1
|
Irizarry KJL, Zhong W, Sun Y, Kronmiller BA, Darmani NA. RNA sequencing least shrew ( Cryptotis parva) brainstem and gut transcripts following administration of a selective substance P neurokinin NK 1 receptor agonist and antagonist expands genomics resources for emesis research. Front Genet 2023; 14:975087. [PMID: 36865388 PMCID: PMC9972295 DOI: 10.3389/fgene.2023.975087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
The least shrew is among the subset of animals that are capable of vomiting and therefore serves as a valuable research model for investigating the biochemistry, molecular biology, pharmacology, and genomics of emesis. Both nausea and vomiting are associated with a variety of illnesses (bacterial/viral infections, bulimia, exposure to toxins, gall bladder disease), conditions (pregnancy, motion sickness, emotional stress, overeating) and reactions to drugs (chemotherapeutics, opiates). The severe discomfort and intense fear associated with the stressful symptoms of nausea and emesis are the major reason for patient non-compliance when being treated with cancer chemotherapeutics. Increased understanding of the physiology, pharmacology and pathophysiology underlying vomiting and nausea can accelerate progress for developing new antiemetics. As a major animal model for emesis, expanding genomic knowledge associated with emesis in the least shrew will further enhance the laboratory utility of this model. A key question is which genes mediate emesis, and are they expressed in response to emetics/antiemetics. To elucidate the mediators of emesis, in particular emetic receptors, their downstream signaling pathways, as well as the shared emetic signals, we carried out an RNA sequencing study focused on the central and peripheral emetic loci, the brainstem and gut. Thus, we sequenced RNA extracted from brainstem and gut tissues from different groups of least shrews treated with either a neurokinin NK1 receptor selective emetic agonist, GR73632 (5 mg/kg, i.p.), its corresponding selective antagonist netupitant (5 mg/kg, i.p.), a combination of these two agents, versus their corresponding vehicle-pretreated controls and drug naïve animals. The resulting sequences were processed using a de novo transcriptome assembly and used it to identify orthologs within human, dog, mouse, and ferret gene sets. We compared the least shrew to human and a veterinary species (dog) that may be treated with vomit-inducing chemotherapeutics, and the ferret, another well-established model organism for emesis research. The mouse was included because it does not vomit. In total, we identified a final set of 16,720 least shrew orthologs. We employed comparative genomics analyses as well as gene ontology enrichment, KEGG pathway enrichment and phenotype enrichment to better understand the molecular biology of genes implicated in vomiting.
Collapse
Affiliation(s)
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Yina Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
2
|
Machida T, Iizuka K. [Consideration of the Characteristics of Oral Iron Preparations from the Viewpoint of the Mechanism of Nausea and Vomiting]. YAKUGAKU ZASSHI 2023; 143:599-606. [PMID: 37394455 DOI: 10.1248/yakushi.23-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The nausea and vomiting that occur as a result of oral iron administration for the treatment of iron-deficiency anemia (IDA) can cause significant physical and emotional stress in patients. Because iron is absorbed from the intestine as ferrous iron, the most widely used treatment for IDA is oral ferrous agents. However, ferrous forms are more toxic than ferric forms because ferrous forms readily generate free radicals. A randomized, double-blind, active-controlled, multicenter non-inferiority study conducted in Japan showed that ferric citrate hydrate (FC) was just as effective as sodium ferrous citrate (SF) in the treatment of IDA, with a lower incidence of adverse reactions such as nausea and vomiting compared with SF. Animal studies have shown that chemotherapy-induced nausea and vomiting (CINV) involves the release of 5-hydroxytryptamine from enterochromaffin cells by free radicals, and that some chemotherapeutic agents cause hyperplasia of these cells. Enterochromaffin cells also contain substance P, which is known to be also closely related to CINV. We found that administration of SF to rats causes hyperplasia of enterochromaffin cells in the small intestine, whereas FC has no effect on enterochromaffin cells. Oral iron agents may induce nausea and vomiting via the effect of ferrous iron on reactive oxygen species production in the intestine and subsequent enterochromaffin cell hyperplasia. Further research to elucidate the detailed mechanism of enterochromaffin cell hyperplasia induced by ferrous iron preparations is needed to develop a treatment for iron deficiency anemia that causes less gastrointestinal damage.
Collapse
Affiliation(s)
- Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Kenji Iizuka
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
3
|
Belkacemi L, Sun Y, Darmani NA. Evidence for Bell-Shaped Dose-Response Emetic Effects of Temsirolimus and Analogs: The Broad-Spectrum Antiemetic Efficacy of a Large Dose of Temsirolimus Against Diverse Emetogens in the Least Shrew ( Cryptotis parva). Front Pharmacol 2022; 13:848673. [PMID: 35444553 PMCID: PMC9014009 DOI: 10.3389/fphar.2022.848673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Temsirolimus is a prodrug form of sirolimus (rapamycin). With its analogs (everolimus, ridaforolimus, and rapamycin), it forms a group of anticancer agents that block the activity of one of the two mammalian targets of rapamycin (mTOR) complexes, mTORC1. We investigated the emetic potential of varying doses (0, 0.5, 1, 2.5, 5, 10, 20, and 40 mg/kg, i.p.) of temsirolimus in the least shrew. Temsirolimus caused a bell-shaped and dose-dependent increase in both the mean vomit frequency and the number of shrews vomiting with maximal efficacy at 10 mg/kg (p < 0.05 and p < 0.02, respectively). Its larger doses (20 or 40 mg/kg) had no significant emetic effect. We also evaluated the emetic potential of its analogs (5, 10, and 20 mg/kg, i.p.), all of which exhibited a similar emetic profile. Our observational studies indicated that temsirolimus can reduce the shrew motor activity at 40 mg/kg, and subsequently, we examined the motor effects of its lower doses. At 10 and 20 mg/kg, it did not affect the spontaneous locomotor activity (distance moved) but attenuated the mean rearing frequency in a U-shaped manner at 10 mg/kg (p < 0.05). We then determined the broad-spectrum antiemetic potential of a 20 mg/kg (i.p.) dose of temsirolimus against diverse emetogens, including selective and nonselective agonists of 1) dopaminergic D2/3 receptors (apomorphine and quinpirole); 2) serotonergic 5-HT3 receptors [5-HT (serotonin) and 2-methyl-5-HT]; 3) cholinergic M1 receptors (pilocarpine and McN-A-343); 4) substance P neurokinin NK1 receptors (GR73632); 5) the L-type calcium (Ca2+) channel (LTCC) (FPL64176); 6) the sarcoplasmic endoplasmic reticulum Ca2+ ATPase inhibitor, thapsigargin; 7) the CB1 receptor inverse agonist/antagonist, SR141716A; and 8) the chemotherapeutic cisplatin. Temsirolimus prevented vomiting evoked by the aforementioned emetogens with varying degrees. The mechanisms underlying the pro- and antiemetic effects of temsirolimus evaluated by immunochemistry for c-fos expression demonstrated a c-fos induction in the AP and NTS, but not DMNX with the 10 mg/kg emetic dose of temsirolimus, whereas its larger antiemetic dose (20 mg/kg) had no significant effect. Our study is the first to provide preclinical evidence demonstrating the promising antiemetic potential of high doses of temsirolimus and possibly its analogs in least shrews.
Collapse
Affiliation(s)
| | | | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
4
|
Kamiya A, Machida T, Hirano M, Machida M, Shiga S, Hamaue N, Hirafuji M, Iizuka K. Administration of cyclophosphamide to rats induces pica and potentiates 5-hydroxytryptamine synthesis in the intestine without causing severe intestinal injury. J Pharmacol Sci 2021; 147:251-259. [PMID: 34507634 DOI: 10.1016/j.jphs.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022] Open
Abstract
The effects of cyclophosphamide on 5-hydroxytryptamine (5-HT) synthesis in the intestinal tissue of rats were investigated. Rats received 120 mg/kg cyclophosphamide intraperitoneally as a single administration, and kaolin and food intake was measured by an automatic monitoring apparatus. Ileal tissues were collected at either 24 or 72 h after administration. Cyclophosphamide caused a significant increase in kaolin intake at the acute and the delayed phases and was associated with a decrease in food intake, and body weight. Cyclophosphamide had no significant effect on intestinal mucosal morphology, or inducible nitric oxide synthase and cyclooxygenase-2 expression in the intestine. Cyclophosphamide significantly increased tryptophan hydroxylase 1 (TPH1) mRNA expression, number of anti-TPH antibody-positive cells, and 5-HT content in the intestine. Cyclophosphamide also significantly increased the expression of Tac1 mRNA, encoding preprotachykinin-1, which is a preprotein of substance P, and the number of anti-substance P antibody-positive cells in the intestine. Cyclophosphamide significantly increased Lgr5, Bmi1, and Atoh1 mRNA levels, which are markers for the proliferation and differentiation of stem cells. This study demonstrated that cyclophosphamide induced pica in rats, and potentiated 5-HT synthesis associated with hyperplasia of substance P-containing enterochromaffin cells without causing severe intestinal injury.
Collapse
Affiliation(s)
- Akihisa Kamiya
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | - Megumi Hirano
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Maiko Machida
- Division of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, 006-8590, Japan
| | - Saki Shiga
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Naoya Hamaue
- Department of Hygienic Chemistry, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Masahiko Hirafuji
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kenji Iizuka
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
5
|
Zhong W, Darmani NA. The Contribution of Phospholipase C in Vomiting in the Least Shrew (Cryptotis Parva) Model of Emesis. Front Pharmacol 2021; 12:736842. [PMID: 34566660 PMCID: PMC8461300 DOI: 10.3389/fphar.2021.736842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Gq and Gβγ protein-dependent phospholipase C (PLC) activation is extensively involved in G protein-coupled receptor (GPCR)-mediated signaling pathways which are implicated in a wide range of physiological and pathological events. Stimulation of several GPCRs, such as substance P neurokinin 1-, dopamine D2/3-, histamine H1- and mu-opioid receptors, can lead to vomiting. The aim of this study was to investigate the role of PLC in vomiting through assessment of the emetic potential of a PLC activator (m-3M3FBS), and the antiemetic efficacy of a PLC inhibitor (U73122), in the least shrew model of vomiting. We find that a 50 mg/kg (i.p.) dose of m-3M3FBS induces vomiting in ∼90% of tested least shrews, which was accompanied by significant increases in c-Fos expression and ERK1/2 phosphorylation in the shrew brainstem dorsal vagal complex, indicating activation of brainstem emetic nuclei in m-3M3FBS-evoked emesis. The m-3M3FBS-evoked vomiting was reduced by pretreatment with diverse antiemetics including the antagonists/inhibitors of: PLC (U73122), L-type Ca2+ channel (nifedipine), IP3R (2-APB), RyR receptor (dantrolene), ERK1/2 (U0126), PKC (GF109203X), the serotoninergic type 3 receptor (palonosetron), and neurokinin 1 receptor (netupitant). In addition, the PLC inhibitor U73122 displayed broad-spectrum antiemetic effects against diverse emetogens, including the selective agonists of serotonin type 3 (2-Methyl-5-HT)-, neurokinin 1 receptor (GR73632), dopamine D2/3 (quinpirole)-, and muscarinic M1 (McN-A-343) receptors, the L-type Ca2+ channel (FPL64176), and the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. In sum, PLC activation contributes to emesis, whereas PLC inhibition suppresses vomiting evoked by diverse emetogens.
Collapse
Affiliation(s)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
6
|
Zhong W, Shahbaz O, Teskey G, Beever A, Kachour N, Venketaraman V, Darmani NA. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci 2021; 22:5797. [PMID: 34071460 PMCID: PMC8198651 DOI: 10.3390/ijms22115797] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Omar Shahbaz
- School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic;
| | - Garrett Teskey
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| |
Collapse
|
7
|
Severity of constipation related to palonosetron during first-line chemotherapy: a retrospective observational study. Support Care Cancer 2021; 29:4723-4732. [PMID: 33515108 DOI: 10.1007/s00520-021-06023-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Palonosetron, a long-acting 5-HT3 receptor antagonist, is an effective antiemetic agent for chemotherapy-induced nausea and vomiting; however, it sometimes causes severe constipation. The aim of the present study was to evaluate the severity of palonosetron-related constipation. METHODS We retrospectively analyzed the incidence and severity of constipation after intravenous administration of 0.75-mg palonosetron in 150 chemotherapy-naïve patients who received first-line chemotherapy at Saga University Hospital. Constipation was classified into grades 1-5 according to the Common Terminology Criteria for Adverse Events version 5.0. Multiple logistic regression analysis was performed to identify factors associated with palonosetron-related worsening of constipation to grade 2 or higher. RESULTS Palonosetron significantly increased the incidence and severity of constipation (incidence: before vs. after palonosetron, 35.4% vs. 74.0%, p < 0.0001, and severity: before vs. after palonosetron, 26.7% and 8.7% in grades 1 and 2, respectively, vs. 46.7%, 23.3%, and 4.0% in grades 1, 2, and 3, respectively, p < 0.0001). Despite the use of laxatives, 4.0% of patients had grade 3 constipation requiring manual evacuation. Combination treatment with aprepitant (odds ratio (OR), 10.9; 95% confidence interval (CI), 1.3-90.0; p = 0.026) and older age (OR, 1.25; 95% CI, 1.01-1.57; p = 0.039) were factors associated with the severity of constipation. CONCLUSION Constipation was more severe in patients receiving combination treatment with aprepitant than in those treated with palonosetron alone. Older age was also associated with increased risk of severe palonosetron-related constipation. Identification of risk factors can help target risk-based laxative therapy.
Collapse
|
8
|
Zhong W, Darmani NA. Role of PI3K/Akt/GSK-3 Pathway in Emesis and Potential New Antiemetics. JOURNAL OF CELLULAR SIGNALING 2020; 1:155-159. [PMID: 33426544 PMCID: PMC7793561 DOI: 10.33696/signaling.1.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- W Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - N A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| |
Collapse
|
9
|
Park HS, Won HS, An HJ, Cho SS, Kim HH, Sun DS, Ko YH, Shim BY. Elevated serum substance P level as a predictive marker for moderately emetogenic chemotherapy-induced nausea and vomiting: A prospective cohort study. Cancer Med 2020; 10:1057-1065. [PMID: 33369184 PMCID: PMC7897939 DOI: 10.1002/cam4.3693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
Chemotherapy‐induced nausea and vomiting (CINV) is an unbearable side effect. Identifying high emetic risk patients and providing more active antiemetics strategies are mandatory to improve the tolerability of chemotherapy. In this prospective cohort study, leptin, ghrelin, and substance P were measured at baseline, day 3, and day 14 during the first cycle of chemotherapy. Nausea and vomiting were measured each day for the first 4 days of the first cycle of chemotherapy. Eighty‐two patients were enrolled. Colorectal cancer (61%) and gastric cancer (35.4%) were common cancer types. All patients received moderate emetic risk chemotherapy. Forty‐five (54.9%) patients had nausea, and 15 (18.3%) patients experienced vomiting. In univariate analysis, a higher level of baseline substance P, which is a target of NK1‐RA (Neurokinin 1 receptor antagonist), was a significant predictive marker for chemotherapy‐induced nausea [odds ratio (OR): 2.6, 95% confidence interval (CI): 1.02–6.62, p = 0.046]. Regarding chemotherapy‐induced vomiting, patients with higher levels of substance P had a greater chance of vomiting [OR: 1.72, 95% CI: 0.49–5.99, p = 0.395] than those with lower levels of substance P. In patients receiving moderate emetic risk chemotherapy, active antiemetics, including NK1‐RA, could be considered for those with high levels of substance P.
Collapse
Affiliation(s)
- Hyung Soon Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hye Sung Won
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Ho Jung An
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sung Shim Cho
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hyun Ho Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Der Sheng Sun
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Yoon Ho Ko
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byoung Yong Shim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
10
|
Darmani NA, Henry DA, Zhong W, Chebolu S. Ultra-low doses of the transient receptor potential vanilloid 1 agonist, resiniferatoxin, prevents vomiting evoked by diverse emetogens in the least shrew (Cryptotis parva). Behav Pharmacol 2020; 31:3-14. [PMID: 31503071 DOI: 10.1097/fbp.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Published studies have shown that the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX), has pro and antiemetic effects. RTX can suppress vomiting evoked by a variety of nonselective emetogens such as copper sulfate and cisplatin in several vomit-competent species. In the least shrew, we have already demonstrated that combinations of ultra-low doses of RTX and low doses of the cannabinoid CB1/2 receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) produce additive antiemetic effects against cisplatin-evoked vomiting. In the current study, we investigated the broad-spectrum antiemetic potential of very low nonemetic doses of RTX against a diverse group of specific emetogens including selective and nonselective agonists of serotonergic 5-hydroxytrptamine (5-HT3) receptor (5-HT and 2-Me-5-HT), dopaminergic D2 receptor (apomorphine and quinpirole), cholinergic M1 receptor (pilocarpine and McN-A-343), as well as the selective substance P neurokinin NK1 receptor agonist GR73632, the selective L-Type calcium channel agonist FPL64176, and the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) inhibitor thapsigargin. When administered subcutaneously, ultra-low (0.01 µg/kg) to low (5.0 µg/kg) doses of RTX suppressed vomiting induced by the aforementioned emetogens in a dose-dependent fashion with 50% inhibitory dose values ranging from 0.01 to 1.26 µg/kg. This study is the first to demonstrate that low nanomolar nonemetic doses of RTX have the capacity to completely abolish vomiting caused by diverse receptor specific emetogens in the least shrew model of emesis.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | | | |
Collapse
|
11
|
Belkacemi L, Darmani NA. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol Res 2020; 161:105124. [PMID: 32814171 DOI: 10.1016/j.phrs.2020.105124] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Dopamine is a member of the catecholamine family and is associated with multiple physiological functions. Together with its five receptor subtypes, dopamine is closely linked to neurological disorders such as schizophrenia, Parkinson's disease, depression, attention deficit-hyperactivity, and restless leg syndrome. Unfortunately, several dopamine receptor-based agonists used to treat some of these diseases cause nausea and vomiting as impending side-effects. The high degree of cross interactions of dopamine receptor ligands with many other targets including G-protein coupled receptors, transporters, enzymes, and ion-channels, add to the complexity of discovering new targets for the treatment of nausea and vomiting. Using activation status of signaling cascades as mechanism-based biomarkers to foresee drug sensitivity combined with the development of dopamine receptor-based biased agonists may hold great promise and seems as the next step in drug development for the treatment of such multifactorial diseases. In this review, we update the present knowledge on dopamine and dopamine receptors and their potential roles in nausea and vomiting. The pre- and clinical evidence provided in this review supports the implication of both dopamine and dopamine receptor agonists in the incidence of emesis. Besides the conventional dopaminergic antiemetic drugs, potential novel antiemetic targeting emetic protein signaling cascades may offer superior selectivity profile and potency.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
12
|
Zhong W, Darmani NA. The pivotal role of glycogen synthase kinase 3 (GSK-3) in vomiting evoked by specific emetogens in the least shrew (Cryptotis parva). Neurochem Int 2019; 132:104603. [PMID: 31738972 DOI: 10.1016/j.neuint.2019.104603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a constitutively active multifunctional serine-threonine kinase which is involved in diverse physiological processes. GSK-3 has been implicated in a wide range of diseases including neurodegeneration, inflammation, diabetes and cancer. GSK-3 is a downstream target for protein kinase B (Akt) which phosphorylates GSK-3 and suppresses its activity. Based upon our preliminary findings, we postulated Akt's involvement in emesis. The aim of this study was to investigate the participation of GSK-3 and the antiemetic potential of two GSK-3 inhibitors (AR-A014418 and SB216763) in the least shrew model of vomiting against fully-effective emetic doses of diverse emetogens, including the nonselective and/or selective agonists of serotonin type 3 (e.g. 5-HT or 2-Methyl-5-HT)-, neurokinin type 1 receptor (e.g. GR73632), dopamine D2 (e.g. apomorphine or quinpirole)-, and muscarinic 1 (e.g. pilocarpine or McN-A-343) receptors, as well as the L-type Ca2+ channel agonist (FPL64176), the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, and the chemotherapeutic agent, cisplatin. We first determined if these emetogens could regulate the phosphorylation level of GSK-3 in the brainstem emetic loci of least shrews and then investigated whether AR-A014418 and SB216763 could protect against the evoked emesis. Phospho-GSK-3α/β Ser21/9 levels in the brainstem and the enteric nerves of jejunum in the small intestine were upregulated following intraperitoneal (i.p.) administration of all the tested emetogens. Furthermore, administration of AR-A014418 (2.5-20 mg/kg, i.p.) dose-dependently attenuated both the frequency and percentage of shrews vomiting in response to i.p. administration of 5-HT (5 mg/kg), 2-Methyl-5-HT (5 mg/kg), GR73632 (5 mg/kg), apomorphine (2 mg/kg), quinpirole (2 mg/kg), pilocarpine (2 mg/kg), McN-A-343 (2 mg/kg), FPL64176 (10 mg/kg), or thapsigargin (0.5 mg/kg). Relatively lower doses of SB216763 exerted antiemetic efficacy, but both inhibitors barely affected cisplatin (10 mg/kg)-induced vomiting. Collectively, these results support the notion that vomiting is accompanied by a downregulation of GSK-3 activity and pharmacological inhibition of GSK-3 protects against pharmacologically evoked vomiting.
Collapse
Affiliation(s)
- W Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - N A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
13
|
Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK 1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva). Neurochem Int 2018; 122:106-119. [PMID: 30453005 DOI: 10.1016/j.neuint.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
To characterize mechanisms involved in neurokinin type 1 receptor (NK1R)-mediated emesis, we investigated the brainstem emetic signaling pathways following treating least shrews with the selective NK1R agonist GR73632. In addition to episodes of vomiting over a 30-min observation period, a significant increase in substance P-immunoreactivity in the emetic brainstem dorsal motor nucleus of the vagus (DMNX) occurred at 15 min post an intraperitoneal (i.p.) injection GR73632 (5 mg/kg). In addition, time-dependent upregulation of phosphorylation of several emesis -associated protein kinases occurred in the brainstem. In fact, Western blots demonstrated significant phosphorylations of Ca2+/calmodulin kinase IIα (CaMKIIα), extracellular signal-regulated protein kinase1/2 (ERK1/2), protein kinase B (Akt) as well as α and βII isoforms of protein kinase C (PKCα/βII). Moreover, enhanced phospho-ERK1/2 immunoreactivity was also observed in both brainstem slices containing the dorsal vagal complex emetic nuclei as well as in jejunal sections from the shrew small intestine. Furthermore, our behavioral findings demonstrated that the following agents suppressed vomiting evoked by GR73632 in a dose-dependent manner: i) the NK1R antagonist netupitant (i.p.); ii) the L-type Ca2+ channel (LTCC) antagonist nifedipine (subcutaneous, s.c.); iii) the inositol trisphosphate receptor (IP3R) antagonist 2-APB (i.p.); iv) store-operated Ca2+ entry inhibitors YM-58483 and MRS-1845, (i.p.); v) the ERK1/2 pathway inhibitor U0126 (i.p.); vi) the PKC inhibitor GF109203X (i.p.); and vii) the inhibitor of phosphatidylinositol 3-kinase (PI3K)-Akt pathway LY294002 (i.p.). Moreover, NK1R, LTCC, and IP3R are required for GR73632-evoked CaMKIIα, ERK1/2, Akt and PKCα/βII phosphorylation. In addition, evoked ERK1/2 phosphorylation was sensitive to inhibitors of PKC and PI3K. These findings indicate that the LTCC/IP3R-dependent PI3K/PKCα/βII-ERK1/2 signaling pathways are involved in NK1R-mediated vomiting.
Collapse
|
14
|
Zhong W, Chebolu S, Darmani NA. Intracellular emetic signaling evoked by the L-type Ca 2+ channel agonist FPL64176 in the least shrew (Cryptotis parva). Eur J Pharmacol 2018; 834:157-168. [PMID: 29966616 DOI: 10.1016/j.ejphar.2018.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/09/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
Ca2+ plays a major role in maintaining cellular homeostasis and regulates processes including apoptotic cell death and side-effects of cancer chemotherapy including vomiting. Currently we explored the emetic mechanisms of FPL64176, an L-type Ca2+ channel (LTCC) agonist with maximal emetogenic effect at its 10 mg/kg dose. FPL64176 evoked c-Fos immunoreactivity in shrew brainstem sections containing the vomit-associated nuclei, nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus. FPL64176 also increased phosphorylation of proteins ERK1/2, PKCα/βII and Akt in the brainstem. Moreover, their corresponding inhibitors (PD98059, GF 109203X and LY294002, respectively) reduced FPL64176-evoked vomiting. A 30 min subcutaneous (s.c.) pretreatment with the LTCC antagonist nifedipine (10 mg/kg) abolished FPL64176-elicited vomiting, c-Fos expression, and emetic effector phosphorylation. Ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs) mediate intracellular Ca2+ release from the sarcoplasmic/endoplasmic reticulum. The RyR antagonist dantrolene (i.p.), or a combination of low doses of nifedipine and dantrolene, but not the IP3R antagonist 2-APB, significantly attenuated FPL64176-induced vomiting. The serotonin type 3 receptor (5-HT3R) antagonist palonosetron (s.c.), the neurokinin 1 receptor (NK1R) antagonist netupitant (i.p.) or a combination of non-effective doses of netupitant and palonosetron showed antiemetic potential against FPL64176-evoked vomiting. Serotonin (5-HT) and substance P immunostaining revealed FPL64176-induced emesis was accompanied by an increase in 5-HT but not SP-immunoreactivity in the dorsomedial subdivision of the NTS. These findings demonstrate that Ca2+ mobilization through LTCCs and RyRs, and subsequent emetic effector phosphorylation and 5-HT release play important roles in FPL64176-induced emesis which can be prevented by 5-HT3R and NK1R antagonists.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, United States
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, United States
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, United States.
| |
Collapse
|
15
|
Uchida M, Mori Y, Nakamura T, Kato K, Kamezaki K, Takenaka K, Shiratsuchi M, Kadoyama K, Miyamoto T, Akashi K. Comparison between Antiemetic Effects of Palonosetron and Granisetron on Chemotherapy-Induced Nausea and Vomiting in Japanese Patients Treated with R-CHOP. Biol Pharm Bull 2018; 40:1499-1505. [PMID: 28867732 DOI: 10.1248/bpb.b17-00318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the antiemetic effect of palonosetron, not combined with dexamethasone and aprepitant, on chemotherapy-induced nausea and vomiting was evaluated in patients with malignant lymphoma receiving first-line rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy, and was compared to that of granisetron. A total of 74 patients with non-Hodgkin lymphoma were included in this study (April 2007 to December 2015). Palonosetron (0.75 mg) or granisetron (3 mg) was intravenously administered before R-CHOP therapy. The proportions of patients with complete response (CR) during the overall (0-120 h after the start of R-CHOP therapy), acute (0-24 h) and delayed (24-120 h) phases were evaluated. CR was defined as no vomiting and no use of antiemetic rescue medication. A total of 32 and 42 patients were treated with palonosetron and granisetron, respectively. The CR rate in the palonosetron group was significantly higher than that in the granisetron group during the delayed phase (90.6 and 61.9%, respectively; p=0.007). Logistic regression analysis showed that use of palonosetron improved the CR rate during the delayed phase, compared to use of granisetron. Female sex, age less than 60 years, no habitual alcohol intake, and Eastern Cooperative Oncology Group performance status (ECOG-PS) score of 1 were significant risk factors associated with non-CR. The findings of this study suggested the superiority of palonosetron to granisetron, without accompanying dexamethasone and aprepitant, for chemotherapy-induced nausea and vomiting in patients with malignant lymphoma.
Collapse
Affiliation(s)
- Mayako Uchida
- Department of Pharmacy, Kyushu University Hospital.,Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
| | - Tsutomu Nakamura
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
| | - Kenjiro Kamezaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
| | - Katsuto Takenaka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
| | - Motoaki Shiratsuchi
- Department of Medicine and Bioregulatory Science, Kyushu University Graduate School of Medical Sciences
| | - Kaori Kadoyama
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
| |
Collapse
|
16
|
Jacob D, Busciglio I, Burton D, Halawi H, Oduyebo I, Rhoten D, Ryks M, Harmsen WS, Camilleri M. Effects of NK1 receptors on gastric motor functions and satiation in healthy humans: results from a controlled trial with the NK1 antagonist aprepitant. Am J Physiol Gastrointest Liver Physiol 2017; 313:G505-G510. [PMID: 28814387 PMCID: PMC5792217 DOI: 10.1152/ajpgi.00197.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 01/31/2023]
Abstract
Aprepitant, an NK1 receptor antagonist, is approved for the treatment of chemotherapy-induced or postoperative emesis by blocking NK1 receptors in the brain stem vomiting center. The effects of NK1 receptors on gastric functions and postprandial symptoms in humans are unclear; a single, crossover study did not show a significant effect of aprepitant on gastrointestinal transit. Our aim was to compare, in a randomized, double-blind, placebo-controlled, parallel-group study (12 healthy volunteers per group), the effects of aprepitant vs. placebo on gastric emptying of solids (by scintigraphy) with a 320-kcal meal, gastric volumes (GVs; fasting and accommodation by single photon emission-computed tomography ), satiation [maximum tolerated volume (MTV)], and symptoms after a dyspeptogenic meal of Ensure. Aprepitant (125 mg on day 1, followed by 80 mg on days 2-5) or placebo, one tablet daily, was administered for 5 consecutive days. Statistical analysis was by unpaired rank sum test, adjusted for sex difference and body mass index. To assess treatment effects on symptoms, we incorporated MTV in the model. Aprepitant increased fasting, postprandial, and accommodation GV and tended to increase volume to fullness and MTV by ~200 kcal. However, aprepitant increased aggregate symptoms, nausea, and pain scores after ingestion the MTV of Ensure. There was no significant effect of aprepitant on gastric half-emptying time of solids. We conclude that NK1 receptors are involved in the control of GV and in determining postprandial satiation and symptoms. Further studies of the pharmacodynamics and therapeutic role of NK1 receptor antagonists in patients with gastroparesis and dyspepsia are warranted.NEW & NOTEWORTHY Aprepitant increases fasting, postprandial, and accommodation gastric volumes. Aprepitant increases volume to fullness and maximum tolerated volume during a nutrient drink test. NK1 receptors are involved in the control of gastric volume and in determining postprandial satiation and symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Sun X, Xu L, Guo F, Luo W, Gao S, Luan X. Neurokinin-1 receptor blocker CP-99 994 improved emesis induced by cisplatin via regulating the activity of gastric distention responsive neurons in the dorsal motor nucleus of vagus and enhancing gastric motility in rats. Neurogastroenterol Motil 2017; 29:1-11. [PMID: 28464353 DOI: 10.1111/nmo.13096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Nowadays, chemotherapy induced nausea and vomiting (CINV) is still common in patients with cancer. It was reported that substance P mediated CINV via neurokinin-1 (NK1 ) receptor and antagonists of NK1 receptor has been proved useful for treating CINV but the mechanism are not fully understood. This study aimed to examine the role of NK1 receptor blocker, CP-99 994, when administrated into dorsal motor nucleus of vagus (DMNV), on the cisplatin-induced emesis in rats and the possible mechanism. METHODS Rats' kaolin intake, food intake, and bodyweight were recorded every day; gastric contraction activity was recorded in conscious rats through a force transducer implanted into the stomach; gastric emptying was monitored using the phenol red method; single unit extracellular firing in the DMNV were recorded. KEY RESULTS DMNV microinjection of CP-99 994 reduced the changes of increased kaolin consumption and suppressed food intake in cisplatin-treated rats; enhanced the gastric contraction activity dose-dependently in control and cisplatin-treated rats but enhanced gastric emptying only in cisplatin-treated rats; reduced the firing rate of gastric distention inhibited (GD-I) neurons but increased the firing rate of GD excited (GD-E) neurons in the DMNV. The effects of CP-99 994 on gastric motility and neuronal activity were stronger in cisplatin-treated rats than those of control rats. CONCLUSIONS AND INFERENCES Our results suggested that CP-99 994 could improve emesis induced by cisplatin by regulating gastric motility and gastric related neuronal activity in the DMNV.
Collapse
Affiliation(s)
- X Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - L Xu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - F Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - W Luo
- Department of ophthalmology, Qingdao University Affiliated Hospital, Qingdao, Shandong Province, China
| | - S Gao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - X Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
18
|
Darmani NA, Chebolu S, Zhong W, Kim WD, Narlesky M, Adams J, Dong F. The anti-asthmatic drug pranlukast suppresses the delayed-phase vomiting and reverses intracellular indices of emesis evoked by cisplatin in the least shrew (Cryptotis parva). Eur J Pharmacol 2017; 809:20-31. [PMID: 28501575 DOI: 10.1016/j.ejphar.2017.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
The introduction of second generation serotonin 5-HT3 receptor (5-HT3) antagonist palonosetron combined with long-acting substance P neurokinin NK1 receptor (NK1) antagonists (e.g. netupitant) has substantially improved antiemetic therapy against early- and delayed-phases of emesis caused by highly emetogenic chemotherapeutics such as cisplatin. However, the improved efficacy comes at a cost that many patients cannot afford. We introduce a new class of antiemetic, the antiasthmatic leukotriene CysLT1 receptor antagonist pranlukast for the suppression of cisplatin-evoked vomiting. Pranlukast (10mg/kg) by itself significantly reduced the mean frequency of vomits (70%) and fully protected least shrews from vomiting (46%) during the delayed-phase of cisplatin (10mg/kg)-evoked vomiting. Although, pranlukast tended to substantially reduce both the mean frequency of vomits and the number of shrews vomiting during the early-phase, these reductions failed to attain significance. When combined with a first (tropisetron)- or a second (palonosetron)-generation 5-HT3 receptor antagonist, pranlukast potentiated their antiemetic efficacy during both phases of vomiting. In addition, pranlukast by itself prevented several intracellular signal markers of cisplatin-evoked delayed-vomiting such as phosphorylation of ERK1/2 and PKA. When pranlukast was combined with either palonosetron or tropisetron, these combinations suppressed the evoked phosphorylation of: i) ERK1/2 during both acute- and delayed-phase, ii) PKCα/β at the peak acute-phase, and iii) PKA at the peak delayed-phase. The current and our published findings suggest that overall behavioral and intracellular signaling effects of pranlukast via blockade of CysLT1 receptors generally appear to be similar to the NK1 receptor antagonist netupitant with some differences.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William D Kim
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Matthew Narlesky
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joia Adams
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Fanglong Dong
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
19
|
Hutchinson TE, Zhong W, Chebolu S, Wilson SM, Darmani NA. L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIα and ERK activation and induction of emesis in the least shrew (Cryptotis parva). Eur J Pharmacol 2015; 755:110-8. [PMID: 25748600 DOI: 10.1016/j.ejphar.2015.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Abstract
Activation of serotonergic 5-HT3 receptors by its selective agonist 2-methyl serotonin (2-Me-5-HT) induces vomiting, which is sensitive to selective antagonists of both 5-HT3 receptors (palonosetron) and L-type calcium channels (LTCC) (amlodipine or nifedipine). Previously we demonstrated that 5-HT3 receptor activation also causes increases in a palonosetron-sensitive manner in: i) intracellular Ca(2+) concentration, ii) attachment of calmodulin (CaM) to 5-HT3 receptor, and iii) phosphorylation of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) and extracellular-signal-regulated kinase 1/2 (ERK1/2). Here, we investigate the role of the short-acting LTCC blocker nifedipine on 2-Me-5-HT-evoked intracellular Ca(2+) increase and on downstream intracellular emetic signaling, which have been shown to be coupled with 2-Me-5-HT׳s emetic effects in the least shrew. Using the cell-permeant Ca(2+) indicator fluo-4 AM, here we present evidence for the contribution of Ca(2+) influx through LTCCs (sensitive to nifedipine) in 2-Me-5-HT (1µM) -evoked rise in cytosolic Ca(2+) levels in least shrew brainstem slices. Nifedipine pretreatment (10mg/kg, s.c.) also suppressed 2-Me-5-HT-evoked interaction of 5-HT3 receptors with CaM as well as phosphorylation of CaMKIIα and ERK1/2 in the least shrew brainstem, and 5-HT3 receptors -CaM colocalization in jejunum of the small intestine. In vitro exposure of isolated enterochromaffin cells of the small intestine to 2-Me-5-HT (1µM) caused CaMKIIα phosphorylation, which was also abrogated by nifedipine pretreatment (0.1µM). In addition, pretreatment with the CaMKII inhibitor KN62 (10mg/kg, i.p.) suppressed emesis and also the activation of CaMKIIα, and ERK in brainstem caused by 2-Me-5-HT (5mg/kg, i.p.). This study provides further mechanistic explanation for our published findings that nifedipine can dose-dependently protect shrews from 2-Me-5-HT-induced vomiting.
Collapse
Affiliation(s)
- Tarun E Hutchinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, United States
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
20
|
Darmani NA, Zhong W, Chebolu S, Mercadante F. Differential and additive suppressive effects of 5-HT3 (palonosetron)- and NK1 (netupitant)-receptor antagonists on cisplatin-induced vomiting and ERK1/2, PKA and PKC activation. Pharmacol Biochem Behav 2015; 131:104-11. [PMID: 25687374 DOI: 10.1016/j.pbb.2015.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
To better understand the anti-emetic profile of the 5-HT3 (palonosetron)- and the tachykinin NK1 (netupitant) -receptor antagonists, either alone or in combination, we evaluated the effects of palonosetron and/or netupitant pretreatment on cisplatin-evoked vomiting and changes in the phosphorylation of brainstem kinases such as the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase C alpha/beta (PKCα/β), and protein kinase A (PKA) in the least shrew. Our results demonstrate that cisplatin (10mg/kg, i.p.) causes emesis in the least shrew over 40h with respective peak early- and delayed-phases occurring at 1 - 2 and 32 - 34h post-injection. During the early phase (0 - 16h post cisplatin), palonosetron (0.1mg/kg, s.c.) significantly protected shrews from vomiting with a near complete suppression of vomit frequency. Palonosetron also significantly protected shrews from vomiting during the delayed phase (27 - 40h post cisplatin), but the reduction in mean vomit frequency failed to achieve significance. On the other hand, netupitant (5mg/kg, i.p.) totally abolished vomiting during the delayed phase, and tended to suppress the mean vomit frequency during the acute phase. The combined treatment protected shrews almost completely from vomiting during both phases. Brainstem pERK1/2 levels were significantly elevated at all time-points except at 40h post-cisplatin administration. PKA phosphorylation tended to be elevated throughout the delayed phase, but a significant increase only occurred at 33h. Brainstem pPKCα/β levels were enhanced during acute-phase with a significant elevation at 2h. Palonosetron, netupitant or their combination had no effect on elevated pERK1/2 levels during acute phase, but the combination reversed ERK1/2 phosphorylation at 33h post-cisplatin treatment. In addition, only the combined regimen prevented the cisplatin-induced PKCα/β phosphorylation observed at the acute phase. On the other hand, palonosetron and netupitant, either alone or in combination, were effective in reducing the induced elevated pPKA levels during the delayed phase. These effects on cisplatin-related emetic signals downstream of 5-HT3- and NK1-receptors help us to better understand the intracellular basis of cisplatin-induced vomiting.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Frank Mercadante
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
21
|
Yamamoto K, Asano K, Tasaka A, Ogura Y, Kim S, Ito Y, Yamatodani A. Involvement of substance P in the development of cisplatin-induced acute and delayed pica in rats. Br J Pharmacol 2014; 171:2888-99. [PMID: 24641692 DOI: 10.1111/bph.12629] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 01/06/2014] [Accepted: 01/27/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Although substance P (SP) and neurokinin NK1 receptors have been reported to be involved in cisplatin-induced acute and delayed emesis, their precise roles remain unclear. Pica, the consumption of non-nutrient materials such as kaolin in rats, can be used as a model of nausea in humans. We investigated the time-dependent changes in cisplatin-induced pica and the involvement of SP and NK1 receptors in this behaviour. EXPERIMENTAL APPROACH Rats were administered cisplatin with or without a daily injection of a 5-HT3 receptor antagonist (granisetron) or an NK1 receptor antagonist (aprepitant), and kaolin intake was then monitored for 5 days. The effects of granisetron on the cisplatin-induced expression of preprotachykinin-A (PPT-A) mRNA, which encodes mainly for SP, and on SP release in the medulla, measured by in vivo brain microdialysis, were also investigated. KEY RESULTS Cisplatin induced pica within 8 h of its administration that continued for 5 days. Granisetron inhibited the acute phase (day 1), but not the delayed phase (days 2-5), of pica, whereas aprepitant abolished both phases. Within 24 h of the injection of cisplatin, PPT-A mRNA expression and SP release in the medulla were significantly increased; these findings lasted during the observation period and were inhibited by granisetron for up to 24 h. CONCLUSIONS AND IMPLICATIONS The profiles of cisplatin-induced pica in rats are similar to clinical findings for cisplatin-induced emesis in humans, and we showed that SP production in the medulla and activation of NK1 receptors are involved in this cisplatin-induced pica.
Collapse
Affiliation(s)
- Kouichi Yamamoto
- Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Darmani NA, Zhong W, Chebolu S, Vaezi M, Alkam T. Broad-spectrum antiemetic potential of the L-type calcium channel antagonist nifedipine and evidence for its additive antiemetic interaction with the 5-HT(3) receptor antagonist palonosetron in the least shrew (Cryptotis parva). Eur J Pharmacol 2014; 722:2-12. [PMID: 24513517 DOI: 10.1016/j.ejphar.2013.08.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Cisplatin-like chemotherapeutics cause vomiting via release of multiple neurotransmitters (dopamine, serotonin (5-HT), or substance P (SP)) from the gastrointestinal enterochromaffin cells and/or the brainstem via a calcium dependent process. Diverse channels in the plasma membrane allow extracellular Ca(2+) entry into cells for the transmitter release process. Agonists of 5-HT3 receptors increase calcium influx through both 5-HT3 receptors and L-type Ca(2+) channels. We envisaged that L-type calcium agonists such as FPL 64176 should cause vomiting and corresponding antagonists such as nifedipine would behave as broad-spectrum antiemetics. Administration of FPL 64176 did cause vomiting in the least shrew in a dose-dependent fashion. Nifedipine and the 5-HT3 receptor antagonist palonosetron, potently suppressed FPL 64176-induced vomiting, while a combination of ineffective doses of these antagonists was more efficacious. Subsequently, we investigated the broad-spectrum antiemetic potential of nifedipine against diverse emetogens including agonists of serotonergic 5-HT3- (e.g. 5-HT or 2-Me-5-HT), SP tachykinin NK1- (GR73632), dopamine D2- (apomorphine or quinpirole), and cholinergic M1- (McN-A-343) receptors, as well as the non-specific emetogen, cisplatin. Nifedipine by itself suppressed vomiting in a potent and dose-dependent manner caused by the above emetogens except cisplatin. Moreover, low doses of nifedipine potentiated the antiemetic efficacy of non-effective or semi-effective doses of palonosetron against vomiting caused by either 2-Me-5-HT or cisplatin. Thus, our findings demonstrate that activation of L-type calcium channels causes vomiting, whereas blockade of these ion channels by nifedipine-like antagonists not only provides broad-spectrum antiemetic activity but can also potentiate the antiemetic efficacy of well-established antiemetics such as palonosetron. L-type calcium channel antagonists should also provide antiemetic activity against drug-induced vomiting as well as other emetogens including bacterial and viral proteins.
Collapse
|
23
|
Alkam T, Chebolu S, Darmani NA. Cyclophosphamide causes activation of protein kinase A (PKA) in the brainstem of vomiting least shrews (Cryptotis parva). Eur J Pharmacol 2014; 722:156-64. [PMID: 24513510 DOI: 10.1016/j.ejphar.2013.09.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 01/07/2023]
Abstract
Complete control of emesis caused by cyclophosphamide (CPA) is of immense interest to both patients and physicians. Serotonin 5-HT3- and tachykinin NK1-receptor antagonists are widely used antiemetics in clinic, but they fail to completely control CPA-induced emesis. New antiemetic targets for the full control of CPA-induced vomiting are lacking. We therefore examined the effects of CPA on emetic targets downstream of 5-HT3- and NK1- receptors in an attempt to better understand the molecular bases of CPA-induced emesis. Acute CPA (200 mg/kg, i.p.) administration in the least shrew caused a biphasic pattern of emesis over a 40 h observation period, with maximal peak vomit frequency during the 1st hour of treatment (acute phase), followed by a delayed-phase which peaks at 27th hour. The NK1 receptor mRNA levels increased significantly at 8 h post-CPA treatment in the brainstem, and at 28 h in the whole intestine. Substance P mRNA levels tended to increase both in the brainstem and intestine at most time-points post-CPA injection, however due to large variability, they failed to attain significance. Likewise, protein expression profiles of both NK1- and 5-HT3 -receptors in the brainstem were unchanged at any time-point. However, phosphorylation levels of protein kinase A (PKA), but not of extracellular signal-regulated protein kinase 1/2 (ERK1/2), were increased at 2, 8, 22, 28, and 33 h time-points after the treatment with CPA. Moreover, brainstem but not frontal cortex cAMP tissue levels tended to be elevated at most time-points, but significant increases occurred only at 1 and 2 h post-CPA treatment. The phosphodiesterase inhibitor, rolipram, caused significant increases in shrew brainstem cAMP levels which were associated with its capacity to produce vomiting, while pretreatment with SQ22536, an inhibitor of adenylyl cyclase, prevented rolipram-induced emesis. The results demonstrate that accumulation of cAMP and subsequent activation of PKA in the brainstem may help to initiate and sustain emesis induced by CPA in the least shrew. Our findings suggest that suppression of the cAMP/PKA cascade may have antiemetic potential in the management of CPA-induced emesis.
Collapse
|
24
|
Zhong W, Hutchinson TE, Chebolu S, Darmani NA. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS One 2014; 9:e104718. [PMID: 25121483 PMCID: PMC4133232 DOI: 10.1371/journal.pone.0104718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/13/2014] [Indexed: 12/11/2022] Open
Abstract
Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates that Ca2+ mobilization via extracellular Ca2+ influx through 5-HT3Rs/L-type Ca2+ channels, and intracellular Ca2+ release via RyRs on ER, initiate Ca2+-dependent sequential activation of CaMKIIα and ERK1/2, which contribute to the 5-HT3R-mediated, 2-Me-5-HT-evoked emesis.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Tarun E. Hutchinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhong W, Chebolu S, Darmani NA. Broad-spectrum antiemetic efficacy of the l-type calcium channel blocker amlodipine in the least shrew (Cryptotis parva). Pharmacol Biochem Behav 2014; 120:124-32. [DOI: 10.1016/j.pbb.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
|
26
|
Rojas C, Raje M, Tsukamoto T, Slusher BS. Molecular mechanisms of 5-HT3 and NK1 receptor antagonists in prevention of emesis. Eur J Pharmacol 2014; 722:26-37. [DOI: 10.1016/j.ejphar.2013.08.049] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/01/2013] [Accepted: 08/03/2013] [Indexed: 11/26/2022]
|
27
|
Darmani NA, Chebolu S, Zhong W, Trinh C, McClanahan B, Brar RS. Additive antiemetic efficacy of low-doses of the cannabinoid CB(1/2) receptor agonist Δ(9)-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva). Eur J Pharmacol 2013; 722:147-55. [PMID: 24157976 DOI: 10.1016/j.ejphar.2013.08.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 01/30/2023]
Abstract
Previous studies have shown that cannabinoid CB1/2 and vanilloid TRPV1 agonists (delta-9-tetrahydrocannabinol (Δ(9)-THC) and resiniferatoxin (RTX), respectively) can attenuate the emetic effects of chemotherapeutic agents such as cisplatin. In this study we used the least shrew to demonstrate whether combinations of varying doses of Δ(9)-THC with resiniferatoxin can produce additive antiemetic efficacy against cisplatin-induced vomiting. RTX by itself caused vomiting in a bell-shaped dose-dependent manner with maximal vomiting at 18 μg/kg when administered subcutaneously (s.c.) but not intraperitoneally (i.p.). Δ(9)-THC up to 10 mg/kg provides only 80% protection of least shrews from cisplatin-induced emesis with an ID50 of 0.3-1.8 mg/kg. Combinations of 1 or 5 μg/kg RTX with varying doses of Δ(9)-THC completely suppressed both the frequency and the percentage of shrews vomiting with ID50 dose values 5-50 times lower than Δ(9)-THC doses tested alone against cisplatin. A less potent TRPV1 agonist, capsaicin, by itself did not cause emesis (i.p. or s.c.), but it did significantly reduce vomiting induced by cisplatin given after 30 min but not at 2 h. The TRPV1-receptor antagonist, ruthenium red, attenuated cisplatin-induced emesis at 5mg/kg; however, another TRPV1-receptor antagonist, capsazepine, did not. In summary, we present evidence that combination of CB1/2 and TRPV1 agonists have the capacity to completely abolish cisplatin-induced emesis at doses that are ineffective when used individually.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA.
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Chung Trinh
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Bryan McClanahan
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Rajivinder S Brar
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| |
Collapse
|