
The present study is designed to investigate the role of glutamate transporter in neuroprotection of ceftriaxone against MPTP induced PD animal model. Young male Wistar rats were subjected to intra-nigral administration of MPTP for the induction of Parkinson's disease. Glutamate modulators like ceftriaxone (CFX), Memantine (MEM) and Dihydrokainate (DHK) were administered to MPTP-lesioned rats. Different behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical parameters were measured. Intranigral administration of MPTP showed significant impairment of motor behavior and marked increase in inflammatory mediators and oxidative stress parameters in rats. In addition, MPTP also produced significant decrease in brain-derived neurotrophic factor (BDNF) in striatum of rats. However, chronic administration of ceftriaxone (200mg/kg) has shown significant improvement in motor behavioral deficits and oxidative damage. In addition, Ceftriaxone also attenuated the marked increase of NFκB, TNF-α and IL-1β in MPTP treated rats thus, conferring its neuro-inflammatory property. Further, Ceftriaxone significantly restored the decreased activity of BDNF in striatum of MPTP treated rats. Moreover, pre-treatment of memantine (20mg/kg) with sub-therapeutic dose of ceftriaxone (100mg/kg) potentiated the protective effect of ceftriaxone. Furthermore, intra-nigral injection of DHK (200 nmol) with lower dose of ceftriaxone (100mg/kg) reversed the protective effect of ceftriaxone in MPTP treated rats. The present study concluded that ceftriaxone produce beneficial effect against MPTP induced PD like symptoms rats through glutamatergic pathways.
Collapse
Affiliation(s)
- Baninder Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; Division of CNS Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Singh S, Jamwal S, Kumar P. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen Res 2017; 12:1137-1144. [PMID: 28852397 PMCID: PMC5558494 DOI: 10.4103/1673-5374.211194] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that selectively damages dopaminergic neurons in the substantia nigra pars compacta and induces Parkinson's like symptoms in rodents. Quercetin (QC) is a natural polyphenolic bioflavonoid with potent antioxidant and anti-inflammatory properties but lacks of clinical attraction due to low oral bioavailability. Piperine is a well established bioavailability enhancer used pre-clinically to improve the bioavailability of antioxidants (e.g., Quercetin). Therefore, the present study was designed to evaluate the neuroprotective potential of QC together with piperine against MPTP-induced neurotoxicity in rats. MPTP (100 μg/μL/rat, bilaterally) was injected intranigrally on days 1, 4 and 7 using a digital stereotaxic apparatus. QC (25 and 50 mg/kg, intragastrically) and QC (25 mg/kg, intragastrically) in combination with piperine (2.5 mg/kg, intragastrically) were administered daily for 14 days starting from day 8 after the 3rd injection of MPTP. On day 22, animals were sacrificed and the striatum was isolated for oxidative stress parameter (thiobarbituric acid reactive substances, nitrite and glutathione), neuroinflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α) and neurotransmitter (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid, glutamate, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid) evaluations. Bilateral infusion of MPTP into substantia nigra pars compacta led to significant motor deficits as evidenced by impairments in locomotor activity and rotarod performance in open field test and grip strength and narrow beam walk performance. Both QC (25 and 50 mg/kg) and QC (25 mg/kg) in combination with piperine (2.5 mg/kg), in particular the combination therapy, significantly improved MPTP-induced behavioral abnormalities in rats, reversed the abnormal alterations of neurotransmitters in the striatum, and alleviated oxidative stress and inflammatory response in the striatum. These findings indicate that piperine can enhance the antioxidant and anti-inflammatory properties of QC, and QC in combination with piperine exhibits strong neuroprotective effects against MPTP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shamsher Singh
- Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Moga, Punjab, India.,I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Sumit Jamwal
- Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Moga, Punjab, India.,I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Moga, Punjab, India
| |
Collapse
|
32
|
Singh S, Kumar P. Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats. Inflammopharmacology 2016; 25:69-79. [DOI: 10.1007/s10787-016-0297-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022]
|
33
|
Premoli I, Biondi A, Carlesso S, Rivolta D, Richardson MP. Lamotrigine and levetiracetam exert a similar modulation of TMS-evoked EEG potentials. Epilepsia 2016; 58:42-50. [PMID: 27808418 PMCID: PMC5244669 DOI: 10.1111/epi.13599] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/23/2022]
Abstract
Objective Antiepileptic drug (AED) treatment failures may occur because there is insufficient drug in the brain or because of a lack of relevant therapeutic response. Until now it has not been possible to measure these factors. It has been recently shown that the combination of transcranial magnetic stimulation and electroencephalography (TMS‐EEG) can measure the effects of drugs in healthy volunteers. TMS‐evoked EEG potentials (TEPs) comprise a series of positive and negative deflections that can be specifically modulated by drugs with a well‐known mode of action targeting inhibitory neurotransmission. Therefore, we hypothesized that TMS‐EEG can detect effects of two widely used AEDs, lamotrigine and levetiracetam, in healthy volunteers. Methods Fifteen healthy subjects participated in a pseudo‐randomized, placebo‐controlled, double‐blind, crossover design, using a single oral dose of lamotrigine (300 mg) and levetiracetam (3,000 mg). TEPs were recorded before and 120 min after drug intake, and the effects of drugs on the amplitudes of TEP components were statistically evaluated. Results A nonparametric cluster‐based permutation analysis of TEP amplitudes showed that AEDs both increased the amplitude of the negative potential at 45 msec after stimulation (N45) and suppressed the positive peak at 180 msec (P180). This is the first demonstration of AED‐induced modulation of TMS‐EEG measures. Significance Despite the different mechanism of action that lamotrigine and levetiracetam exert at the molecular level, both AEDs impact the TMS‐EEG response in a similar way. These TMS‐EEG fingerprints observed in healthy subjects are candidate predictive markers of treatment response in patients on monotherapy with lamotrigine and levetiracetam.
Collapse
Affiliation(s)
- Isabella Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Andrea Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Sara Carlesso
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Davide Rivolta
- School of Psychology, University of East London (UEL), London, United Kingdom
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
34
|
Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats. Mol Neurobiol 2016; 54:5632-5645. [PMID: 27624385 DOI: 10.1007/s12035-016-0084-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich fraction of UD contain flavonoids and phenolic compounds, which have a promising approach in therapeutics of PD.
Collapse
|
35
|
L-theanine, a Component of Green Tea Prevents 3-Nitropropionic Acid (3-NP)-Induced Striatal Toxicity by Modulating Nitric Oxide Pathway. Mol Neurobiol 2016; 54:2327-2337. [DOI: 10.1007/s12035-016-9822-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/29/2016] [Indexed: 01/30/2023]
|
36
|
Jamwal S, Kumar P. Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: Possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol Behav 2016; 155:180-7. [DOI: 10.1016/j.physbeh.2015.12.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/22/2023]
|
37
|
Abstract
Some of the side and beneficial effects of antiepileptic drugs (AEDs) are mediated via the influence on mitochondria. This is of particular importance in patients requiring AED treatment for mitochondrial epilepsy. AED treatment in patients with mitochondrial disorders should rely on the known influences of AEDs on these organelles. AEDs may influence various mitochondrial functions or structures in a beneficial or detrimental way. There are AEDs in which the toxic effect outweighs the beneficial effect, such as valproic acid (VPA), carbamazepine (CBZ), phenytoin (PHT), or phenobarbital (PB). There are, however, also AEDs in which the beneficial effect on mitochondria outweighs the mitochondrion-toxic effect, such as gabapentin (GBT), lamotrigine (LTG), levetiracetam (LEV), or zonisamide (ZNS). In the majority of the AEDs, however, information about their influence of mitochondria is lacking. In clinical practice mitochondrial epilepsy should be initially treated with AEDs with low mitochondrion-toxic potential. Only in cases of ineffectivity or severe mitochondrial epilepsy, mitochondrion-toxic AEDs should be given. This applies for AEDs given orally or intravenously.
Collapse
|
38
|
Neuroprotection as a Potential Therapeutic Perspective in Neurodegenerative Diseases: Focus on Antiepileptic Drugs. Neurochem Res 2015; 41:340-52. [PMID: 26721507 DOI: 10.1007/s11064-015-1809-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Neuroprotection is conceived as one of the potential tool to prevent or slow neuronal death and hence a therapeutic hope to treat neurodegenerative diseases, like Parkinson's and Alzheimer's diseases. Increase of oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation have been identified as main causes of neuronal death and adopted as targets to test experimentally the putative neuroprotective effects of various classes of drugs. Among these agents, antiepileptic drugs (AEDs), both the old and the newer generations, have shown to exert protective effects in different experimental models. Their mechanism of action is mediated mainly by modulating the activity of sodium, calcium and potassium channels as well as the glutamatergic and GABAergic (gamma-aminobutyric acid) synapses. Neurological pathologies in which a neuroprotective action of AEDs has been demonstrated in specific experimental models include: cerebral ischemia, Parkinson's disease, and Alzheimer's disease. Although the whole of experimental data indicating that neuroprotection can be achieved is remarkable and encouraging, no firm data have been produced in humans so far and, at the present time, neuroprotection still remains a challenge for the future.
Collapse
|
39
|
Protective Effects of Aqueous Extract of Luehea divaricata against Behavioral and Oxidative Changes Induced by 3-Nitropropionic Acid in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:723431. [PMID: 26604972 PMCID: PMC4641189 DOI: 10.1155/2015/723431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/14/2015] [Accepted: 09/15/2015] [Indexed: 12/24/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. Accordingly, 3-nitropropionic acid (3-NP) has been found to effectively produce HD-like symptoms. Luehea divaricata (L. divaricata), popularly known in Brazil as “açoita-cavalo,” may act as a neuroprotective agent in vitro and in vivo. We evaluated the hypothesis that the aqueous extract of L. divaricata could prevent behavioral and oxidative alterations induced by 3-NP in rats. 25 adult Wistar male rats were divided into 5 groups: (1) control, (2) L. divaricata (1000 mg/kg), (3) 3-NP, (4) L. divaricata (500 mg/kg) + 3-NP, and (5) L. divaricata (1000 mg/kg) + 3-NP. Groups 2, 4, and 5 received L. divaricata via intragastric gavage daily for 10 days. Animals in groups 3, 4, and 5 received 20 mg/kg 3-NP daily from days 8–10. At day 10, parameters of locomotor activity and biochemical evaluations were performed. Indeed, rats treated with 3-NP showed decreased locomotor activity compared to controls. Additionally, 3-NP increased levels of reactive oxygen species and lipid peroxidation and decreased ratio of GSH/GSSG and acetylcholinesterase activity in cortex and/or striatum. Our results suggest that rats pretreated with L. divaricata prior to 3-NP treatment showed neuroprotective effects when compared to 3-NP treated controls, which may be due to its antioxidant properties.
Collapse
|
40
|
Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression. Front Neurol 2015; 6:180. [PMID: 26347709 PMCID: PMC4539519 DOI: 10.3389/fneur.2015.00180] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disorder causing central nervous system (CNS) demyelination and axonal injury. Although its etiology remains elusive, several lines of evidence support the concept that autoimmunity plays a major role in disease pathogenesis. The course of MS is highly variable; nevertheless, the majority of patients initially present a relapsing–remitting clinical course. After 10–15 years of disease, this pattern becomes progressive in up to 50% of untreated patients, during which time clinical symptoms slowly cause constant deterioration over a period of many years. In about 15% of MS patients, however, disease progression is relentless from disease onset. Published evidence supports the concept that progressive MS reflects a poorly understood mechanism of insidious axonal degeneration and neuronal loss. Recently, the type of microglial cell and of astrocyte activation and proliferation observed has suggested contribution of resident CNS cells may play a critical role in disease progression. Astrocytes could contribute to this process through several mechanisms: (a) as part of the innate immune system, (b) as a source of cytotoxic factors, (c) inhibiting remyelination and axonal regeneration by forming a glial scar, and (d) contributing to axonal mitochondrial dysfunction. Furthermore, regulatory mechanisms mediated by astrocytes can be affected by aging. Notably, astrocytes might also limit the detrimental effects of pro-inflammatory factors, while providing support and protection for oligodendrocytes and neurons. Because of the dichotomy observed in astrocytic effects, the design of therapeutic strategies targeting astrocytes becomes a challenging endeavor. Better knowledge of molecular and functional properties of astrocytes, therefore, should promote understanding of their specific role in MS pathophysiology, and consequently lead to development of novel and more successful therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| | - Mauricio F Farez
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| |
Collapse
|
41
|
Kaur N, Jamwal S, Deshmukh R, Gauttam V, Kumar P. Beneficial effect of rice bran extract against 3-nitropropionic acid induced experimental Huntington's disease in rats. Toxicol Rep 2015; 2:1222-1232. [PMID: 28962465 PMCID: PMC5598492 DOI: 10.1016/j.toxrep.2015.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, characterized by progressive motor and non-motor dysfunction due to degeneration of medium spiny neurons in striatum. 3-Nitropropionic acid is commonly used to induce the animal model of HD. Rice bran is supposed to have beneficial effects on mitochondrial function. The present study has been designed to explore the effect of rice bran extract against 3-Nitropropionic acid induced neurotoxicity in rats. 3-Nitropropionic acid (10 mg/kg, i.p) was administered systemically for 21 days. Hexane and ethanol extract of rice bran were prepared using Soxhlation. Hexane (250 mg/kg) and ethanol extract (250 mg/kg) were administered per os for 21 days in 3-NP treated groups. Behavioral parameters (body weight, grip strength, motor coordination, locomotion) were conducted on 7th, 14th and 21st day. Animals were sacrificed on 22nd day for biochemical, mitochondrial dysfunction (Complex II), neuroinflammatory and neurochemical estimation in striatum. This study demonstrates significant alteration in behavioral parameters, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased glutathione), mitochondrial function (decreased Complex II enzyme activity), pro-inflammatory mediators and neurochemical levels in 3-nitropropionic acid treated animals. Administration of hexane and ethanol extract prevented the behavioral, biochemical, neuroinflammatory (increased TNF-α, IL-1β and IL-6) and neurochemical alterations (decreased dopamine, norepinephrine, serotonin, 5-hydroxy indole acetic acid, GABA and increased 3,4-dihydro phenyl acetaldehyde, homovanillic acid and glutamate levels) induced by 3-nitropropionic acid. The outcomes of present study suggest that rice bran extract is beneficial and might emerge as an adjuvant or prophylactic therapy for treatment of HD like symptoms.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Sumit Jamwal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
- Research Scholar, Punjab Technical University, Jalandhar, India
| | - Rahul Deshmukh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Vinod Gauttam
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
- Corresponding author.
| |
Collapse
|
42
|
Piperine Enhances the Protective Effect of Curcumin Against 3-NP Induced Neurotoxicity: Possible Neurotransmitters Modulation Mechanism. Neurochem Res 2015; 40:1758-66. [DOI: 10.1007/s11064-015-1658-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022]
|
43
|
Hanna DMF, Tadros MG, Khalifa AE. ADIOL protects against 3-NP-induced neurotoxicity in rats: Possible impact of its anti-oxidant, anti-inflammatory and anti-apoptotic actions. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:36-51. [PMID: 25689821 DOI: 10.1016/j.pnpbp.2015.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 01/20/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder with a wide spectrum of cognitive, behavioral and motor abnormalities. The mitochondrial toxin 3-nitropropionic acid (3-NP) effectively induces specific behavioral changes and selective striatal lesions similar to that observed in HD. Some neurosteroids, synthesized in neurons and glial cells, previously showed neuroprotective abilities. 5-Androstene-3β-17β-diol (ADIOL) is a major metabolite of dehydroepiandrosterone (DHEA) with previously reported anti-inflammatory, anti-apoptotic and neuroprotective activities. The neuroprotective potential of ADIOL in HD was not previously investigated. Therefore, the present study investigated the neuroprotective effects of ADIOL against 3-NP-induced behavioral changes, oxidative stress, inflammation and apoptosis. Intraperitoneal administration of 3-NP (20mg/kg) for 4 consecutive days in rats caused significant loss in body weight, reduced prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity with altered cortical/striatal histological structure, increased cortical/striatal oxidative stress, inflammation and apoptosis. Administration of ADIOL (25mg/kg, s.c.) for two days before 3-NP significantly attenuated the reduction in body weights and PPI, increased locomotor activity and restored cortical/striatal histological structure nearly to normal. Moreover, it displayed anti-oxidant, anti-inflammatory and anti-apoptotic activities as evidenced by the elevation of cortical and striatal reduced glutathione levels, reductions of cortical and striatal malondialdehyde, striatal tumor necrosis factor alpha and interleukin-6 levels. Only a small number of iNOS and caspase-3 positive cells were detected in sections from rats pretreated with ADIOL. This study suggests a potential neuroprotective role of ADIOL against 3-NP-induced Huntington's disease-like manifestations. Such neuroprotection can be attributed to its anti-oxidant, anti-inflammatory and anti-apoptotic activities.
Collapse
Affiliation(s)
- Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
44
|
Jamwal S, Singh S, Kaur N, Kumar P. Protective Effect of Spermidine Against Excitotoxic Neuronal Death Induced by Quinolinic Acid in Rats: Possible Neurotransmitters and Neuroinflammatory Mechanism. Neurotox Res 2015; 28:171-84. [PMID: 26078029 DOI: 10.1007/s12640-015-9535-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 01/28/2023]
Abstract
Huntington disease is hyperkinetic movement disorder characterized by selective and immense degradation of GABAergic medium spiny neurons in striatum. Quinolinic acid (QA)-induced neurotoxicity involves a cascade of events such as excitotoxicity, ATP depletion, oxidative stress, neuroinflammation, as well as selective GABAergic neuronal loss. Therefore, we investigated spermidine, an endogenous molecule with free radical scavenging, anti-inflammatory, and N-methyl-D-aspartate receptor antagonistic properties, for its beneficial potential if any, in QA-induced Huntington's like symptoms in rats. Rats were administered with QA (200 nmol/2 µl saline) bilaterally on 0 day. Spermidine (5 and 10 mg/kg, p.o.) was administered for 21 days once a day. Behavioral parameters (body weight, locomotor activity, grip strength, and narrow beam walk) observations were done on 1st, 7th, 14th, and 21st day after QA treatment. On 21st day, animals were sacrificed and rat striatum was isolated for biochemical (LPO, GSH, Nitrite), neuroinflammation (TNF-α, IL-1β, and IL-6), and neurochemical analysis (GABA, glutamate, dopamine, norepinephrine, serotonin, DOPAC, HVA, 5-HIAA, adenosine, adenine, hypoxanthine, and inosine). QA treatment significantly altered body weight, locomotor activity, motor coordination, oxidative defense (increased LPO, nitrite, and decreased GSH), pro-inflammatory levels (TNF-α, IL-6 and IL-1β), GABA, glutamate, catecholamines level (norepinephrine, dopamine, and serotonin and their metabolites), and purines level (adenosine, inosine, and hypoxanthine). Spermidine (5 and 10 mg/kg, p.o.) significantly attenuated these alterations in body weight, motor impairments, oxidative stress, neuroinflammatory markers, GABA, glutamate, catecholamines, adenosine, and their metabolites levels in striatum. The neuroprotective effect of spermidine against QA-induced excitotoxic cell death is attributed to its antioxidant, N-methyl-D-aspartate receptor antagonistic, anti-inflammatory properties, and prevention of neurotransmitters alteration in striatum.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | | | | | | |
Collapse
|
45
|
Khan A, Jamwal S, Bijjem KRV, Prakash A, Kumar P. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience 2014; 287:66-77. [PMID: 25536048 DOI: 10.1016/j.neuroscience.2014.12.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 01/27/2023]
Abstract
The present study has been designed to explore the possible interaction between hemeoxygenase-1 (HO-1) and glycogen synthase kinase-3β (GSK-3β) pathway in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. 3-NP produces neurotoxicity by inhibition of the mitochondrial complex II (enzyme succinate dehydrogenase) and by sensitizing the N-methyl-D-aspartate receptor. Recent studies have reported the therapeutic potential of HO-1/GSK-3β modulators in different neurodegenerative disorders. However, their exact role is yet to be explored. The present study is an attempt to investigate the effect of pharmacological modulation of HO-1/GSK-3β pathway against 3-NP-induced behavioral, biochemical and molecular alterations in rat. Behavioral observation, oxidative stress, pro-inflammatory [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], HO-1 and GSK-3β activity were evaluated post 3-NP treatment. Findings of the present study demonstrate a significant alteration in the locomotor activity, motor coordination, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), pro-inflammatory mediators [TNF-α, IL-1β], HO-1 and GSK-3β activity in 3-NP-treated animals. Further, administration of hemin (10- and 30-mg/kg; i.p.) and lithium chloride (LiCl) (25- and 50-mg/kg; i.p.) prevented the alteration in body weight, motor impairments, oxidative stress and cellular markers. In addition, combined administration of hemin (10-mg/kg) and LiCl (25-mg/kg) showed synergistic effect on 3-NP-treated rats. Pretreatment with Tin (IV) protoporphyrin (40 μM/kg), HO-1 inhibitor reversed the beneficial effect of LiCl and hemin. Outcomes of the present study suggest that HO-1 and GSK-3β enzymes are involved in the pathophysiology of HD. The modulators of both the pathways might be used as adjuvants or prophylactic therapy for the treatment of HD-like symptoms.
Collapse
Affiliation(s)
- A Khan
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India
| | - S Jamwal
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India; Research Scholar, Punjab Technical University, Jalandhar, India
| | - K R V Bijjem
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India
| | - A Prakash
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India
| | - P Kumar
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
46
|
Hirsch S, Dickenson A, Corradini L. Anesthesia influences neuronal activity and drug effectiveness in neuropathic rats. Pain 2014; 155:2583-2590. [DOI: 10.1016/j.pain.2014.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 01/16/2023]
|
47
|
Ceftriaxone mediated rescue of nigral oxidative damage and motor deficits in MPTP model of Parkinson's disease in rats. Neurotoxicology 2014; 44:71-9. [PMID: 25053526 DOI: 10.1016/j.neuro.2014.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/24/2014] [Accepted: 05/25/2014] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra pars compacta along with decreased striatal dopamine levels, and consequent extra pyramidal motor dysfunctions occur. It has been reported that Ceftriaxone, a β-lactam antibiotic recently had shown to have neuroprotective effects in various neurodegenerative disorder. Therefore the present study was designed to investigate the effects of Ceftriaxone (CFX) in a MPTP model of Parkinson in rats. MPTP was administered intranigrally for the induction of PD in Male Wistar rats. Ceftriaxone (100 and 200mg/kg) and Ropinirole (1.5 and 3mg/kg) were given intraperitonially, after induction of Parkinson's disease for 14 days. Different behavioral performance was carried on 1st, 14th, 21st, 28th consecutive days and biochemical parameters were estimated on 28th day. Central administration of MPTP showed significant impairment of motor behavior and marked increase of oxidative damage and neuro-inflammmation in rats. However, post treatment with Ceftriaxone (100 and 200mg/kg) significantly improved the motor deficits and attenuated the oxidative damage indicating decreased rise of LPO and nitrite concentration and restored the decreased activities of endogenous antioxidant enzyme (Glutathione, Catalase, SOD). In addition Ceftriaxone also attenuates the pro-inflammatory cytokines like TNF-α and IL-β in striatum region of MPTP induced PD in rats. Ropinirole (1.5mg/kg) pretreatment with sub-effective dose of a Ceftriaxone (100mg/kg) had significantly enhanced the protective effect of Ceftriaxone as compare to its effect with per se group. These results suggested that Ceftriaxone exhibit Neuroprotective effect by mediating brain antioxidant defense mechanism and by up regulating of dopaminergic pathway and down regulation of glutamatergic pathway.
Collapse
|
48
|
Chakraborty J, Nthenge-Ngumbau D, Rajamma U, Mohanakumar K. Melatonin protects against behavioural dysfunctions and dendritic spine damage in 3-nitropropionic acid-induced rat model of Huntington's disease. Behav Brain Res 2014; 264:91-104. [DOI: 10.1016/j.bbr.2014.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/26/2014] [Indexed: 12/15/2022]
|
49
|
The role of glutamate and its receptors in multiple sclerosis. J Neural Transm (Vienna) 2014; 121:945-55. [PMID: 24633998 DOI: 10.1007/s00702-014-1188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/27/2014] [Indexed: 12/18/2022]
Abstract
Glutamate is an excitatory neurotransmitter of the central nervous system, which has a central role in a complex communication network established between neurons, astrocytes, oligodendrocytes, and microglia. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, and calcium overload can lead to abnormalities in glutamate signaling. Thus, the disturbance of glutamate homeostasis could affect practically all physiological functions and interactions of brain cells, leading to excitotoxicity. Excitotoxicity is the pathological process by which nerve cells are damaged or killed by excessive stimulation by glutamate. Although neuron degeneration and death are the ultimate consequences of multiple sclerosis (MS), it is now widely accepted that alterations in the function of surrounding glial cells are key features in the progression of the disease. The present knowledge raise the possibility that the modulation of glutamate release and transport, as well as receptors blockade or glutamate metabolism modulation, might be relevant targets for the development of future therapeutic interventions in MS.
Collapse
|
50
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|