1
|
Redkiewicz P, Dyniewicz J, Misicka A. Biphalin-A Potent Opioid Agonist-As a Panacea for Opioid System-Dependent Pathophysiological Diseases? Int J Mol Sci 2021; 22:11347. [PMID: 34768778 PMCID: PMC8582929 DOI: 10.3390/ijms222111347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Biphalin, one of the opioid agonists, is a dimeric analog of enkephalin with a high affinity for opioid receptors. Opioid receptors are widespread in the central nervous system and in peripheral neuronal and non-neuronal tissues. Hence, these receptors and their agonists, which play an important role in pain blocking, may also be involved in the regulation of other physiological functions. Biphalin was designed and synthesized in 1982 by Lipkowski as an analgesic peptide. Extensive further research in various laboratories on the antinociceptive effects of biphalin has shown its excellent properties. It has been demonstrated that biphalin exhibits an analgesic effect in acute, neuropathic, and chronic animal pain models, and is 1000 times more potent than morphine when administered intrathecally. In the course of the broad conducted research devoted primarily to the antinociceptive effect of this compound, it has been found that biphalin may also potentially participate in the regulation of other opioid system-dependent functions. Nearly 40 years of research on the properties of biphalin have shown that it may play a beneficial role as an antiviral, antiproliferative, anti-inflammatory, and neuroprotective agent, and may also affect many physiological functions. This integral review analyzes the literature on the multidirectional biological effects of biphalin and its potential in the treatment of many opioid system-dependent pathophysiological diseases.
Collapse
Affiliation(s)
- Patrycja Redkiewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 02106 Warsaw, Poland;
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 02106 Warsaw, Poland;
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 02106 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, 02093 Warsaw, Poland
| |
Collapse
|
2
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
3
|
Mert T, Yaman S. Pro-inflammatory or anti-inflammatory effects of pulsed magnetic field treatments in rats with experimental acute inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31543-31554. [PMID: 32495202 DOI: 10.1007/s11356-020-09401-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, we evaluated the possible effects of sequenced pulsed magnetic fields (PMF) of 1-mT treatments with designed different frequencies (PMF-1-1, 3, 5, 7 Hz or PMF-2-7, 9, 12, 14 Hz) on the inflammatory signs such as abnormal pain behaviors, hyperalgesia and allodynia, edema, and fever in carrageenan (CG)-induced hind paw inflammation model in rats. Paw tissues were also histologically examined. PMF exposure was applied 3 times in 24 h. CG injection gradually decreased the thermal latencies and mechanical threshold and caused significant increases in temperature and mass of paw. PMF treatments significantly reduced the temperature and mass in the paw of rats with inflammation. PMF-1 treatments caused significant increases in the latencies and thresholds. However, administration of PMF-2 treatment was significantly decreased the latency and threshold. Furthermore, the histological pieces of evidence also suggested the anti-inflammatory effects of PMF-1 treatments or inflammatory actions of PMF-2 treatments. Findings presented in this paper suggest that 1-mT PMF treatments may have anti-edematous and antipyretics activities in inflamed rats. However, the effects of PMF treatments on abnormal pain hypersensitivities may be different. PMF treatments may make inflammatory pain relief or worse in inflamed rats depending on the PMF frequencies in sequence.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
4
|
Increased pain and inflammatory sensitivity in growth hormone-releasing hormone (GHRH) knockout mice. Prostaglandins Other Lipid Mediat 2019; 144:106362. [PMID: 31301405 DOI: 10.1016/j.prostaglandins.2019.106362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Growth hormone (GH) and GH-releasing hormone (GHRH), in addition to metabolic and endocrine effects, play a role in the modulation of pain and inflammation. We aimed to elucidate the consequences of GHRH deficiency on acute nociceptive stimulation and on both acute and chronic inflammatory stimuli in a mouse model of GH deficiency. Mice with generalized ablation of the GHRH gene (GHRH knock out, GHRHKO, -/-) were compared to wild type (GHRH +/+) mice. Responsiveness to acute nociceptive stimulation and to acute inflammatory stimulation was evaluated by conventional hot plate apparatus and formalin test, respectively. We also evaluated responsiveness to colonic inflammation induced both in vivo, after dextran sodium sulfate (DSS) treatment, or ex vivo, by incubating colon segments with bacterial lipopolysaccaride (LPS). Macroscopical and histological examinations were performed, prostaglandin (PG) E2 and 8-iso-PGF2α levels and cyclooxigenase (COX)-2 and tumor necrosis factor (TNF)-α gene expression were measured. Compared to controls, -/- mice showed decreased response latency during the hot plate test, and increased licking/biting time in formalin test, particularly in the second phase of inflammation. DSS treated -/- mice showed a significant increase of colonic inflammation compared to controls. Moreover DSS treatment increased PGE2 and 8-iso-PGF2α levels, along with COX-2 and TNF-α gene expression more markedly in colon specimens of -/- mice compared to controls. LPS-induced PGE2 and 8-iso-PGF2α production from colonic segments incubated ex vivo was also increased in -/- mice. Generalized GHRH gene ablation increases sensitivity to thermal pain and both acute and persistent inflammatory stimuli in male mice.
Collapse
|
5
|
Piekielna-Ciesielska J, Ferrari F, Calo' G, Janecka A. Cyclopeptide Dmt-[D-Lys-p-CF 3-Phe-Phe-Asp]NH 2, a novel G protein-biased agonist of the mu opioid receptor. Peptides 2018; 101:227-233. [PMID: 29196181 DOI: 10.1016/j.peptides.2017.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023]
Abstract
Opioid peptides and alkaloid drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor which belongs to the G protein-coupled receptor (GPCR) family. A new important pharmacological concept in the field of GPCRs is biased agonism. Two mu receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH2 (C-36) and Dmt-c[D-Lys-Phe-p-CF3-Phe-Asp]NH2 (F-81), were evaluated in terms of their ability to promote or block mu receptor/G protein and mu receptor/β-arrestin interactions. Using the bioluminescence resonance energy transfer (BRET) assay it was shown that C-36 activated both, G protein and β-arrestin pathways. Incorporation of trifluoromethyl group into the aromatic ring of phenylalanine in the sequence of F-81 led to activation of G-protein pathway rather than β-arrestin recruitment. Opioid cyclopeptide F-81 turned out to be a biased G protein mu receptor agonist. Such biased ligands are able to separate the biological actions of an activated receptor and have the potential to become more effective drug candidates with fewer side effects.
Collapse
Affiliation(s)
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
Fluorescent-labeled bioconjugates of the opioid peptides biphalin and DPDPE incorporating fluorescein–maleimide linkers. Future Med Chem 2017. [DOI: 10.4155/fmc-2016-0232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: The conjugation of fluorescent labels to opioid peptides is an extremely challenging task, which needs to be overcome to create new classes of probes for biological assays. Materials & methods: Three opioid peptide analogs of biphalin and [D-Pen2,5]-Enkephalin (DPDPE) containing a fluorescein–maleimide motif were synthesized. Results & discussion: The biphalin analog 17 binds to opioid receptors with Ki μ = 530 ± 90 nM and Ki δ = 69.8 ± 16.4 nM. We then tested the ability of the compounds to stimulate G-protein-coupling, 17 activated μ-receptor expressing cells (EC50 = 16.7 ± 6.7 nM, EMax = 76 ± 4%) as well as δ-receptor expressing cells (EC50 = 42 ± 10 nM, EMax = 34 ± 8%). However, 17 was not able to fluorescently label receptor in live or fixed cells. Conclusion: Our data suggest that the biphalin scaffold could be employed to develop fluorescent ligands with the appropriate fluorescent motif, and suggest a means for further probe development.
Collapse
|
7
|
Mosińska P, Zielińska M, Fichna J. Expression and physiology of opioid receptors in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 2016; 23:3-10. [PMID: 26702845 DOI: 10.1097/med.0000000000000219] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Stimulation of opioid receptors elicits analgesic effect not only in the central nervous system, but also in the gastrointestinal tract, where a high concentration of opioid receptors can be found within the enteric nervous system as well as muscular and immune cells. Along with antinociception, opioid receptors in the stomach and intestine relay signals crucial for secretory and motor gastrointestinal function. RECENT FINDINGS The review focuses on the utility of opioid receptor antagonists, which is generally contributing to the management of postoperative ileus and opioid bowel dysfunction in chronic pain patients nonetheless, opioid receptor antagonists can also be useful in the treatment of irritable bowel syndrome and chronic idiopathic constipation. The study also discusses several antidiarrheal opioid agonists, as well as opioids and opioid mimetics encompassing the concept of ligand-biased agonism and truncated opioid receptor splice variants. SUMMARY Good understanding of the localization and the role of opioid receptors is vital for regulation of various pathophysiological processes in the gastrointestinal tract and may simultaneously provide a tempting approach in eliminating adverse effects related to centrally acting opioids.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
8
|
Abstract
BACKGROUND Monodrug therapy has been used with success to fight various pathologies. When one medicine fails, co-administration of two or more drugs at the same time may be successfully applied in the treatment of infections, hypertension, HIV and in many other fields. DISCUSSION This approach has some weakness related to the pharmacokinetic of the two different substances administered, side effects, possible drug-drug interaction. Bivalent ligand approach would maintain the strength of the multidrug therapy (synergistic effect, lower doses, and little side effects) and overcome the weakness of a co-administration. CONCLUSION In this review we have described the state-of-the-art of the multitarget approach for the control of pain. Several approaches adopted by different research groups and future perspectives have been discussed.
Collapse
|
9
|
Rational Approach to the Design of Bioactive Peptidomimetics: Recent Developments in Opioid Agonist Peptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63462-7.00002-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Sobczak M, Pilarczyk A, Jonakowski M, Jarmuż A, Sałaga M, Lipkowski AW, Fichna J. Anti-inflammatory and antinociceptive action of the dimeric enkephalin peptide biphalin in the mouse model of colitis: new potential treatment of abdominal pain associated with inflammatory bowel diseases. Peptides 2014; 60:102-6. [PMID: 25151037 DOI: 10.1016/j.peptides.2014.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Biphalin, a mixed MOP/DOP agonist, displays a potent antinociceptive activity in numerous animal models of pain. The aim of the study was to characterize the anti-inflammatory and antinociceptive action of biphalin in the mouse models of colitis. The anti-inflammatory effect of biphalin (5mg/kg, twice daily, i.c. and i.p.) was characterized in a semi-chronic mouse model of colitis, induced by i.c. injection of trinitrobenzenesulfonic acid (TNBS). The antinociceptive action of biphalin (5mg/kg, i.p. and i.c.) in inflamed mice was assessed in mustard oil-induced model of visceral pain and in the hot plate test. In the semi-chronic mouse model of colitis, biphalin i.c. (5mg/kg), but not i.p. improved colitis macroscopic score (2.88±0.19 and 4.99±0.80 units for biphalin and vehicle treated animals, respectively). Biphalin injected i.p. and i.c. (5mg/kg) displayed a potent antinociceptive action in the mustard oil-induced pain test. In the hot plate test, biphalin (5mg/kg, i.p.) produced a potent antinociceptive activity in inflamed mice, suggesting central site of action. Our data suggest that biphalin may become a novel opioid-based analgesic agent in IBD therapy and warrant further investigation of its pharmacological profile.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Pilarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Jonakowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Jarmuż
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej W Lipkowski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
11
|
Mollica A, Carotenuto A, Novellino E, Limatola A, Costante R, Pinnen F, Stefanucci A, Pieretti S, Borsodi A, Samavati R, Zador F, Benyhe S, Davis P, Porreca F, Hruby VJ. Novel cyclic biphalin analogue with improved antinociceptive properties. ACS Med Chem Lett 2014; 5:1032-6. [PMID: 25221662 DOI: 10.1021/ml500241n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022] Open
Abstract
Two novel opioid analogues have been designed by substituting the native d-Ala residues in position 2,2' of biphalin with two residues of d-penicillamine or l-penicillamine and by forming a disulfide bond between the thiol groups. The so-obtained compound 9 containing d-penicillamines showed excellent μ/δ mixed receptor affinities (K i (δ) = 5.2 nM; K i (μ) = 1.9 nM), together with an efficacious capacity to trigger the second messenger and a very good in vivo antinociceptive activity, whereas product 10 was scarcely active. An explanation of the two different pharmacological behaviors of products 9 and 10 was found by studying their conformational properties.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Alfonso Carotenuto
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Antonio Limatola
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Roberto Costante
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesco Pinnen
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento
di Chimica, Sapienza, Università di Roma, P.le A. Moro,
5, 00187 Rome, Italy
| | - Stefano Pieretti
- Department
of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Anna Borsodi
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Reza Samavati
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ferenc Zador
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | | | | |
Collapse
|
12
|
Frączak O, Lasota A, Leśniak A, Lipkowski AW, Olma A. The Biological Consequences of Replacingd-Ala in Biphalin with Amphiphilic α-Alkylserines. Chem Biol Drug Des 2014; 84:199-205. [DOI: 10.1111/cbdd.12305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Oliwia Frączak
- Institute of Organic Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Poland
| | - Anika Lasota
- Institute of Organic Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Poland
| | - Anna Leśniak
- Mossakowski Medical Research Centre; Polish Academy of Sciences; Pawińskiego 5 01-793 Warsaw Poland
| | - Andrzej W. Lipkowski
- Mossakowski Medical Research Centre; Polish Academy of Sciences; Pawińskiego 5 01-793 Warsaw Poland
| | - Aleksandra Olma
- Institute of Organic Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
13
|
Costante R, Pinnen F, Stefanucci A, Mollica A. Potent Biphalin Analogs with µ/δ Mixed Opioid Activity:In VivoandIn VitroBiological Evaluation. Arch Pharm (Weinheim) 2014; 347:305-12. [DOI: 10.1002/ardp.201300380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Roberto Costante
- Dipartimento di Farmacia; Università di Chieti-Pescara “G. d'Annunzio”; Chieti Italy
| | - Francesco Pinnen
- Dipartimento di Farmacia; Università di Chieti-Pescara “G. d'Annunzio”; Chieti Italy
| | | | - Adriano Mollica
- Dipartimento di Farmacia; Università di Chieti-Pescara “G. d'Annunzio”; Chieti Italy
| |
Collapse
|
14
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Mollica A, Pinnen F, Costante R, Locatelli M, Stefanucci A, Pieretti S, Davis P, Lai J, Rankin D, Porreca F, Hruby VJ. Biological active analogues of the opioid peptide biphalin: mixed α/β(3)-peptides. J Med Chem 2013; 56:3419-23. [PMID: 23547584 DOI: 10.1021/jm301456c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural residues of the dimeric opioid peptide Biphalin were replaced by the corresponding homo-β(3) amino acids. The derivative 1 containing hβ(3) Phe in place of Phe showed good μ- and δ-receptor affinities (Ki(δ) = 0.72 nM; Ki(μ) = 1.1 nM) and antinociceptive activity in vivo together with an increased enzymatic stability in human plasma.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mollica A, Costante R, Stefanucci A, Pinnen F, Lucente G, Fidanza S, Pieretti S. Antinociceptive profile of potent opioid peptide AM94, a fluorinated analogue of biphalin with non-hydrazine linker. J Pept Sci 2012; 19:233-9. [PMID: 23136069 DOI: 10.1002/psc.2465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/23/2022]
Abstract
AM94 is a fluorinated analog of biphalin with non-hydrazine linker that has an in vitro affinity for μ-opioid and δ-opioid receptors tenfold higher than biphalin. Furthermore, in vivo evaluation in rats showed that AM94 has in hot plate test - after both intracerebroventricular and intravenous administrations - a greater and more durable efficacy than biphalin. Here, the antinociceptive profile of AM94 is further evaluated by following two different administration routes, intrathecal and subcutaneous, and two different animal species, rats and mice. The analgesic potency of AM94 is compared with that of both the parent peptide biphalin and morphine. Results show that in rats (tail flick test) and in mice (formalin test), AM94 has a higher and more durable analgesic effect than biphalin after intrathecal and subcutaneous administrations. Conformational properties of biphalin and AM94 were also investigated by variable-temperature (1)H NMR and energy minimization.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara G. d'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|