1
|
Cai C, Wu Y, Yang L, Xiang Y, Zhu N, Zhao H, Hu W, Lv L, Zeng C. Sodium Selenite Attenuates Balloon Injury-Induced and Monocrotaline-Induced Vascular Remodeling in Rats. Front Pharmacol 2021; 12:618493. [PMID: 33790787 PMCID: PMC8005533 DOI: 10.3389/fphar.2021.618493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 02/01/2023] Open
Abstract
Vascular remodeling (VR), induced by the massive proliferation and reduced apoptosis of vascular smooth muscle cells (VSMCs), is primarily responsible for many cardiovascular conditions, such as restenosis and pulmonary arterial hypertension. Sodium selenite (SSE) is an inorganic selenium, which can block proliferation and stimulate apoptosis of tumor cells; still, its protective effects on VR remains unknown. In this study, we established rat models with carotid artery balloon injury and monocrotaline induced pulmonary arterial hypertension and administered them SSE (0.25, 0.5, or 1 mg/kg/day) orally by feeding tube for 14 consecutive days. We found that SSE treatment greatly ameliorated the development of VR as evidenced by an improvement of its characteristic features, including elevation of the ratio of carotid artery intimal area to medial area, right ventricular hypertrophy, pulmonary arterial wall hypertrophy and right ventricular systolic pressure. Furthermore, PCNA and TUNEL staining of the arteries showed that SSE suppressed proliferation and enhanced apoptosis of VSMCs in both models. Compared with the untreated VR rats, lower expression of PCNA and CyclinD1, but higher levels of Cleaved Caspase-3 and Bax/Bcl-2 were observed in the SSE-treated rats. Moreover, the increased protein expression of MMP2, MMP9, p-AKT, p-ERK, p-GSK3β and β-catenin that occurred in the VR rats were significantly inhibited by SSE. Collectively, treatment with SSE remarkably attenuates the pathogenesis of VR, and this protection may be associated with the inhibition of AKT and ERK signaling and prevention of VSMC’s dysfunction. Our study suggest that SSE is a potential agent for treatment of VR-related diseases.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Yonghui Wu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Lebing Yang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Yijia Xiang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Ning Zhu
- Department of Cardiology, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Huan Zhao
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Wuming Hu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Lingchun Lv
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
2
|
Hu A, Huang J, Li S, Gao Y, Wu L, Deng J, Liu J, Gong Q, Li L, Xu S. Involvement of stromal cell-derived factor-1α (SDF-1α), stem cell factor (SCF), fractalkine (FKN) and VEGF in TSG protection against intimal hyperplasia in rat balloon injury. Biomed Pharmacother 2019; 110:887-894. [DOI: 10.1016/j.biopha.2018.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023] Open
|
3
|
Zhang J, Chen X, Chen B, Tong L, Zhang Y. Tetrahydroxy stilbene glucoside protected against diabetes-induced osteoporosis in mice with streptozotocin-induced hyperglycemia. Phytother Res 2018; 33:442-451. [PMID: 30456807 DOI: 10.1002/ptr.6240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/04/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Tetrahydroxy stilbene glucoside (TSG), an active component from medicinal herb Polygonum multiflorum Thunb, could block the activity of the tissue renin-angiotensin system (RAS), which plays a critical role in development of diabetic osteoporosis. This study aimed to determine if TSG therapy could alleviate bone deteriorations in diabetic mouse model induced by streptozotocin. The diabetic mice showed the loss of trabecular bone mass and the changes of trabecular bone microarchitectural parameters as well as the increase in amount of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts at the distal metaphysis of femur when compared with those of nondiabetic mice. Treatment with TSG significantly elevated calcium content in serum and bone and improved biological parameters of trabecular bone, accompanied by increasing messenger RNA (mRNA) expression of RUNX-2, COL-I, and OCN and protein expression of β-catenin as well as down-regulating protein expression of RAS components including renin and AT1R. In addition, TSG repressed diabetes-induced decrease in ratio of OPG/RANKL expression and increase in sclerostin expression in bone. The similar effects of TSG on osteoblasts-specific genes were found in MC3T3-E1 cells. Taken together, the present study demonstrated the osteopreserve effects of TSG in diabetic mice, and the underlying mechanism might be attributed to its regulation on osteogenesis and osteoclastogenesis.
Collapse
Affiliation(s)
| | - Xiangfan Chen
- School of Pharmacy, Nantong University, Nantong, China
| | - Bingbing Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lijuan Tong
- School of Pharmacy, Nantong University, Nantong, China
| | - Yan Zhang
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
4
|
Antidepressant-like effects of ginsenoside Rg2 in a chronic mild stress model of depression. Brain Res Bull 2017; 134:211-219. [DOI: 10.1016/j.brainresbull.2017.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/22/2017] [Accepted: 08/16/2017] [Indexed: 12/30/2022]
|
5
|
Yu Y, Su G, Zhu H, Zhu Q, Chen Y, Xu B, Li Y, Zhang W. Proximity hybridization-mediated isothermal exponential amplification for ultrasensitive electrochemical protein detection. Int J Nanomedicine 2017; 12:5903-5914. [PMID: 28860756 PMCID: PMC5566414 DOI: 10.2147/ijn.s142015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this study, we fabricated a novel electrochemical biosensing platform on the basis of target-triggered proximity hybridization-mediated isothermal exponential amplification reaction (EXPAR) for ultrasensitive protein analysis. Through rational design, the aptamers for protein recognition were integrated within two DNA probes. Via proximity hybridization principle, the affinity protein-binding event was converted into DNA assembly process. The recognition of protein by aptamers can trigger the strand displacement through the increase of the local concentrations of the involved probes. As a consequence, the output DNA was displaced, which can hybridize with the duplex probes immobilized on the electrode surface subsequently, leading to the initiation of the EXPAR as well as the cleavage of duplex probes. Each cleavage will release the gold nanoparticles (AuNPs) binding sequence. With the modification of G-quadruplex sequence, electrochemical signals were yielded by the AuNPs through oxidizing 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. The study we proposed exhibited high sensitivity toward platelet-derived growth factor BB (PDGF-BB) with the detection limit of 52 fM. And, this method also showed great selectivity among the PDGF isoforms and performed well in spiked human serum samples.
Collapse
Affiliation(s)
- Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Hongyan Zhu
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Yong Chen
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Yuqin Li
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
6
|
Wang H, Zhao Y, Wang YJ, Song L, Wang JL, Huang C, Zhang W, Jiang B. Antidepressant-like effects of tetrahydroxystilbene glucoside in mice: Involvement of BDNF signaling cascade in the hippocampus. CNS Neurosci Ther 2017; 23:627-636. [PMID: 28547794 DOI: 10.1111/cns.12708] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIMS Current antidepressants in clinic need weeks of administration and always have significant limitations. Tetrahydroxystilbene glucoside (TSG) is one of the major bioactive ingredients of Polygonum multiflorum with neuroprotective effects. This study aimed to evaluate the antidepressant effects of TSG in mice. METHODS The antidepressant-like effects of TSG in mice were examined in the forced swim test (FST), tail suspension test (TST), and chronic social defeat stress (CSDS) model of depression. The effects of CSDS and TSG on the hippocampal brain-derived neurotrophic factor (BDNF) signaling pathway and neurogenesis were further investigated. Moreover, the pharmacological inhibitors and lentiviral-shRNA were used to explore the antidepressant mechanisms of TSG. RESULTS TSG produced antidepressant-like effects in the FST and TST and also reversed the CSDS-induced depressive-like symptoms. Moreover, TSG treatment significantly restored the decreased hippocampal BDNF signaling pathway and neurogenesis in CSDS mice. Importantly, blockade of the hippocampal BDNF system fully abolished the antidepressant-like effects of TSG in mice. CONCLUSION In conclusion, TSG produces antidepressant-like effects in mice via enhancement of the hippocampal BDNF system.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Ying Zhao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Lu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Microglia Loss Contributes to the Development of Major Depression Induced by Different Types of Chronic Stresses. Neurochem Res 2017; 42:2698-2711. [DOI: 10.1007/s11064-017-2270-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022]
|
8
|
Chen Y, Meng G, Bai W, Ma Y, Xie L, Altaf N, Qian Y, Han Y, Ji Y. Aliskiren protects against myocardial ischaemia-reperfusion injury via an endothelial nitric oxide synthase dependent manner. Clin Exp Pharmacol Physiol 2017; 44:266-274. [PMID: 27809355 DOI: 10.1111/1440-1681.12692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/11/2016] [Accepted: 10/29/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Yu Chen
- Department of Anaesthesia; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Guoliang Meng
- Department of Pharmacology; School of Pharmacy; Nantong University; Nantong China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Wenli Bai
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Yan Ma
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Naila Altaf
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Yanning Qian
- Department of Anaesthesia; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Yi Han
- Department of Geriatrics; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| |
Collapse
|
9
|
Chen X, Hu W, Lu X, Jiang B, Wang J, Zhang W, Huang C. Mechanism of 2,3,4',5-Tetrahydroxystilbene 2-O-β-D-Glucoside-Induced Upregulation of Glutamate Transporter 1 Protein Expression in Mouse Primary Astrocytes. Pharmacology 2017; 99:153-159. [PMID: 28049198 DOI: 10.1159/000452672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022]
Abstract
Glutamate transporter-1 (GLT-1), a major glutamate transporter expressed in astrocytes, takes up excess glutamate from the micro-environment in order to prevent excitotoxicity. Drugs that increase GLT-1 expression may have therapeutic effects in disorders associated with neuronal excitotoxicity. 2,3,4',5-tetrahydroxystilbene 2-O-β-D-glucoside (TSG), a monomer of stilbene from polygonummultiflorum, exerts neuroprotection in a range of experimental models such as Alzheimer's disease and brain ischemia. In this study, we evaluated the effect of TSG on GLT-1 protein expression in mouse primary-cultured astrocytes. Results showed that TSG markedly increased the GLT-1 protein expression level in mouse primary-cultured astrocytes in a dose- and time-dependent manner, and this increase was mediated by the activation of protein kinase B (Akt) but not by the activation of extracellular signal-regulated protein kinase 1/2. Furthermore, inhibition of cAMP response element-binding protein, but not nuclear factor kappa B, abolished the TSG-mediated increase in GLT-1 protein expression in cultured astrocytes. Collectively, these findings may provide novel insights into the mechanism for TSG in neuroprotection, and would help search new agents targeting neurodegenerative disorders associated with impaired astrocytic glutamate transporters.
Collapse
Affiliation(s)
- Xiangfan Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Peng Y, Zeng Y, Xu J, Huang XL, Zhang W, Xu XL. PPAR-γ is involved in the protective effect of 2,3,4',5-tetrahydroxystilbene-2-O-beta-D-glucoside against cardiac fibrosis in pressure-overloaded rats. Eur J Pharmacol 2016; 791:105-114. [PMID: 27568841 DOI: 10.1016/j.ejphar.2016.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023]
Abstract
2, 3, 4', 5-tetrahydroxystilbene-2-0-β-D glucoside (TSG) could inhibit cardiac remodeling in response to pressure overload. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been recognized as a potent, endogenous antifibrotic factor and maintaining a proper expression level in myocardium is necessary for assuring that structure and function of heart adapt to pressure overload stress. The aim of the present study was to investigate whether PPAR-γ is involved in the beneficial effect of TSG on pressure overload-induced cardiac fibrosis. TSG (120mg/kg/day) or TSG (120mg/kg/day) plus the PPAR-γ antagonist GW9662 (1mg/kg/day) was administered to rats with pressure overload induced by abdominal aortic banding. 30 days later, pressure overload-induced hypertension, cardiac dysfunction and fibrosis were significantly inhibited by TSG. TSG also significantly reduced collagen I, collagen III, fibronectin and plasminogen activator inhibitor (PAI)-1 expression, as makers of myocardial fibrosis. Theses anti-fibrotic effects of TSG in pressure overloaded hearts could be abrogated by co-treatment with GW9662. Accordingly, upregulated PPAR-γ protein expression by TSG in pressure overloaded hearts was also reversed by co-treatment with GW9662. Additionally, the inhibitory effects of TSG on angiotensin II induced cardiac fibroblasts proliferation, differentiation and expression of collagen I and III, fibronectin and PAI-1 were abrogated by PPAR-γ antagonist GW9662 and PPAR-γ silencing. Furthermore, TSG directly increased PPAR-γ gene expression at gene promoter, mRNA and protein level in angiotensin II-treated cardiac fibroblats in vitro. Our results suggested that upregualtion of endogenous PPAR-γ expression by TSG may be involved in its beneficial effect on pressure overload-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Yi Peng
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Yi Zeng
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Jin Xu
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Xing Lan Huang
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Wei Zhang
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China.
| | - Xiao Le Xu
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China.
| |
Collapse
|
11
|
Biological Activities of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4973239. [PMID: 27413420 PMCID: PMC4931083 DOI: 10.1155/2016/4973239] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/29/2016] [Indexed: 11/17/2022]
Abstract
2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is active component of the Chinese medicinal plant Polygonum multiflorum Thunb. (THSG). Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning and memory disorders, neuroinflammation, Alzheimer and Parkinson diseases, diabetic complications, hair growth problems, and numerous other conditions. This review focuses on the biological effects of THSG in antiaging and antiaging-related disease treatments and discusses its molecular mechanisms.
Collapse
|
12
|
Yang CH, Tsao CF, Ko WS, Chiou YL. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells. Mar Drugs 2016; 14:15. [PMID: 26761017 PMCID: PMC4728512 DOI: 10.3390/md14010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs) is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF)-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL) to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL) increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05). Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%-99% after 48 h (p < 0.05) and induced G₁/G₀ cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2), Akt, and nuclear factor (NF)-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.
Collapse
Affiliation(s)
- Chao-Huei Yang
- Department of Internal Medicine, Kuang-Tien General Hospital, No. 117, Shatian Road Shalu District, Taichung City 433, Taiwan.
| | - Chiung-Fang Tsao
- Department of Biotechnology, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
| | - Wang-Sheng Ko
- Department of Internal Medicine, Kuang-Tien General Hospital, No. 117, Shatian Road Shalu District, Taichung City 433, Taiwan.
- Institute of BioMedical Nutrition, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
| | - Ya-Ling Chiou
- Institute of BioMedical Nutrition, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
- Department of Nursing, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
| |
Collapse
|
13
|
Chen GT, Yang M, Chen BB, Song Y, Zhang W, Zhang Y. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside exerted protective effects on diabetic nephropathy in mice with hyperglycemia induced by streptozotocin. Food Funct 2016; 7:4628-4636. [DOI: 10.1039/c6fo01319h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study demonstrated that the inhibition of the RAS with TSG effectively prevented renal injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Guang-Tong Chen
- School of Pharmacy
- Nantong University
- Nantong 226001
- P.R. China
| | - Min Yang
- School of Pharmacy
- Nantong University
- Nantong 226001
- P.R. China
| | - Bing-Bing Chen
- School of Medical Instrument and Food Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- P.R. China
| | - Yan Song
- School of Pharmacy
- Nantong University
- Nantong 226001
- P.R. China
| | - Wei Zhang
- School of Pharmacy
- Nantong University
- Nantong 226001
- P.R. China
| | - Yan Zhang
- School of Pharmacy
- Nantong University
- Nantong 226001
- P.R. China
| |
Collapse
|
14
|
Aortic Remodelling Is Improved by 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside Involving the Smad3 Pathway in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:789027. [PMID: 26693246 PMCID: PMC4677031 DOI: 10.1155/2015/789027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/04/2022]
Abstract
Hypertension is a common health problem that substantially increases the risk of cardiovascular disease. The condition increases blood pressure, which causes alterations in vascular structure and leads to the development of vascular pathologies. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a resveratrol analogue extracted from a Chinese medicinal plant, has been proven to have numerous vascular protection functions. This study investigated whether THSG can improve vascular remodeling, which has thus far remained unclear. Orally administering THSG to spontaneously hypertensive rats (SHRs) aged 12 weeks for 14 weeks significantly inhibited intima-media thickness in the lower parts of the aortic arch, increased the vascular diastolic rate in response to acetylcholine, and reduced remodelling-related mRNA expression, such as that of ACTA2, CCL3, COL1A2, COL3A1, TIMP1 WISP2, IGFBP1, ECE1, KLF5, MYL1 BMP4, FN1, and PAI-1. Immunofluorescence staining also showed an inhibitory effect similar to that of THSG on PAI-1 protein expression in rat aortas. Results from immunoprecipitation and a Western blot assay showed that THSG inhibited the acetylation of Smad3. A chromatin immunoprecipitation assay showed that THSG prevented Smad3 binding to the PAI-1 proximal promoter in SHR aortas. In conclusion, our results demonstrated that the inhibitory effect of THSG on aortic remodelling involved the deacetylating role of Smad3 with increasing blood flow and with constant blood pressure.
Collapse
|
15
|
Klutho PJ, Pennington SM, Scott JA, Wilson KM, Gu SX, Doddapattar P, Xie L, Venema AN, Zhu LJ, Chauhan AK, Lentz SR, Grumbach IM. Deletion of Methionine Sulfoxide Reductase A Does Not Affect Atherothrombosis but Promotes Neointimal Hyperplasia and Extracellular Signal-Regulated Kinase 1/2 Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2594-604. [PMID: 26449752 DOI: 10.1161/atvbaha.115.305857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Emerging evidence suggests that methionine oxidation can directly affect protein function and may be linked to cardiovascular disease. The objective of this study was to define the role of the methionine sulfoxide reductase A (MsrA) in models of vascular disease and identify its signaling pathways. APPROACH AND RESULTS MsrA was readily identified in all layers of the vascular wall in human and murine arteries. Deletion of the MsrA gene did not affect atherosclerotic lesion area in apolipoprotein E-deficient mice and had no significant effect on susceptibility to experimental thrombosis after photochemical injury. In contrast, the neointimal area after vascular injury caused by complete ligation of the common carotid artery was significantly greater in MsrA-deficient than in control mice. In aortic vascular smooth muscle cells lacking MsrA, cell proliferation was significantly increased because of accelerated G1/S transition. In parallel, cyclin D1 protein and cdk4/cyclin D1 complex formation and activity were increased in MsrA-deficient vascular smooth muscle cell, leading to enhanced retinoblastoma protein phosphorylation and transcription of E2F. Finally, MsrA-deficient vascular smooth muscle cell exhibited greater activation of extracellular signal-regulated kinase 1/2 that was caused by increased activity of the Ras/Raf/mitogen-activated protein kinase signaling pathway. CONCLUSIONS Our findings implicate MsrA as a negative regulator of vascular smooth muscle cell proliferation and neointimal hyperplasia after vascular injury through control of the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling pathway.
Collapse
Affiliation(s)
- Paula J Klutho
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven M Pennington
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Jason A Scott
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Katina M Wilson
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Sean X Gu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Prakash Doddapattar
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Litao Xie
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Ashlee N Venema
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Linda J Zhu
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Anil K Chauhan
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Steven R Lentz
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa
| | - Isabella M Grumbach
- From the Department of Internal Medicine (P.J.K., S.M.P., J.A.S., K.M.W., S.X.G., P.D., L.X., A.N.V., L.J.Z., A.K.C., S.R.L.) and the Iowa City VA Healthcare System (I.M.G.), University of Iowa.
| |
Collapse
|
16
|
Yao W, Gu C, Shao H, Meng G, Wang H, Jing X, Zhang W. Tetrahydroxystilbene Glucoside Improves TNF-α-Induced Endothelial Dysfunction: Involvement of TGFβ/Smad Pathway and Inhibition of Vimentin Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:183-98. [DOI: 10.1142/s0192415x15500123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K–Akt–mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.
Collapse
Affiliation(s)
- Wenjuan Yao
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Chengjing Gu
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Haoran Shao
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Huiming Wang
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Xiang Jing
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| |
Collapse
|