1
|
Rinaldi V, Piscitelli F, Boari A, Verde R, Crisi PE, Bisogno T. Circulating Endocannabinoids in Canine Cutaneous Mast Cell Tumor. Animals (Basel) 2024; 14:2986. [PMID: 39457916 PMCID: PMC11503820 DOI: 10.3390/ani14202986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
A cutaneous mast cell tumor (cMCT) is among the most common tumors in dogs. Endocannabinoids (eCBs) belong to the endocannabinoid system (ECS), which involves also cannabinoid receptors and an enzymatic system of biosynthesis and degradation. In this study, plasma levels of N-arachidonoylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) were evaluated in 17 dogs with MCTs of varying histological grades and clinical stages, as well as in a control group of 11 dogs. Dogs affected by cMCT had higher plasma levels of 2-AG (p = 0.0001) and lower levels of AEA (p = 0.0012) and PEA (p = 0.0075) compared to the control group, while no differences were observed at the OEA level between healthy and cMCT dogs (p = 0.9264). The ability of eCBs to help discriminate between healthy and cMCT dogs was interrogated through the area under the ROC curve (AUC). An accuracy of 0.98 (95% confidence interval [CI], 0.94-1.02) was found for 2-AG, of 0.85 (95% CI, 0.71-0.99) for AEA, and of 0.81% for PEA (95% CI, 0.64-0.69). Values > 52.75 pmol/mL for 2-AG showed 94% sensitivity and 90% specificity in distinguishing cMCT. This is the first study to demonstrate alterations in plasmatic levels of eCBs in dogs affected by MCTs, suggesting the significance of these biomarkers in the tumorigenic process and their potential use as biomarkers in the future.
Collapse
Affiliation(s)
- Valentina Rinaldi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, 64100 Teramo, Italy; (A.B.); (P.E.C.)
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry (ICB)-CNR, 34, 80078 Pozzuoli, Italy; (F.P.); (R.V.)
| | - Andrea Boari
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, 64100 Teramo, Italy; (A.B.); (P.E.C.)
| | - Roberta Verde
- Institute of Biomolecular Chemistry (ICB)-CNR, 34, 80078 Pozzuoli, Italy; (F.P.); (R.V.)
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, 64100 Teramo, Italy; (A.B.); (P.E.C.)
| | - Tiziana Bisogno
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
2
|
Stevenson M, Hebron ML, Liu X, Balaraman K, Wolf C, Moussa C. c-KIT inhibitors reduce pathology and improve behavior in the Tg(SwDI) model of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402625. [PMID: 39009412 PMCID: PMC11249953 DOI: 10.26508/lsa.202402625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Treatments for Alzheimer's disease have primarily focused on removing brain amyloid plaques to improve cognitive outcomes in patients. We developed small compounds, known as BK40143 and BK40197, and we hypothesize that these drugs alleviate microglial-mediated neuroinflammation and induce autophagic clearance of neurotoxic proteins to improve behavior in models of neurodegeneration. Specificity binding assays of BK40143 and BK40197 showed primary binding to c-KIT/Platelet Derived Growth Factor Receptors (PDGFR)α/β, whereas BK40197 also differentially binds to FYVE finger-containing phosphoinositide kinase (PIKFYVE). Both compounds penetrate the CNS, and treatment with these drugs inhibited the maturation of peripheral mast cells in transgenic mice, correlating with cognitive improvements on measures of memory and anxiety. In the brain, microglial activation was profoundly attenuated and amyloid-beta and tau were reduced via autophagy. Multi-kinase inhibition, including c-KIT, exerts multifunctional effects to reduce neurodegenerative pathology via autophagy and microglial activity and may represent a potential therapeutic option for neurodegeneration.
Collapse
Affiliation(s)
- Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Kaluvu Balaraman
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Christian Wolf
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
3
|
Nair B, Kamath AJ, Tergaonkar V, Sethi G, Nath LR. Mast cells and the gut-liver Axis: Implications for liver disease progression and therapy. Life Sci 2024; 351:122818. [PMID: 38866220 DOI: 10.1016/j.lfs.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The role of mast cells, traditionally recognized for their involvement in immediate hypersensitivity reactions, has garnered significant attention in liver diseases. Studies have indicated a notable increase in mast cell counts following hepatic injury, underscoring their potential contribution to liver disorder pathogenesis. Predominantly situated in connective tissue that envelops the hepatic veins, bile ducts, and arteries, mast cells are central to both initiating and perpetuating liver disorders. Additionally, they are crucial for maintaining gastrointestinal barrier function. The gut-liver axis emphasizes the complex, two-way communication between the gut microbiome and the liver. Past research has implicated gut microbiota and their metabolites in the progression of hepatic disorders. This review sheds light on how mast cells are activated in various liver conditions such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, hepatic fibrogenesis, and hepatocellular carcinoma. It also briefly explores the connection between the gut microbiome and mast cell activation in these hepatic conditions.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India.
| |
Collapse
|
4
|
Zhang M, Yang J, Yuan Y, Zhou Y, Wang Y, Cui R, Maliu Y, Xu F, Wu X. Recruitment or activation of mast cells in the liver aggravates the accumulation of fibrosis in carbon tetrachloride-induced liver injury. Mol Immunol 2024; 170:60-75. [PMID: 38626622 DOI: 10.1016/j.molimm.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-β1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Jinru Yang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yufan Yuan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yan Zhou
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yazhi Wang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Ruirui Cui
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yimai Maliu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Fen Xu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
5
|
Yang X, Lee D, Kim HW, Park BH, Lim C, Bae EJ. Cannabidiol Inhibits IgE-Mediated Mast Cell Degranulation and Anaphylaxis in Mice. Mol Nutr Food Res 2024; 68:e2300136. [PMID: 38059783 DOI: 10.1002/mnfr.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/31/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Cannabidiol (CBD), the most abundant non-psychoactive constituent of the plant Cannabis sativa, is known to possess immune modulatory properties. This study investigates the effects of CBD on mast cell degranulation in human and mouse primary mast cells and passive cutaneous anaphylaxis in mice. METHODS AND RESULTS Mouse bone marrow-derived mast cells and human cord-blood derived mast cells are generated. CBD suppressed antigen-stimulated mast cell degranulation in a concentration-dependent manner. Mechanistically, CBD inhibited both the phosphorylation of FcεRI downstream signaling molecules and calcium mobilization in mast cells, while exerting no effect on FcεRI expression and IgE binding to FcεRI. These suppressive effects are preserved in the mast cells that are depleted of type 1 (CB1) and type 2 (CB2) cannabinoid receptors, as well as in the presence of CB1 agonist, CB2 agonist, CB1 inverse agonist, and CB2 inverse agonist. CBD also inhibited the development of mast cells in a long-term culture. The intraperitoneal administration of CBD suppressed passive cutaneous anaphylaxis in mice as evidenced by a reduction in ear swelling and decrease in the number of degranulated mast cells. CONCLUSION Based on these results, the administration of CBD is a new therapeutic intervention in mast cell-associated anaphylactic diseases.
Collapse
Affiliation(s)
- Xiaohui Yang
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dohyeon Lee
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Woo Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Changjin Lim
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
6
|
Metz M, Kolkhir P, Altrichter S, Siebenhaar F, Levi-Schaffer F, Youngblood BA, Church MK, Maurer M. Mast cell silencing: A novel therapeutic approach for urticaria and other mast cell-mediated diseases. Allergy 2024; 79:37-51. [PMID: 37605867 DOI: 10.1111/all.15850] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Chronic urticaria (CU) is a mast cell (MC)-dependent disease with limited therapeutic options. Current management strategies are directed at inhibiting IgE-mediated activation of MCs and antagonizing effects of released mediators. Due to the complexity and heterogeneity of CU and other MC diseases and mechanisms of MC activation-including multiple activating receptors and ligands, diverse signaling pathways, and a menagerie of mediators-strategies of MC depletion or MC silencing (i.e., inhibition of MC activation via binding of inhibitory receptors) have been developed to overcome limitations of singularly targeted agents. MC silencers, such as agonist monoclonal antibodies that engage inhibitory receptors (e.g., sialic acid-binding immunoglobulin-like lectin8 -[Siglec-8] [lirentelimab/AK002], Siglec-6 [AK006], and CD200R [LY3454738]), have reached preclinical and clinical stages of development. In this review, we (1) describe the role of MCs in the pathogenesis of CU, highlighting similarities with other MC diseases in disease mechanisms and response to treatment; (2) explore current therapeutic strategies, categorized by nonspecific immunosuppression, targeted inhibition of MC activation or mediators, and targeted modulation of MC activity; and (3) introduce the concept of MC silencing as an emerging strategy that could selectively block activation of MCs without eliciting or exacerbating on- or off-target, immunosuppressive adverse effects.
Collapse
Affiliation(s)
- Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Martin K Church
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
7
|
Zhang M, Cui R, Zhou Y, Ma Y, Jin Y, Wang L, Kou W, Wu X. Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress. Int J Mol Sci 2023; 24:10839. [PMID: 37446016 DOI: 10.3390/ijms241310839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.
Collapse
Affiliation(s)
- Mingkang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou 730000, China
| | - Ruirui Cui
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou 730000, China
| | - Yan Zhou
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou 730000, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yanrong Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou 730000, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongwen Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou 730000, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lina Wang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wen Kou
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou 730000, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xin'an Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou 730000, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Hedgespeth BA, Snider DB, Bitting KJ, Cruse G. The exon-skipping oligonucleotide, KitStop, depletes tissue-resident mast cells in vivo to ameliorate anaphylaxis. Front Immunol 2023; 14:1006741. [PMID: 36798116 PMCID: PMC9927222 DOI: 10.3389/fimmu.2023.1006741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Anaphylaxis represents the most extreme and life-threatening form of allergic disease and is considered a medical emergency requiring immediate intervention. Additionally, some people with mastocytosis experience recurrent episodes of anaphylaxis during normal daily activities without exposure to known triggers. While acute therapy consists primarily of epinephrine and supportive care, chronic therapy relies mostly on desensitization and immunotherapy against the offending allergen, which is a time-consuming and sometimes unsuccessful process. These treatments also necessitate identification of the triggering allergen which is not always possible, and thus highlighting a need for alternative treatments for mast cell-mediated diseases. Methods The exon-skipping oligonucleotide KitStop was administered to mice intradermally, intraperitoneally, or systemically at a dose of 12.5 mg/kg. Local mast cell numbers were enumerated via peritoneal lavage or skin histology, and passive systemic anaphylaxis was induced to evaluate KitStop's global systemic effect. A complete blood count and biochemistry panel were performed to assess the risk of acute toxicity following KitStop administration. Results Here, we report the use of an exon-skipping oligonucleotide, which we have previously termed KitStop, to safely reduce the severity and duration of the anaphylactic response via mast cell depopulation in tissues. KitStop administration results in the integration of a premature stop codon within the mRNA transcript of the KIT receptor-a receptor tyrosine kinase found primarily on mast cells and whose gain-of-function mutation can lead to systemic mastocytosis. Following either local or systemic KitStop treatment, mice had significantly reduced mast cell numbers in the skin and peritoneum. In addition, KitStop-treated mice experienced a significantly diminished anaphylactic response using a model of passive systemic anaphylaxis when compared with control mice. Discussion KitStop treatment results in a significant reduction in systemic mast cell responses, thus offering the potential to serve as a powerful additional treatment modality for patients that suffer from anaphylaxis.
Collapse
Affiliation(s)
- Barry A Hedgespeth
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States.,Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine and Translational Research Training Program, North Carolina State University, Raleigh, NC, United States
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States.,Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine and Translational Research Training Program, North Carolina State University, Raleigh, NC, United States
| | - Katie J Bitting
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
9
|
Yan Z, Gu F, Wang Z, Meng J, Tao X, Dai Q, Wang W, Liu M, Wang Z. Safety and efficacy of tyrosine kinase inhibitors for the treatment of multiple sclerosis: A systematic review and meta-analysis from randomized controlled trials. Front Neurol 2022; 13:933123. [PMID: 36226084 PMCID: PMC9548566 DOI: 10.3389/fneur.2022.933123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Multiple sclerosis (MS), an autoimmune disease, is characterized by inflammatory demyelinating lesions in the white matter of the central nervous system. Drugs targeting tyrosine kinase, a critical component of immune cell receptor signaling, have been developed to treat MS. However, the exact efficacy and safety of tyrosine kinase inhibitors (TKIs) are still controversial, and comprehensive analysis with a high level of evidence is needed. Methods Medline, Embase, Cochrane Library, and Clinicaltrials.gov for randomized controlled trials (RCTs) evaluating TKIs versus placebo for MS were searched up to April 1st, 2022. The risk ratio (RR) and mean difference (MD) or standard mean difference (SMD) were analyzed using dichotomous outcomes and continuous outcomes, respectively, with a random effect model. Results A total of 1,043 patients derived from four clinical trials were included to investigate the efficacy and safety of TKI therapy for MS. According to our analysis, TKIs decreased the cumulative number of gadolinium-enhancing lesions on T1-weighted MRI with the application of high dose (SMD = −0.61, 95% CI: −0.93 to −0.30, P = 0.0001). Meanwhile, TKIs prevented the expanded disability status scale (EDSS) from rising (MD = −0.10, 95% CI: −0.19 to −0.00, P = 0.046). In terms of MS relapse, TKIs have not revealed an obvious statistical difference compared with placebo (RR = 0.96, 95% CI: 0.55–1.65, P = 0.8755). However, more adverse events seem to occur in the TKIs group, both for adverse events (RR = 1.12, 95% CI: 1.05–1.19, P = 0.0009) and serious adverse events (RR = 1.91, 95% CI: 1.30–2.81, P = 0.001). Conclusion Tyrosine kinase inhibitors have shown promise in treating MS. Generally, TKIs that attain the effective dose demonstrate definite efficacy and have tolerable side effects. More clinical trials and validation are needed, and we anticipate that TKIs will be a viable alternative for MS patients.
Collapse
Affiliation(s)
- Zeya Yan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiahao Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiling Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Meirong Liu
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Zhong Wang
| |
Collapse
|
10
|
Kim KH, Kim JO, Park SG. A fully human anti-c-Kit monoclonal antibody 2G4 inhibits proliferation and degranulation of human mast cells. Mol Cell Biochem 2022; 478:861-873. [PMID: 36107283 PMCID: PMC10066129 DOI: 10.1007/s11010-022-04557-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
AbstractGiven that mast cells are pivotal contributors to allergic diseases, various allergy treatments have been developed to inhibit them. Omalizumab, an anti-immunoglobulin E antibody, is a representative therapy that can alleviate allergy symptoms by inhibiting mast cell degranulation. However, omalizumab cannot reduce the proliferation and accumulation of mast cells, which is a fundamental cause of allergic diseases. c-Kit is essential for the proliferation, survival, and differentiation of mast cells. Excessive c-Kit activation triggers various mast cell diseases, such as asthma, chronic spontaneous urticaria, and mastocytosis. Herein, we generated 2G4, an anti-c-Kit antibody, to develop a therapeutic agent for mast cell diseases. The therapeutic efficacy of 2G4 antibody was evaluated in LAD2, a human mast cell line. 2G4 antibody completely inhibited c-Kit signaling by blocking the binding of stem cell factor, known as the c-Kit ligand. Inhibition of c-Kit signaling led to the suppression of proliferation, migration, and degranulation in LAD2 cells. Moreover, 2G4 antibody suppressed the secretion of pro-inflammatory cytokines, including granulocyte–macrophage colony-stimulating factor, vascular endothelial growth factor, C–C motif chemokine ligand 2, brain-derived neurotrophic factor, and complement component C5/C5a, which can exacerbate allergy symptoms. Taken together, these results suggest that 2G4 antibody has potential as a novel therapeutic agent for mast cell diseases.
Collapse
|
11
|
Hu A, Shuai Z, Liu J, Huang B, Luo Y, Deng J, Liu J, Yu L, Li L, Xu S. Ginsenoside Rg1 prevents vascular intimal hyperplasia involved by SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes in a rat balloon injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113046. [PMID: 32504784 DOI: 10.1016/j.jep.2020.113046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Mey. is a traditional tonic that has been used for thousands of years, and has positive effects on vascular diseases. Ginsenoside Rg1 (GS-Rg1) is one of the active ingredients of Panax ginseng C. A. Mey. and has been shown to have beneficial effects against ischemia/reperfusion injury. Our previously study has found that GS-Rg1 can mobilize bone marrow stem cells and inhibit vascular smooth muscle proliferation and phenotype transformation. However, pharmacological effects and mechanism of GS-Rg1 in inhibiting intimal hyperplasia is still unknown. AIM OF THE STUDY This study was aimed to investigate whether GS-Rg1 prevented vascular intimal hyperplasia, and the involvement of stromal cell-derived factor-1α (SDF-1α)/CXCR4, stem cell factor (SCF)/c-kit and fractalkine (FKN)/CX3CR1 axes. MATERIALS AND METHODS Rats were operated with carotid artery balloon injury. The treatment groups were injected with 4, 8 and 16 mg/kg of GS-Rg1 for 14 days. The degree of intimal hyperplasia was evaluated by histopathological examination. The expression of α-SMA (α-smooth muscle actin) and CD133 were detected by double-label immunofluorescence. Serum levels of SDF-1α, SCF and soluble FKN (sFKN) were detected by enzyme linked immunosorbent assay (ELISA). The protein expressions of SCF, SDF-1α and FKN, as well as the receptors c-kit, CXC chemokine receptor type 4 (CXCR4) and CX3C chemokine receptor type 1 (CX3CR1) were detected by immunochemistry. RESULTS GS-Rg1 reduced intimal hyperplasia by evidence of the values of NIA, the ratio of NIA/MA, and the ratio of NIA/IELA and the ratio of NIA/LA, especially in 16 mg/kg group. Furthermore, GS-Rg1 8 mg/kg group and 16 mg/kg group decreased the protein expressions of the SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes in neointima, meanwhile GS-Rg1 8 mg/kg group and 16 mg/kg group also attenuated the expressions of SDF-1α, SCF and sFKN in serum. In addition, the expression of α-SMA and CD133 marked smooth muscle progenitor cells (SMPCs) was decreased after GS-Rg1 treatment. CONCLUSIONS GS-Rg1 has a positive effect on inhibiting vascular intimal hyperplasia, and the underlying mechanism is related to inhibitory expression of SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes.
Collapse
MESH Headings
- Angioplasty, Balloon
- Animals
- CX3C Chemokine Receptor 1/metabolism
- Carotid Artery Injuries/etiology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/prevention & control
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Chemokine CX3CL1/metabolism
- Chemokine CXCL12/metabolism
- Disease Models, Animal
- Ginsenosides/pharmacology
- Hyperplasia
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neointima
- Proto-Oncogene Proteins c-kit/metabolism
- Rats, Sprague-Dawley
- Receptors, CXCR4/metabolism
- Signal Transduction
- Stem Cell Factor/metabolism
Collapse
Affiliation(s)
- Anling Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550025, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China.
| | - Zhiqin Shuai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Jiajia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Limei Yu
- State Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 563003, China.
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, China; State Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
12
|
Lee D, Park YH, Lee JE, Kim HS, Min KY, Jo MG, Kim HS, Choi WS, Kim YM. Dasatinib Inhibits Lyn and Fyn Src-Family Kinases in Mast Cells to Suppress Type I Hypersensitivity in Mice. Biomol Ther (Seoul) 2020; 28:456-464. [PMID: 32268657 PMCID: PMC7457176 DOI: 10.4062/biomolther.2020.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Mast cells (MCs) are systemically distributed and secrete several allergic mediators such as histamine and leukotrienes to cause type I hypersensitivity. Dasatinib is a type of anti-cancer agent and it has also been reported to inhibit human basophils. However, dasatinib has not been reported for its inhibitory effects on MCs or type I hypersensitivity in mice. In this study, we examined the inhibitory effect of dasatinib on MCs and MC-mediated allergic response in vitro and in vivo. in vitro, dasatinib inhibited the degranulation of MCs by antigen stimulation in a dose-dependent manner (IC50, ~34 nM for RBL-2H3 cells; ~52 nM for BMMCs) without any cytotoxicity. It also suppressed the secretion of inflammatory cytokines IL-4 and TNF-α by antigen stimulation. Furthermore, dasatinib inhibited MC-mediated passive cutaneous anaphylaxis (PCA) in mice (ED50, ~29 mg/kg). Notably, dasatinib significantly suppressed the degranulation of MCs in the ear tissue. As the mechanism of its effect, dasatinib inhibited the activation of Syk and Syk-mediated downstream signaling proteins, LAT, PLCγ1, and three typical MAP kinases (Erk1/2, JNK, and p38), which are essential for the activation of MCs. Interestingly, in vitro tyrosine kinase assay, dasatinib directly inhibited the activities of Lyn and Fyn, the upstream tyrosine kinases of Syk in MCs. Taken together, dasatinib suppresses MCs and PCA in vitro and in vivo through the inhibition of Lyn and Fyn Src-family kinases. Therefore, we suggest the possibility of repositioning the anti-cancer drug dasatinib as a treatment for various MC-mediated type I hypersensitive diseases.
Collapse
Affiliation(s)
- Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.,College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon 6419, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
13
|
Conti P, Lauritano D, Caraffa A, Gallenga CE, Kritas SK, Ronconi G, Pandolfi F. New insight into systemic mastocytosis mediated by cytokines IL-1β and IL-33: Potential inhibitory effect of IL-37. Eur J Pharmacol 2019; 858:172473. [DOI: 10.1016/j.ejphar.2019.172473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
14
|
Hu A, Huang J, Li S, Gao Y, Wu L, Deng J, Liu J, Gong Q, Li L, Xu S. Involvement of stromal cell-derived factor-1α (SDF-1α), stem cell factor (SCF), fractalkine (FKN) and VEGF in TSG protection against intimal hyperplasia in rat balloon injury. Biomed Pharmacother 2019; 110:887-894. [DOI: 10.1016/j.biopha.2018.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023] Open
|
15
|
Mohammadi R, Anousheh D, Alaei MH, Nikpasand A, Rostami H, Shahrooz R. Local Xenotransplantation of Bone Marrow Derived Mast Cells (BMMCs) Improves Functional Recovery of Transected Sciatic Nerve in Cat: A Novel Approach in Cell Therapy. Bull Emerg Trauma 2018; 6:108-114. [PMID: 29719840 DOI: 10.29252/beat-060204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective To determine the effects of bone marrow derived mast cells (BMMCs) on functional recovery of transected sciatic nerve in animal model of cat. Method A 20-mm sciatic nerve defect was bridged using a silicone nerve guide filled with BMMCs in BMMC group. In Sham-surgery group (SHAM), the sciatic nerve was only exposed and manipulated. In control group (SILOCONE) the gap was repaired with a silicone nerve guide and both ends were sealed using sterile Vaseline to avoid leakage and the nerve guide was filled with 100 μL of phosphate-buffered saline alone. In cell treated group ([SILOCONE/BMMC) the nerve guide was filled with 100 μL BMMCs (2× 106 cells/100 μL). The regenerated nerve fibers were studied, biomechanically, histologically and immunohiscochemically 6 months later. Results Biomechanical studies confirmed faster recovery of regenerated axons in BMMCs transplanted animals compared to control group (p<0.05). Morphometric indices of the regenerated fibers showed that the number and diameter of the myelinated fibers were significantly higher in BMMCs transplanted animals than in control group (p<0.05). In immunohistochemistry, location of reactions to S-100 in BMMCs transplanted animals was clearly more positive than that in control group. Conclusion BMMCs xenotransplantation could be considered as a readily accessible source of cells that could improve recovery of transected sciatic nerve.
Collapse
Affiliation(s)
- Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Dana Anousheh
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohammad-Hazhir Alaei
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amin Nikpasand
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hawdam Rostami
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Afonyushkin T, Oskolkova OV, Bochkov VN. Oxidized phospholipids stimulate production of stem cell factor via NRF2-dependent mechanisms. Angiogenesis 2018; 21:229-236. [PMID: 29330760 PMCID: PMC5878191 DOI: 10.1007/s10456-017-9590-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/16/2017] [Indexed: 01/01/2023]
Abstract
Receptor tyrosine kinase c-Kit and its ligand stem cell factor (SCF) regulate resident vascular wall cells and recruit circulating progenitors. We tested whether SCF may be induced by oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) known to accumulate in atherosclerotic vessels. Gene expression analysis demonstrated OxPAPC-induced upregulation of SCF mRNA and protein in different types of endothelial cells (ECs). Elevated levels of SCF mRNA were observed in aortas of ApoE-/- knockout mice. ECs produced biologically active SCF because conditioned medium from OxPAPC-treated cells stimulated activation (phosphorylation) of c-Kit in naïve ECs. Induction of SCF by OxPAPC was inhibited by knocking down transcription factor NRF2. Inhibition or stimulation of NRF2 by pharmacological or molecular tools induced corresponding changes in SCF expression. Finally, we observed decreased levels of SCF mRNA in aortas of NRF2 knockout mice. We characterize OxPLs as a novel pathology-associated stimulus inducing expression of SCF in endothelial cells. Furthermore, our data point to transcription factor NRF2 as a major mediator of OxPL-induced upregulation of SCF. This mechanism may represent one of the facets of pleiotropic action of NRF2 in vascular wall.
Collapse
Affiliation(s)
- Taras Afonyushkin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25-3, 1090, Vienna, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Olga V Oskolkova
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Valery N Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us? Cancer Lett 2017; 405:10-21. [DOI: 10.1016/j.canlet.2017.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
|
18
|
Mast cells improve functional recovery of transected peripheral nerve: A novel preliminary study. Injury 2017; 48:1480-1485. [PMID: 28532897 DOI: 10.1016/j.injury.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Employment of regenerative properties of cells at the service of nerve repair has been initiated during recent decades. Effects of local transplantation of bone marrow-derived mast cells on peripheral nerve regeneration were studied using a rat sciatic nerve transection model. MATERIALS AND METHODS A 10-mm sciatic nerve defect was bridged using a conduit chitosan-based hybrid conduit filled with BMMCs in BMMC group. In positive control group (Pos), the conduit was filled with phosphate-buffered saline alone. The regenerated nerve fibers were studied within 12 weeks after surgery. In sham-operated group, the sciatic nerve was only exposed and manipulated. In negative control (Neg) a 10-mm sciatic nerve defect was created and the nerve stumps were sutured to the adjacent muscles. The regenerated nerve fibers were studied functionally, biomechanically, histologically and immunohiscochemically. RESULTS Functional and biomechanical studies confirmed faster recovery of regenerated axons in BMMCs transplanted animals compared to Pos group (p<0.05). Morphometric indices of the regenerated fibers showed that the number and diameter of the myelinated fibers were significantly higher in BMMCs transplanted animals than in Pos group (p<0.05). In immunohistochemistry, location of reactions to S-100 in BMMCs transplanted animals was clearly more positive than that in Pos group. CONCLUSIONS BMMCs transplantation could be considered as a readily accessible source of cells that could improve functional recovery of transected sciatic nerve.
Collapse
|
19
|
Piqueres-Zubiaurre T, Martínez de Lagrán Z, González-Pérez R, Urtaran-Ibarzabal A, Perez de Nanclares G. Familial Progressive Hyperpigmentation, Cutaneous Mastocytosis, and Gastrointestinal Stromal Tumor as Clinical Manifestations of Mutations in the c-KIT Receptor Gene. Pediatr Dermatol 2017; 34:84-89. [PMID: 27981619 DOI: 10.1111/pde.13040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Familial progressive hyperpigmentation (FPH) is an autosomal dominant disorder characterized by the appearance of hyperpigmented patches on the skin from early infancy that increase in size and number with age. METHODS We report the clinical and molecular studies of an 11-year-old boy who had areas of hyperpigmentation since birth that had spread across his body as irregular hyperpigmented macules and papules, and include relevant history in family members. RESULTS Affected members of his family shared a mutation in the c-KIT gene. All had progressive hyperpigmentation, in some cases accompanied by gastrointestinal stromal tumors and mastocytoma. There have been few reports of familial progressive hyperpigmentation together with systemic manifestations. CONCLUSIONS Molecular analysis of c-KIT should be considered in the presence of FPH with systemic involvement.
Collapse
Affiliation(s)
| | | | | | | | - Guiomar Perez de Nanclares
- (Epi)Genetics Laboratory, BioAraba Health Research Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Alava, Spain
| |
Collapse
|
20
|
Kang HS, Rhee CK, Lee HY, Yoon HK, Kwon SS, Lee SY. Different anti-remodeling effect of nilotinib and fluticasone in a chronic asthma model. Korean J Intern Med 2016; 31:1150-1158. [PMID: 27764539 PMCID: PMC5094918 DOI: 10.3904/kjim.2015.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/05/2015] [Accepted: 08/16/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Inhaled corticosteroids are the most effective treatment currently available for asthma, but their beneficial effect against airway remodeling is limited. The tyrosine kinase inhibitor nilotinib has inhibitory activity against c-kit and the platelet-derived growth factor receptor. We compared the effects of fluticasone and nilotinib on airway remodeling in a chronic asthma model. We also examined whether co-treatment with nilotinib and fluticasone had any synergistic effect in preventing airway remodeling. METHODS We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized female BALB/c-mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated with fluticasone and/or nilotinib intranasally during the OVA challenge. RESULTS Mice chronically exposed to OVA developed eosinophilic airway inflammation and showed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Both fluticasone and nilotinib attenuated airway smooth muscle thickening. However, only nilotinib suppressed fibrotic changes, demonstrating inhibition of collagen deposition. Fluticasone reduced pro-inflammatory cells, such as eosinophils, and several cytokines, such as interleukin 4 (IL-4), IL-5, and IL-13, induced by repeated OVA challenges. On the other hand, nilotinib reduced transforming growth factor β1 levels in bronchoalveolar lavage fluid and inhibited fibroblast proliferation significantly. CONCLUSIONS These results suggest that fluticasone and nilotinib suppressed airway remodeling in this chronic asthma model through anti-inflammatory and anti-fibrotic pathways, respectively.
Collapse
Affiliation(s)
- Hye Seon Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hea Yon Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Soon Seok Kwon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon, Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sook Young Lee, M.D. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6061 Fax: +82-2-596-2158 E-mail:
| |
Collapse
|
21
|
Sharma N, Everingham S, Zeng LF, Zhang ZY, Kapur R, Craig AWB. Oncogenic KIT-induced aggressive systemic mastocytosis requires SHP2/PTPN11 phosphatase for disease progression in mice. Oncotarget 2015; 5:6130-41. [PMID: 25026279 PMCID: PMC4171618 DOI: 10.18632/oncotarget.2177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acquired mutations in KIT are driver mutations in systemic mastocytosis (SM). Here, we tested the role of SHP2/PTPN11 phosphatase in oncogenic KIT signaling using an aggressive SM mouse model. Stable knock-down (KD) of SHP2 led to impaired growth, colony formation, and increased rates of apoptosis in P815 cells. This correlated with defects in signaling to ERK/Bim, Btk, Lyn, and Stat5 pathways in P815-KD cells compared to non-targeting (NT). Retro-orbital injections of P815 NT cells in syngeneic DBA/2 mice resulted in rapid development of aggressive SM within 13-16 days characterized by splenomegaly, extramedullary hematopoiesis, and multifocal liver tumors. In contrast, mice injected with P815 SHP2 KD cells showed less disease burden, including normal spleen weight and cellularity, and significant reductions in mastocytoma cells in spleen, bone marrow, peripheral blood and liver compared to NT controls. Treatment of human mast cell leukemia HMC-1 cells or P815 cells with SHP2 inhibitor II-B08, resulted in reduced colony formation and cell viability. Combining II-B08 with multi-kinase inhibitor Dasatinib showed enhanced efficacy than either inhibitor alone in blocking cell growth pathways and cell viability. Taken together, these results identify SHP2 as a key effector of oncogenic KIT and a therapeutic target in aggressive SM.
Collapse
Affiliation(s)
- Namit Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada K7L 3N6
| | - Stephanie Everingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada K7L 3N6
| | - Li-Fan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
22
|
Folch J, Petrov D, Ettcheto M, Pedrós I, Abad S, Beas-Zarate C, Lazarowski A, Marin M, Olloquequi J, Auladell C, Camins A. Masitinib for the treatment of mild to moderate Alzheimer's disease. Expert Rev Neurother 2015; 15:587-96. [PMID: 25961655 DOI: 10.1586/14737175.2015.1045419] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disorder that is the most common cause of dementia and disability in older patients. Available treatments are symptomatic in nature and are only sufficient to improve the quality of life of AD patients temporarily. A potential strategy, currently under investigation, is to target cell-signaling pathways associated with neurodegeneration, in order to decrease neuroinflammation, excitotoxicity, and to improve cognitive functions. Current review centers on the role of neuroinflammation and the specific contribution of mast cells to AD pathophysiology. The authors look at masitinib therapy and the evidence presented through preclinical and clinical trials. Dual actions of masitinib as an inhibitor of mast cell-glia axis and a Fyn kinase blocker are discussed in the context of AD pathology. Masitinib is in Phase III clinical trials for the treatment of malignant melanoma, mastocytosis, multiple myeloma, gastrointestinal cancer and pancreatic cancer. It is also in Phase II/III clinical trials for the treatment of multiple sclerosis, rheumatoid arthritis and AD. Additional research is warranted to better investigate the potential effects of masitinib in combination with other drugs employed in AD treatment.
Collapse
Affiliation(s)
- Jaume Folch
- Unitat de Bioquimica i Biotecnología, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Huusko JM, Mahlman M, Karjalainen MK, Kaukola T, Haataja R, Marttila R, Toldi G, Szabó M, Kingsmore SF, Rämet M, Lavoie PM, Hallman M. Polymorphisms of the gene encoding Kit ligand are associated with bronchopulmonary dysplasia. Pediatr Pulmonol 2015; 50:260-270. [PMID: 24610823 DOI: 10.1002/ppul.23018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease that affects infants born preterm. Family studies indicate that BPD has a significant genetic component. RATIONALE We assessed the gene encoding Kit ligand (KITLG) as a candidate for genetic predisposition to moderate-to-severe BPD (controls were infants with no or mild BPD). STUDY DESIGN Eight KITLG-tagging single nucleotide polymorphisms (SNPs) were analyzed in cohorts of very preterm infants originating from northern Finland (56 cases and 197 controls), southern Finland (n = 59 + 52), and Canada (n = 58 + 68). Additional replication populations included infants born in Finland (n = 41 + 241) and Hungary (n = 29 + 40). All infants were of European origin. Results were controlled for risk factors of BPD. Kit ligand concentration in umbilical cord blood, collected from very preterm infants (n = 120), was studied. RESULTS Six SNPs of KITLG and a haplotype including all eight genotyped SNPs were associated with moderate-to-severe BPD in the northern Finnish population. When all the populations were combined, SNP rs11104948 was significantly associated with BPD. Kit ligand concentration in umbilical cord blood of infants born very preterm was an independent risk factor of BPD. CONCLUSIONS We show that KITLG polymorphisms are associated with susceptibility to moderate-to-severe BPD. In addition, higher Kit ligand concentrations were observed in infants that subsequently developed BPD. These results support the possibility that KITLG gene is involved in predisposition to BPD. Pediatr Pulmonol. 2015; 50:260-270. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Johanna M Huusko
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mari Mahlman
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K Karjalainen
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Tuula Kaukola
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ritva Haataja
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Riitta Marttila
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Gergely Toldi
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miklós Szabó
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Mika Rämet
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Institute of Biomedical Technology, and BioMediTech, University of Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Pascal M Lavoie
- Child & Family Research Institute of British Columbia, Vancouver, Canada
| | - Mikko Hallman
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | | |
Collapse
|
24
|
Landolina N, Gangwar RS, Levi-Schaffer F. Mast cells' integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol 2015; 125:41-85. [PMID: 25591464 DOI: 10.1016/bs.ai.2014.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) and eosinophils (Eos) are the key players in the development of allergic inflammation (AI). Their cross-talk, named the Allergic Effector Unit (AEU), takes place through an array of soluble mediators and ligands/receptors interactions that enhance the functions of both the cells. One of the salient features of the AEU is the CD48/2B4 receptor/ligand binding complex. Furthermore, MCs and Eos have been demonstrated to play a role not only in AI but also in the modulation of its consequence, i.e., fibrosis/tissue remodeling, by directly influencing fibroblasts (FBs), the main target cells of these processes. In turn, FBs can regulate the survival, activity, and phenotype of both MCs and Eos. Therefore, a complex three players, MCs/Eos/FBs interaction, can take place in various stages of AI. The characterization of the soluble and physical mediated cross talk among these three cells might lead to the identification of both better and novel targets for the treatment of allergy and its tissue remodeling consequences.
Collapse
Affiliation(s)
- Nadine Landolina
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roopesh Singh Gangwar
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
25
|
Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S. The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Mol Reprod Dev 2014; 81:1064-79. [PMID: 25359157 DOI: 10.1002/mrd.22430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022]
Abstract
Maintaining the delicate balance between cell survival and death is of the utmost importance for the proper development of germ cells and subsequent fertility. On the other hand, the fine regulation of tissue homeostasis by mechanisms that control cell fate is a factor that can prevent carcinogenesis. c-KIT is a type III receptor tyrosine kinase activated by its ligand, stem cell factor (SCF). c-KIT signaling plays a crucial role in cell fate decisions, specifically controlling cell proliferation, differentiation, survival, and apoptosis. Indeed, deregulating the SCF/c-KIT system by attenuation or overactivation of its signaling strength is linked to male infertility and cancer, and rebalancing its activity via c-KIT inhibitors has proven beneficial in treating human tumors that contain gain-of-function mutations or overexpress c-KIT. This review addresses the roles of SCF and c-KIT in the male reproductive tract, and discusses the potential application of c-KIT target therapies in disorders of the reproductive system.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
26
|
Martin RK, Saleem SJ, Folgosa L, Zellner HB, Damle SR, Nguyen GKT, Ryan JJ, Bear HD, Irani AM, Conrad DH. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol 2014; 96:151-9. [PMID: 24610880 DOI: 10.1189/jlb.5a1213-644r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been shown recently that MCs are required for differential regulation of the immune response by granulocytic versus monocytic MDSCs. Granulocytic MDSCs promoted parasite clearance, whereas monocytic MDSCs enhanced tumor progression; both activities were abrogated in MC-deficient mice. Herein, we demonstrate that the lack of MCs also influences MDSC trafficking. Preferential trafficking to the liver was not seen in MC-deficient mice. In addition, evidence that the MC mediator histamine was important in MDSC trafficking and activation is also shown. MDSCs express HR1-3. Blockade of these receptors by HR1 or HR2 antagonists reversed the histamine enhancement of MDSC survival and proliferation observed in cell culture. In addition, histamine differentially influenced Arg1 and iNOS gene expression in MDSCs and greatly enhanced IL-4 and IL-13 message, especially in granulocytic MDSCs. Evidence that histamine influenced activity seen in vitro translated to in vivo when HR1 and HR2 antagonists blocked the effect of MDSCs on parasite expulsion and tumor metastasis. All of these data support the MDSC-mediated promotion of Th2 immunity, leading to the suggestion that allergic-prone individuals would have elevated MDSC levels. This was directly demonstrated by looking at the relative MDSC levels in allergic versus control patients. Monocytic MDSCs trended higher, whereas granulocytic MDSCs were increased significantly in allergic patients. Taken together, our studies indicate that MCs and MC-released histamine are critical for MDSC-mediated immune regulation, and this interaction should be taken into consideration for therapeutic interventions that target MDSCs.
Collapse
Affiliation(s)
| | | | - Lauren Folgosa
- Departments of Microbiology and Immunology, Center for Clinical and Translational Research
| | | | | | | | - John J Ryan
- Departments of Microbiology and Immunology, Biology, and
| | - Harry D Bear
- Departments of Microbiology and Immunology, Massey Cancer Center; and Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
27
|
Shamloo A, Manchandia M, Ferreira M, Mani M, Nguyen C, Jahn T, Weinberg K, Heilshorn S. Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers. Integr Biol (Camb) 2014; 5:1076-85. [PMID: 23835699 DOI: 10.1039/c3ib40025e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Besides its cooperating effects on stem cell proliferation and survival, Kit ligand (KL) is a potent chemotactic protein. While transwell assays permit studies of the frequency of migrating cells, the lack of direct visualization precludes dynamic chemotaxis studies. In response, we utilize microfluidic chambers that enable direct observation of murine bone marrow-derived mast cells (BMMC) within stable KL gradients. Using this system, individual Kit+ BMMC were quantitatively analyzed for migration speed and directionality during KL-induced chemotaxis. Our results indicated a minimum activating threshold of ~3 ng ml(-1) for chemoattraction. Analysis of cells at KL concentrations below 3 ng ml(-1) revealed a paradoxical chemorepulsion, which has not been described previously. Unlike chemoattraction, which occurred continuously after an initial time lag, chemorepulsion occurred only during the first 90 minutes of observation. Both chemoattraction and chemorepulsion required the action of G-protein coupled receptors (GPCR), as treatment with pertussis toxin abrogated directed migration. These results differ from previous studies of GPCR-mediated chemotaxis, where chemorepulsion occurred at high ligand concentrations. These data indicate that Kit-mediated chemotaxis is more complex than previously understood, with the involvement of GPCRs in addition to the Kit receptor tyrosine kinase and the presence of both chemoattractive and chemorepellent phases.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4045, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
29
|
Toward understanding the role of aryl hydrocarbon receptor in the immune system: current progress and future trends. BIOMED RESEARCH INTERNATIONAL 2014; 2014:520763. [PMID: 24527450 PMCID: PMC3914515 DOI: 10.1155/2014/520763] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023]
Abstract
The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr), an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs) boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′-diindolylmethane (DIM) prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs) and inhibits T helper (Th)-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.
Collapse
|
30
|
Abstract
Mast cells are increasingly being recognized as effector cells in many cardiovascular conditions. Many mast-cell-derived products such as tryptase and chymase can, through their enzymic action, have detrimental effects on blood vessel structure while mast cell-derived mediators such as cytokines and chemokines can perpetuate vascular inflammation. Mice lacking mast cells have been developed and these are providing an insight into how mast cells are involved in cardiovascular diseases and, as knowledge increase, mast cells may become a viable therapeutic target to slow progression of cardiovascular disease.
Collapse
|