1
|
Park DG, Jin B, Lee WW, Kim HJ, Kim JH, Choi SJ, Hong SD, Shin JA, Cho SD. Apoptotic activity of genipin in human oral squamous cell carcinoma in vitro by regulating STAT3 signaling. Cell Biochem Funct 2023; 41:1319-1329. [PMID: 37792550 DOI: 10.1002/cbf.3866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Genipin, a natural compound derived from the fruit of Gardenia jasminoides Ellis, was reported to have activity against various cancer types. In this study, we determined the underlying mechanism for genipin-induced cell death in human oral squamous cell carcinoma (OSCC). The growth-inhibitory effects of genipin in human OSCC cells was examined by the Cell Counting Kit-8 and soft agar assays. The effects of genipin on apoptosis were assessed by nuclear morphological changes by 4',6-diamidino-2-phenylindole staining, measurement of the sub-G1 population, and Annexin V-fluorescein isothiocyanate/propidium iodide double staining. The underlying mechanism of genipin activity was analyzed by western blot analysis, subcellular fractionation of the nucleus and cytoplasm, immunocytochemistry, and quantitative real-time polymerase chain reaction. Genipin inhibited the growth of OSCC cells and induced apoptosis, which was mediated by a caspase-dependent pathway. Genipin reduced the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and its nuclear localization. Furthermore, inhibition of p-STAT3Tyr705 levels following genipin treatment was required for the reduction of survivin and myeloid cell leukemia-1 (Mcl-1) expression, leading to apoptotic cell death. The genipin-mediated reduction in survivin and Mcl-1 expression was caused by transcriptional and/or posttranslational regulatory mechanisms. The results provide insight into the regulatory mechanism by which genipin induces apoptotic cell death through the abrogation of nuclear STAT3 phosphorylation and suggest that genipin may represent a potential therapeutic option for the treatment of human OSCC.
Collapse
Affiliation(s)
- Dong-Guk Park
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bohwan Jin
- Laboratory Animal Center, CHA Biocomplex, CHA University, Seongnam, Republic of Korea
| | - Won W Lee
- Laboratory Animal Center, CHA Biocomplex, CHA University, Seongnam, Republic of Korea
| | - Hyun-Ji Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Ballók B, Schranc Á, Tóth I, Somogyi P, Tolnai J, Peták F, Fodor GH. Comparison of the respiratory effects of commonly utilized general anaesthesia regimes in male Sprague-Dawley rats. Front Physiol 2023; 14:1249127. [PMID: 37791348 PMCID: PMC10544940 DOI: 10.3389/fphys.2023.1249127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Respiratory parameters in experimental animals are often characterised under general anaesthesia. However, anaesthesia regimes may alter the functional and mechanical properties of the respiratory system. While most anaesthesia regimes have been shown to affect the respiratory system, the effects of general anaesthesia protocols commonly used in animal models on lung function have not been systematically compared. Methods: The present study comprised 40 male Sprague-Dawley rats divided into five groups (N = 8 in each) according to anaesthesia regime applied: intravenous (iv) Na-pentobarbital, intraperitoneal (ip) ketamine-xylazine, iv propofol-fentanyl, inhaled sevoflurane, and ip urethane. All drugs were administered at commonly used doses. End-expiratory lung volume (EELV), airway resistance (Raw) and tissue mechanics were measured in addition to arterial blood gas parameters during mechanical ventilation while maintaining positive end-expiratory pressure (PEEP) values of 0, 3, and 6 cm H2O. Respiratory mechanics were also measured during iv methacholine (MCh) challenges to assess bronchial responsiveness. Results: While PEEP influenced baseline respiratory mechanics, EELV and blood gas parameters (p < 0.001), no between-group differences were observed (p > 0.10). Conversely, significantly lower doses of MCh were required to achieve the same elevation in Raw under ketamine-xylazine anaesthesia compared to the other groups. Conclusion: In the most frequent rodent model of respiratory disorders, no differences in baseline respiratory mechanics or function were observed between commonly used anaesthesia regimes. Bronchial hyperresponsiveness in response to ketamine-xylazine anaesthesia should be considered when designing experiments using this regime. The findings of the present study indicate commonly used anaesthetic regimes allow fair comparison of respiratory mechanics in experimental animals undergoing any of the examined anaesthesia protocols.
Collapse
Affiliation(s)
- Bence Ballók
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Álmos Schranc
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Ibolya Tóth
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Petra Somogyi
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - József Tolnai
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gergely H. Fodor
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Genipin, an Inhibitor of UCP2 as a Promising New Anticancer Agent: A Review of the Literature. Int J Mol Sci 2022; 23:ijms23105637. [PMID: 35628447 PMCID: PMC9147402 DOI: 10.3390/ijms23105637] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Genipin is a protein cross-linking agent extracted from Gardenia (Gardenia jasminoides Ellis) fruits. This fruit has conventionally been used as a Chinese herbal medicine for the treatment of inflammation and jaundice and as an edible colorant in oriental countries. Uncoupling protein (UCP)-2 is a member of the family of uncoupling proteins, which are anion transporters positioned in the mitochondrial inner membrane. Genipin has been shown to have hepatoprotective activity, acting as an effective antioxidant and inhibitor of mitochondrial UCP2, and is also reported to exert significant anticancer effects. In this review, the author presents the latest progress of genipin as an anticancer agent and concisely describes its various mechanisms of action. In brief, genipin inhibits UCP2 to attenuate generation of reactive oxygen species (ROS), leading to ROS/c-Jun N-terminal kinase-dependent apoptosis of cancer cells. Genipin also increases the tissue inhibitors of matrix metalloproteases (MMP)-2, a kind of tumor promoter in a variety of cancers, as well as induces caspase-dependent apoptosis in in vitro and in vivo models. These findings suggest that genipin can serve as a promising novel antitumor agent that could be applicable for chemotherapy and/or chemoprevention for cancers.
Collapse
|
5
|
Ke H, Bao T, Chen W. New function of polysaccharide from Rubus chingii Hu: protective effect against ethyl carbamate induced cytotoxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3156-3164. [PMID: 33211321 DOI: 10.1002/jsfa.10944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rubus chingii Hu is a widely cultivated fruit in China and has declared multiple bioactivities including antioxidative activity. Ethyl carbamate (EC), mostly found in fermented food and alcoholic beverages, is a recognized human carcinogen, and researchers have proposed the correlation between oxidative stress and its toxicity. This study acquired the polysaccharide from R. chingii (RP) and explored its effect on EC-induced cytotoxicity using Caco-2 cells as the cell model. RESULTS Results showed that RP exhibited protection against EC-induced toxicity by repairing redox imbalance as indicative of mitigated mitochondrial membrane potential collapse, attenuated reactive oxygen species overproduction, and impeded glutathione depletion. Moreover, the structural features of RP were characterized and revealed that it was mainly constituted by galacturonic acid and arabinose, with an average molecular weight of 7.039 × 105 g mol-1 . CONCLUSION Overall, our results provided a new approach dealing with the toxicity caused by EC from the perspective of oxidative stress and described a new potential healthy value of R. chingii Hu, which could contribute to the development of a promising dietary supplement and functional food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
6
|
Wang W, Han Z, Guo D, Xiang Y. UHPLC-QTOFMS-based metabolomic analysis of serum and urine in rats treated with musalais containing varying ethyl carbamate content. Anal Bioanal Chem 2020; 412:7627-7637. [PMID: 32897411 DOI: 10.1007/s00216-020-02900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
The aim of this work is to investigate the effect of the ethyl carbamate (EC) content in musalais on the metabolism of rats. Electron beam irradiation was performed to decrease the content of EC in musalais, and Sprague Dawley rats were subjected to intragastric administration of musalais with varying EC content (high, medium, and low groups). Control rats were fed normally without any treatment. Serum and urine samples were analyzed using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Principal component analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were performed to detect changes in the metabolite profile in the serum and urine in order to identify the differential metabolites and metabolic pathways. The results demonstrated clear differences in the serum and urine metabolic patterns between control and treatment groups. Ions in treatment groups with variable importance in the projection of >1 (selected from the OPLS-DA loading plots) and Ps < 0.05 (Student t test) compared to control group were identified as candidate metabolites. Analysis of the metabolic pathways relevant to the identified differential metabolites revealed that high EC content in musalais (10 mg/kg) mainly affected rats through valine, leucine, and isoleucine biosynthesis and nicotinate and nicotinamide metabolism, which were associated with energy metabolism. In addition, this work suggests that EC can induce oxidative stress via inhibition of glycine content.
Collapse
Affiliation(s)
- Weihua Wang
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - ZhanJiang Han
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China.
| | - Dongqi Guo
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - Yanju Xiang
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| |
Collapse
|
7
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
8
|
Chu Q, Jia R, Chen W, Liu Y, Li Y, Ye X, Jiang Y, Zheng X. Purified Tetrastigma hemsleyanum vines polysaccharide attenuates EC-induced toxicity in Caco-2 cells and Caenorhabditis elegans via DAF-16/FOXO pathway. Int J Biol Macromol 2019; 150:1192-1202. [PMID: 31739013 DOI: 10.1016/j.ijbiomac.2019.10.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Ethyl Carbamate (EC), as a carcinogen widely found in fermented foods, was verified that its cytotoxicity was associated with oxidative stress. Polysaccharides from natural sources due to their antioxidative capacity have attracted great attention in the past time. In this study, purified polysaccharide from Tetrastigma hemsleyanum vines (TVP) with 64.89 kDA was extracted and conducted multiple analysis to identify its structural information. It could be discovered that TVP was composed of mannose, rhamnose, glucuronic acid, glucose, galactose, and arabinose. In vitro, TVP could inhibit cytotoxicity and genotoxicity, attenuate oxidative damage and mitochondrial dysfunction induced by EC in Caco-2 cells. Meanwhile, TVP could suppress apoptosis by mTOR and Bcl-2 signaling pathways, ameliorate oxidative via Sirt1-FoxO1 and Nrf2-Keap1 signaling pathways. In vivo, EC as well triggered the decline of survival and athletic ability in Caenorhabditis elegans (C. elegans) and TVP could reverse the decline. In the meantime, TVP could ameliorate oxidative damage in N2 and daf-2 (-) mutant but fail in daf-16 (-) mutant, which suggested that DAF-16 (FOXO) might affect the antioxidative protection of TVP in C. elegans. In brief, our results manifested that TVP could attenuate EC-induced cytotoxicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wen Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yangyang Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yonglu Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yong Jiang
- Shanghai Zhengyue Enterprise Management Co, Ltd., 19th Floor, Block B, Xinchengkonggu Building, No. 388 Zhongjiang Road, Putuo District, Shanghai 600062, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
9
|
Liu T, Zuo L, Guo D, Chai X, Xu J, Cui Z, Wang Z, Hou C. Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomed Pharmacother 2019; 120:109483. [PMID: 31629252 DOI: 10.1016/j.biopha.2019.109483] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Ginsenoside Rg3 is the main ingredient of Ginseng which is used to treat non-small cell lung cancer (NSCLC). It has been found to enhance the efficiency of chemotherapy thereby reducing its side effects. Previous studies found that ginsenoside Rg3 can reduce the occurrence of NSCLC by inducing DNA damage. Yet, its anti-DNA damaging effects and mechanisms in tumor cells are still not fully understood. This study explored the effect of ginsenoside Rg3 on DNA repair and VRK1/P53BP1 signaling pathway. Ginsenoside Rg3 treatment significantly decreased the incidence and invasionin a mouse model of lung cancer induced by urethane. The results of cell survival assay and single cell gel electrophoresis showed that ginsenoside Rg3 protected lung adenocarcinoma cells from DNA damage as well as inhibited the proliferation of tumor cells. Ginsenoside Rg3 increased the mRNA and protein expression of VRK1 in NSCLC cells as measured by RT-qPCR and western blot, respectively. These findings suggests that ginsenoside Rg3 regulates VRK1 signaling. Immunofluorescence assays showed that P53BP1 and VRK1 protein level increased, and the VRK1 protein translocated between the nuclei and cytoplasm. Finally, this conclusion was confirmed by the reverse validation in VRK1-knockdown cells. Taken together, these results show that ginsenoside Rg3 upregulate VRK1 expression and P53BP1 foci formation in response to DNA damage thereby inhibiting the tumorigenesis and viability of cancer cells. These findings reveal the role of Rg3 in lung cancer and provides therapeutic targets for developing new drugs in the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zuo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life science, Beijing University of Chinese Medicine, Beijing, China
| | - Xinlou Chai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaorui Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunying Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
10
|
Fang T, Wang M, Xiao H, Wei X. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol 2019; 35:493-502. [PMID: 31119467 DOI: 10.1007/s10565-019-09473-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/05/2023]
Abstract
The functions of body gradually decrease as the age increases, leading to a higher frequency of incidence of age-related diseases. Diseases associated with aging in the respiratory system include chronic obstructive pulmonary disease (COPD), IPF (idiopathic pulmonary fibrosis), asthma, lung cancer, and so on. The mitochondrial dysfunction is not only a sign of aging, but also is a disease trigger. This article aims to explain mitochondrial dysfunction as an aging marker, and its role in aging diseases of lung. We also discuss whether the mitochondria can be used as a target for the treatment of aging lung disease.
Collapse
Affiliation(s)
- Tingting Fang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Manni Wang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Hengyi Xiao
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
11
|
Yao J, Du Z, Li Z, Zhang S, Lin Y, Li H, Zhou L, Wang Y, Yan G, Wu X, Duan Y, Du G. 6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype. Food Funct 2019; 9:4611-4620. [PMID: 30151521 DOI: 10.1039/c8fo01147h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
6-Gingerol (6-G) is the main bioactive component in Ginger (Zingiber officinale Roscoe). The aim of this study was to explore the contribution of macrophage polarization in 6-G-associated anti-cancer effects. In a urethane-induced lung carcinogenic model, lung carcinogenesis was positively correlated with macrophage (F4/80+) infiltration in lung interstitial in the control group. Furthermore, higher numbers of arginase+/F4/80+ M2 cells than iNOS+/F4/80+ M1 cells were observed in interstitial macrophages. Moreover, macrophage depletion by liposome-encapsulated clodronate (LEC) could significantly prevent lung carcinogenesis, whereas pexidartinib promoted lung carcinogenesis. After 6-G treatment, lung carcinogenesis was ameliorated with increased M1 macrophages and decreased M2 macrophages in the lung interstitial. ELISA showed that the levels of IFN-γ and IL-12 increased and the levels of IL-10 and TGF-β1 decreased in the alveolar cavity compared to those in the control group. Unexpectedly, the carcinogenesis-preventing efficacy of 6-G was promoted in LEC-treated mice, but completely aborted in pexidartinib-treated mice. In the in vitro experiment, 6-G reset the IL-4-induced arginase+ M2 cells toward iNOS+ M1 cells and exhibited reduced levels of arginase 1 and ROS and elevated levels of L-arginine and NO. LEC and nor-NOHA selectively suppressed M2 macrophages but had a negligible effect on M1 macrophages, whereas pexidartinib decreased both M2 and M1 macrophages. The iNOS+ macrophage-promoting efficacy of 6-G was increased by LEC, but was completely eliminated by pretreatment with pexidartinib or nor-NOHA. M2 macrophage-resetting efficacy of 6-G was confirmed in a Lewis lung cancer allograft model. This study indicated a reprogramming effect of 6-G as an arginase inhibitor on tumor supporting macrophages.
Collapse
Affiliation(s)
- Jingjing Yao
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shanmugam MK, Shen H, Tang FR, Arfuso F, Rajesh M, Wang L, Kumar AP, Bian J, Goh BC, Bishayee A, Sethi G. Potential role of genipin in cancer therapy. Pharmacol Res 2018; 133:195-200. [PMID: 29758279 DOI: 10.1016/j.phrs.2018.05.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
Genipin, an aglycone derived from the iridoid glycoside, geniposide, is isolated and characterized from the extract of Gardenia jasminoides Ellis fruit (family Rubiaceae). It has long been used in traditional oriental medicine for the prevention and treatment of several inflammation driven diseases, including cancer. Genipin has been shown to have hepatoprotective activity acting as a potent antioxidant and inhibitor of mitochondrial uncoupling protein 2 (UCP2), and also reported to exert significant anticancer effects. It is an excellent crosslinking agent that helps to make novel sustained or delayed release nanoparticle formulations. In this review, we present the latest developments of genipin as an anticancer agent and briefly describe its diverse mechanism(s) of action. Several lines of evidence suggest that genipin is a potent inhibitor of UCP2, which functions as a tumor promoter in a variety of cancers, attenuates generation of reactive oxygen species and the expression of matrix metalloproteinase 2, as well as induces caspase-dependent apoptosis in vitro and in in vivo models. These finding suggests that genipin can serve as both a prominent anticancer agent as well as a potent crosslinking drug that may find useful application in several novel pharmaceutical formulations.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia
| | - Mohanraj Rajesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, 17666, United Arab Emirates
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia; Department of Haematology-Oncology, National University Health System, Singapore, 119228, Singapore
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
13
|
Cao N, Ma X, Guo Z, Zheng Y, Geng S, Meng M, Du Z, Lin H, Duan Y, Du G. Oral kanglaite injection (KLTI) attenuates the lung cancer-promoting effect of high-fat diet (HFD)-induced obesity. Oncotarget 2018; 7:61093-61106. [PMID: 27528218 PMCID: PMC5308638 DOI: 10.18632/oncotarget.11212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity is a risk factor for cancer and cancer-related mortality, however, its role in lung cancer progression remains controversial. This study aimed to assess whether high-fat diet (HFD)-induced obesity promotes lung cancer progression and whether the promotion can be decreased by Kanglaite injection (KLTI). In vivo, HFD-induced overweight or obesity increases the lung carcinoma incidence and multiplicity in a urethane-induced lung carcinogenic model and cancer-related mortality in a LLC allograft model by increasing oxidative stress and cellular signaling molecules including JAK, STAT3, Akt, mTOR, NF-κB and cyclin D1. These changes resulted in increases in vascular disruption and the lung water content, thereby promoting lung epithelial proliferation and the epithelial-mesenchymal transition (EMT) during carcinogenesis. Chronic KLTI treatment substantially prevented the weight gain resulting from HFD consumption, thereby reversing the metabolic dysfunction-related physiological changes and reducing susceptibility to lung carcinogenesis. In vitro, KLTI significantly suppressed the proliferation and induced apoptosis and differentiation in 3T3-L1 preadipocyte cells and attenuated endothelial cell permeability in HUVECs. Our study indicates that there is a potential relationship between obesity and lung cancer. This is the first study to show that obesity can directly accelerate carcinogen-induced lung cancer progression and that KLTI can decrease the lung cancer-promoting effect of HFD-induced obesity.
Collapse
Affiliation(s)
- Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Haihong Lin
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University, Kaifeng, Henan Province 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| |
Collapse
|
14
|
Ethyl carbamate: An emerging food and environmental toxicant. Food Chem 2017; 248:312-321. [PMID: 29329860 DOI: 10.1016/j.foodchem.2017.12.072] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Ethyl carbamate (EC), a chemical substance widely present in fermented food products and alcoholic beverages, has been classified as a Group 2A carcinogen by the International Agency for Research on Cancer (IARC). New evidence indicates that long-term exposure to EC may cause neurological disorders. Formation of EC in food and its metabolism have therefore been studied extensively and analytical methods for EC in various food matrices have been established. Due to the potential threat of EC to human health, mitigation strategies for EC in food products by physical, chemical, enzymatic, and genetic engineering methods have been developed. Natural products are suggested to provide protection against EC-induced toxicity through the modulation of oxidative stress. This review summarizes knowledge on the formation and metabolism of EC, detection of EC in food products, toxic effects of EC on various organs, and mitigation strategies including prevention of EC-induced tumorigenesis and genotoxicity by natural products.
Collapse
|
15
|
Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact 2017; 277:21-32. [DOI: 10.1016/j.cbi.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022]
|
16
|
Chen W, Xu Y, Zhang L, Su H, Zheng X. Blackberry subjected to in vitro gastrointestinal digestion affords protection against Ethyl Carbamate-induced cytotoxicity. Food Chem 2016; 212:620-7. [DOI: 10.1016/j.foodchem.2016.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 12/30/2022]
|
17
|
Geng S, Zheng Y, Meng M, Guo Z, Cao N, Ma X, Du Z, Li J, Duan Y, Du G. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6203-6211. [PMID: 27436516 DOI: 10.1021/acs.jafc.6b02480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University , Kaifeng, Henan 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| |
Collapse
|
18
|
Liu J, Liu Z, Man S, Chai H, Ma L, Gao W. Inhibition of urethane-induced lung carcinogenesis in mice by a Rhizoma paridis saponin involved EGFR/PI3K/Akt pathway. RSC Adv 2016. [DOI: 10.1039/c6ra20811h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world. Due to a lack of successful treatments for lung cancer, there is a need to evaluate new and effective agents for lung cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Zhen Liu
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Shuli Man
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Hongyan Chai
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Long Ma
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
19
|
Liu L, Li H, Guo Z, Ma X, Cao N, Zheng Y, Geng S, Duan Y, Han G, Du G. The Combination of Three Natural Compounds Effectively Prevented Lung Carcinogenesis by Optimal Wound Healing. PLoS One 2015; 10:e0143438. [PMID: 26599445 PMCID: PMC4658131 DOI: 10.1371/journal.pone.0143438] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022] Open
Abstract
The tumor stroma has been described as "normal wound healing gone awry". We explored whether the restoration of a wound healing-like microenvironment may facilitate tumor healing. Firstly, we screened three natural compounds (shikonin, notoginsenoside R1 and aconitine) from wound healing agents and evaluated the efficacies of wound healing microenvironment for limiting single agent-elicited carcinogenesis and two-stage carcinogenesis. The results showed that three compounds used alone could promote wound healing but had unfavorable efficacy to exert wound healing, and that the combination of three compounds made up treatment disadvantage of a single compound in wound healing and led to optimal wound healing. Although individual treatment with these agents may prevent cancer, they were not effective for the treatment of established tumors. However, combination treatment with these three compounds almost completely prevented urethane-induced lung carcinogenesis and reduced tumor burden. Different from previous studies, we found that urethane-induced lung carcinogenesis was associated with lung injury independent of pulmonary inflammation. LPS-induced pulmonary inflammation did not increase lung carcinogenesis, whereas decreased pulmonary inflammation by macrophage depletion promoted lung carcinogenesis. In addition, urethane damaged wound healing in skin excision wound model, reversed lung carcinogenic efficacy by the combination of three compounds was consistent with skin wound healing. Further, the combination of these three agents reduced the number of lung cancer stem cells (CSCs) by inducing cell differentiation, restoration of gap junction intercellular communication (GJIC) and blockade of the epithelial-to-mesenchymal transition (EMT). Our results suggest that restoration of a wound healing microenvironment represents an effective strategy for cancer prevention.
Collapse
Affiliation(s)
- Linxin Liu
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Hong Li
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yongjian Duan
- Department of Oncology, The first hospital Affiliated to Henan University, Kaifeng, Henan Province 475001, China
| | - Guang Han
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| |
Collapse
|
20
|
Ma X, Deng J, Cao N, Guo Z, Zheng Y, Geng S, Meng M, Lin H, Duan Y, Du G. Lasting glycolytic stress governs susceptibility to urethane-induced lung carcinogenesis in vivo and in vitro. Toxicol Lett 2015; 240:130-9. [PMID: 26524634 DOI: 10.1016/j.toxlet.2015.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/02/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
Abstract
Urethane is a recognized genotoxic carcinogen in fermented foods and beverages. This study is to compare susceptibility of ICR mice, BALB/c mice and C57BL/6 mice to urethane-induced lung carcinogenesis. The mice were injected intraperitoneally with 600 mg/kg of urethane for three times or ten times at 7-day intervals. At week 26, lung carcinogenic incidence was found in 40% ICR mice, 20% BALB/c mice and 10% C57BL/6 mice of the 3× injection group, respectively, whereas 100% lung tumor incidence took place in three mouse strains of the 10× injection group. In the 10× injection group, urethane induced lasting glycolytic stress of lung with an increase in lactate, monocarboxylate transporter 1 (MCT-1), reactive oxygen species(ROS) and 7,8-dihydro-8-oxo-29-deoxyguanosine (8-OHdG) and a decrease in pyruvate dehydrogenase (PDH) and cytochrome C oxidase (COX). In the 3× injection group, urethane also promoted lung glycolytic stress at the end of urethane injection but it lasted no more than 7 days besides in lung tumor-bearing mice. Metformin as a glycolytic enhancer promoted urethane carcinogenic efficacy in the 3× injection group, whereas 2-deoxy-glucose (2-DG) as a glycolytic inhibitor decreased urethane carcinogenic efficacy in the 10× injection group. Further, urethane promoted tumor survival in A549 cells by inducing cancer stem-like cellular state. These data suggest that lasting glycolytic stress is sufficient for urethane-induced lung tumorigenesis, and that urethane 10× injection-induced lung cancer can serve as a valuable model for lung tumor biology and tumor prevention.
Collapse
Affiliation(s)
- Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Jiaxiu Deng
- Department of Oncology, The First Hospital Affiliated to Henan University, Kaifeng, Henan Province 475001, China
| | - Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Haihong Lin
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University, Kaifeng, Henan Province 475001, China.
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China.
| |
Collapse
|