1
|
Verde C, Giordano D, Bruno S. NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants (Basel) 2023; 12:antiox12020321. [PMID: 36829880 PMCID: PMC9952723 DOI: 10.3390/antiox12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which-among several other reactions-can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scavenging, and transport. The S-nitrosylation of cysteine residues, which also results from the reaction with NO and other nitrogen compounds, is a post-translational modification regulating protein activity, with direct effects on a variety of signaling pathways. Heme proteins are unique in exhibiting this dual reactivity toward NO, with reported examples of cross-reactivity between the heme and cysteine residues within the same protein. In this work, we review the literature on this interplay, with particular emphasis on heme proteins in which heme-dependent nitrosylation has been reported and those for which both heme nitrosylation and S-nitrosylation have been associated with biological functions.
Collapse
Affiliation(s)
- Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
2
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
3
|
Higashi Y, Shimizu T, Yamamoto M, Tanaka K, Yawata T, Shimizu S, Zou S, Ueba T, Yuri K, Saito M. Stimulation of brain nicotinic acetylcholine receptors activates adrenomedullary outflow via brain inducible NO synthase-mediated S-nitrosylation. Br J Pharmacol 2018; 175:3758-3772. [PMID: 30007012 DOI: 10.1111/bph.14445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/26/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE We have demonstrated that i.c.v.-administered (±)-epibatidine, a nicotinic ACh receptor (nAChR) agonist, induced secretion of noradrenaline and adrenaline (catecholamines) from the rat adrenal medulla with dihydro-β-erythroidin (an α4β2 nAChR antagonist)-sensitive brain mechanisms. Here, we examined central mechanisms for the (±)-epibatidine-induced responses, focusing on brain NOS and NO-mediated mechanisms, soluble GC (sGC) and protein S-nitrosylation (a posttranslational modification of protein cysteine thiol groups), in urethane-anaesthetized (1.0 g·kg-1 , i.p.) male Wistar rats. EXPERIMENTAL APPROACH (±)-Epibatidine was i.c.v. treated after i.c.v. pretreatment with each inhibitor described below. Then, plasma catecholamines were measured electrochemically after HPLC. Immunoreactivity of S-nitrosylated cysteine (SNO-Cys) in α4 nAChR subunit (α4)-positive spinally projecting neurones in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of adrenomedullary outflow) after i.c.v. (±)-epibatidine administration was also investigated. KEY RESULTS (±)-Epibatidine-induced elevation of plasma catecholamines was significantly attenuated by L-NAME (non-selective NOS inhibitor), carboxy-PTIO (NO scavenger), BYK191023 [selective inducible NOS (iNOS) inhibitor] and dithiothreitol (thiol-reducing reagent), but not by 3-bromo-7-nitroindazole (selective neuronal NOS inhibitor) or ODQ (sGC inhibitor). (±)-Epibatidine increased the number of spinally projecting PVN neurones with α4- and SNO-Cys-immunoreactivities, and this increment was reduced by BYK191023. CONCLUSIONS AND IMPLICATIONS Stimulation of brain nAChRs can induce elevation of plasma catecholamines through brain iNOS-derived NO-mediated protein S-nitrosylation in rats. Therefore, brain nAChRs (at least α4β2 subtype) and NO might be useful targets for alleviation of catecholamines overflow induced by smoking.
Collapse
Affiliation(s)
- Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Masaki Yamamoto
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kenjiro Tanaka
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Toshio Yawata
- Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Tetsuya Ueba
- Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kazunari Yuri
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
4
|
Tanaka K, Shimizu T, Higashi Y, Nakamura K, Taniuchi K, Dimitriadis F, Shimizu S, Yokotani K, Saito M. Central bombesin possibly induces S-nitrosylation of cyclooxygenase-1 in pre-sympathetic neurons of rat hypothalamic paraventricular nucleus. Life Sci 2014; 100:85-96. [PMID: 24530741 DOI: 10.1016/j.lfs.2014.01.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 01/22/2023]
Abstract
AIMS Cyclooxygenase (COX) can be activated by nitric oxide-induced (NO-induced) conversion of cysteine thiol group of COX into S-nitrosothiol. We previously reported the involvement of brain COX/NO synthase (NOS) in centrally administered bombesin-, a stress-related neuropeptide, induced secretion of rat adrenal noradrenaline and adrenaline. To examine a possible involvement of the NO-induced modification of COX in bombesin-induced response, we investigated whether bombesin induces close proximity of COX-1 and neuronal NOS (nNOS) or S-nitroso-cysteine in pre-sympathetic spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN), a regulatory center of adrenomedullary outflow. MAIN METHODS In twelve-week-old male Wistar rats, pre-sympathetic spinally projecting neurons in the PVN were labeled with a retrograde tracer Fluoro-Gold (FG). After intracerebroventricular administration of bombesin, we performed double immunohistochemical analysis for Fos and COX-1 or nNOS in FG-labeled PVN neurons. We also performed a fluorescent in situ proximity ligation assay (PLA) for visualizing of close proximity (<40 nm) of COX-1 with nNOS or S-nitroso-cysteine. KEY FINDINGS Bombesin significantly increased the number of Fos-immunoreactive cells in FG-labeled PVN neurons with COX-1 or nNOS immunoreactivity. 7-Nitroindazole, a selective nNOS inhibitor, abolished Fos-immunoreactivity induced by bombesin in COX-1-immunoreactive FG-labeled PVN neurons. Bombesin also induced PLA-positive signals indicating close proximity of COX-1/nNOS and COX-1/S-nitroso-cysteine in FG-labeled PVN neurons. SIGNIFICANCE Centrally administered bombesin possibly induces S-nitrosylation of COX-1 through close proximity of COX-1 and nNOS in pre-sympathetic spinally projecting PVN neurons, thereby activating COX-1 during the bombesin-induced activation of central adrenomedullary outflow in the rat.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | - Youichirou Higashi
- Department of Neurosurgery, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Kumiko Nakamura
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Keisuke Taniuchi
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Fotios Dimitriadis
- B' Urologic Department, Papageorgiou General Hospital, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Shogo Shimizu
- Division of Molecular Pharmacology, Tottori University School of Medicine, Yonago, Tottori 683-8503, Japan
| | - Kunihiko Yokotani
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
5
|
Shimizu T, Tanaka K, Yokotani K. Stimulatory and Inhibitory Roles of Brain 2-Arachidonoylglycerol in Bombesin-Induced Central Activation of Adrenomedullary Outflow in Rats. J Pharmacol Sci 2013; 121:157-71. [DOI: 10.1254/jphs.12208fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
6
|
Shimizu T, Tanaka K, Nakamura K, Taniuchi K, Yokotani K. Brain phospholipase C, diacylglycerol lipase and monoacylglycerol lipase are involved in (±)-epibatidine-induced activation of central adrenomedullary outflow in rats. Eur J Pharmacol 2012; 691:93-102. [PMID: 22796670 DOI: 10.1016/j.ejphar.2012.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023]
Abstract
We previously reported that intracerebroventricularly (i.c.v.) administered (±)-epibatidine (a potent agonist of nicotinic acetylcholine receptors) (1, 5 and 10 nmol/animal) dose-dependently elevated plasma levels of noradrenaline and adrenaline and that this response was reduced by i.c.v. administered indomethacin (cyclooxygenase inhibitor) and abolished by bilateral adrenalectomy, indicating the involvement of brain arachidonic acid, as a substrate of cyclooxygenase, in this alkaloid-induced secretion of both catecholamines from the adrenal medulla in rats. Arachidonic acid is mainly released by the action of phospholipase A(2), but is also released by a phospholipase C-, diacylglycerol lipase- and monoacylglycerol lipase-mediated pathway. In the present study, (±)-epibatidine (5 nmol/animal, i.c.v.)-induced elevation of plasma catecholamines was not influenced by pretreatment with mepacrine (phospholipase A(2) inhibitor) (1.1 and 2.2 μmol/animal, i.c.v.), but was effectively reduced by pretreatment with U-73122 (1-[6-[[(17 β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (phospholipase C inhibitor) (10 and 30 nmol/animal, i.c.v.), RHC-80267 [1,6-bis(cyclohexyloximinocarbonylamino)hexane] (diacylglycerol lipase inhibitor) (1.3 and 2.6 μmol/animal, i.c.v.), MAFP (methyl arachidonoyl fluorophosphonate) (monoacylglycerol lipase inhibitor) (0.7 and 1.4 μmol/animal, i.c.v.) or JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (selective monoacylglycerol lipase inhibitor) (0.7 and 1.4 μmol/animal, i.c.v.). Immunohistochemical studies demonstrated that (±)-epibatidine (10 nmol/animal, i.c.v.) activates spinally projecting neurons expressing monoacylglycerol lipase in the rat hypothalamic paraventricular nucleus, a control center of central sympatho-adrenomedullary outflow. Taken together, the brain phospholipase C-, diacylglycerol lipase- and monoacylglycerol lipase-mediated pathway seems to be involved in the centrally administered (±)-epibatidine-induced activation of central adrenomedullary outflow in rats.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|
7
|
Tanaka K, Shimizu T, Lu L, Nakamura K, Yokotani K. Centrally administered bombesin activates COX-containing spinally projecting neurons of the PVN in anesthetized rats. Auton Neurosci 2012; 169:63-9. [PMID: 22537831 DOI: 10.1016/j.autneu.2012.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus has a heterogenous structure containing different types of output neurons that project to the median eminence, posterior pituitary, brain stem autonomic centers and sympathetic preganglionic neurons in the spinal cord. Presympathetic neurons in the PVN send mono- and poly-synaptic projections to the spinal cord. In the present study using urethane-anesthetized rats, we examined the effects of centrally administered bombesin (a homologue of the mammalian gastrin-releasing peptide) on the mono-synaptic spinally projecting PVN neurons pre-labeled with a retrograde tracer Fluoro-Gold (FG) injected into T8 level of the spinal cord, with regard to the immunoreactivity for cyclooxygenase (COX) isozymes (COX-1/COX-2) and Fos (a marker of neuronal activation). FG-labeled spinally projecting neurons were abundantly observed in the dorsal cap, ventral part and posterior part of the PVN. The immunoreactivity of each COX-1 and COX-2 was detected in FG-labeled spinally projecting PVN neurons in the vehicle (10 μl of saline/animal, i.c.v.)-treated group, while bombesin (1 nmol/animal, i.c.v.) had no effect on the number of these immunoreactive neurons for each COX isozyme with labeling of FG. On the other hand, the peptide significantly increased the number of double-immunoreactive neurons for Fos and COX-1/COX-2 with FG-labeling in the PVN (except triple-labeled neurons for FG, COX-2 and Fos in the dorsal cap of the PVN), as compared to those of vehicle-treated group. These results suggest that centrally administered bombesin activates spinally projecting PVN neurons containing COX-1 and COX-2 in rats.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|