1
|
Katz JL, Geng Y, Billingham LK, Sadagopan NS, DeLay SL, Subbiah J, Chia TY, McManus G, Wei C, Wang H, Lin H, Silvers C, Boland LK, Wang S, Wan H, Hou D, Vázquez-Cervantes GI, Arjmandi T, Shaikh ZH, Zhang P, Ahmed AU, Tiek DM, Lee-Chang C, Chouchani ET, Miska J. A covalent creatine kinase inhibitor ablates glioblastoma migration and sensitizes tumors to oxidative stress. Sci Rep 2024; 14:21959. [PMID: 39304717 PMCID: PMC11415369 DOI: 10.1038/s41598-024-73051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Glioblastoma is a Grade 4 primary brain tumor defined by therapy resistance, diffuse infiltration, and near-uniform lethality. The underlying mechanisms are unknown, and no treatment has been curative. Using a recently developed creatine kinase inhibitor (CKi), we explored the role of this inhibitor on GBM biology in vitro. While CKi minimally impacted GBM cell proliferation and viability, it significantly affected migration. In established GBM cell lines and patient-derived xenografts, CKi ablated both the migration and invasion of GBM cells. CKi also hindered radiation-induced migration. RNA-seq revealed a decrease in invasion-related genes, with an unexpected increase in glutathione metabolism and ferroptosis protection genes post-CKi treatment. The effects of CKi could be reversed by the addition of cell-permeable glutathione. Carbon-13 metabolite tracing indicated heightened glutathione biosynthesis post-CKi treatment. Combinatorial CKi blockade and glutathione inhibition or ferroptosis activation abrogated cell survival. Our data demonstrated that CKi perturbs promigratory and anti-ferroptotic roles in GBM, identifying the creatine kinase axis as a druggable target for GBM treatment.
Collapse
Affiliation(s)
- Joshua L Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Nishanth S Sadagopan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Susan L DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Jay Subbiah
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Tzu-Yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Chao Wei
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Hanxiang Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Lauren K Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Gustavo Ignacio Vázquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Tarlan Arjmandi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Zainab H Shaikh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deanna M Tiek
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA.
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Darabedian N, Ji W, Fan M, Lin S, Seo HS, Vinogradova EV, Yaron TM, Mills EL, Xiao H, Senkane K, Huntsman EM, Johnson JL, Che J, Cantley LC, Cravatt BF, Dhe-Paganon S, Stegmaier K, Zhang T, Gray NS, Chouchani ET. Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor. Nat Chem Biol 2023; 19:815-824. [PMID: 36823351 PMCID: PMC10330000 DOI: 10.1038/s41589-023-01273-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Narek Darabedian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Wenzhi Ji
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Mengyang Fan
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ekaterina V Vinogradova
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kristine Senkane
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jared L Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lewis C Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Li Y, Zhu S, Du D, Li Q, Xie K, Chen L, Feng X, Wu X, Sun Z, Zhou J, Yang J, Shu G, Wang S, Gao P, Zhu C, Jiang Q, Wang L. TLR4 in POMC neurons regulates thermogenesis in a sex-dependent manner. J Lipid Res 2023; 64:100368. [PMID: 37028769 PMCID: PMC10205441 DOI: 10.1016/j.jlr.2023.100368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dan Du
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qiyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lvshuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingjing Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinping Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Yu X, Li W. Comparative insights into the integration mechanism of neuropeptides to starvation and temperature stress. Gen Comp Endocrinol 2022; 316:113945. [PMID: 34826429 DOI: 10.1016/j.ygcen.2021.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Stress is known as the process of biological responses evoked by internal or external stimuli. The ability to sense, integrate and respond to stress signals is a requisite for life. Temperature and photoperiod are very important environmental factors for animals. In addition, stress signals can also be inputted from peripheral tissue, such as starvation and inflammation. Through afferent pathways, stress signals input to the central nervous system (CNS), where various signals will integrate, and the integrated information will transmit to the peripheral effectors. As the regulators of neural activity, neuropeptides play important roles in these processes. The present review summarizes recent findings about the integration mechanism of stress signals in the CNS, emphasizing on the role of neuropeptides.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Chen WC, Liu YB, Liu WF, Zhou YY, He HF, Lin S. Neuropeptide Y Is an Immunomodulatory Factor: Direct and Indirect. Front Immunol 2020; 11:580378. [PMID: 33123166 PMCID: PMC7573154 DOI: 10.3389/fimmu.2020.580378] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y (NPY), which is widely distributed in the nervous system, is involved in regulating a variety of biological processes, including food intake, energy metabolism, and emotional expression. However, emerging evidence points to NPY also as a critical transmitter between the nervous system and immune system, as well as a mediator produced and released by immune cells. In vivo and in vitro studies based on gene-editing techniques and specific NPY receptor agonists and antagonists have demonstrated that NPY is responsible for multifarious direct modulations on immune cells by acting on NPY receptors. Moreover, via the central or peripheral nervous system, NPY is closely connected to body temperature regulation, obesity development, glucose metabolism, and emotional expression, which are all immunomodulatory factors for the immune system. In this review, we focus on the direct role of NPY in immune cells and particularly discuss its indirect impact on the immune response.
Collapse
Affiliation(s)
- Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yi-Bin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Ying-Ying Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
6
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
7
|
Xiong W, Zhao X, Garcia-Barrio MT, Zhang J, Lin J, Chen YE, Jiang Z, Chang L. MitoNEET in Perivascular Adipose Tissue Blunts Atherosclerosis under Mild Cold Condition in Mice. Front Physiol 2017; 8:1032. [PMID: 29311966 PMCID: PMC5742148 DOI: 10.3389/fphys.2017.01032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/28/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Perivascular adipose tissue (PVAT), which surrounds most vessels, is de facto a distinct functional vascular layer actively contributing to vascular function and dysfunction. PVAT contributes to aortic remodeling by producing and releasing a large number of undetermined or less characterized factors that could target endothelial cells and vascular smooth muscle cells, and herein contribute to the maintenance of vessel homeostasis. Loss of PVAT in mice enhances atherosclerosis, but a causal relationship between PVAT and atherosclerosis and the possible underlying mechanisms remain to be addressed. The CDGSH iron sulfur domain 1 protein (referred to as mitoNEET), a mitochondrial outer membrane protein, regulates oxidative capacity and adipose tissue browning. The roles of mitoNEET in PVAT, especially in the development of atherosclerosis, are unknown. Methods: The brown adipocyte-specific mitoNEET transgenic mice were subjected to cold environmental stimulus. The metabolic rates and PVAT-dependent thermogenesis were investigated. Additionally, the brown adipocyte-specific mitoNEET transgenic mice were cross-bred with ApoE knockout mice. The ensuing mice were subsequently subjected to cold environmental stimulus and high cholesterol diet challenge for 3 months. The development of atherosclerosis was investigated. Results: Our data show that mitoNEET mRNA was downregulated in PVAT of both peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α)- and beta (Pgc1β)-knockout mice which are sensitive to cold. MitoNEET expression was higher in PVAT of wild type mice and increased upon cold stimulus. Transgenic mice with overexpression of mitoNEET in PVAT were cold resistant, and showed increased expression of thermogenic genes. ApoE knockout mice with mitoNEET overexpression in PVAT showed significant downregulation of inflammatory genes and showed reduced atherosclerosis development upon high fat diet feeding when kept in a 16°C environment. Conclusion: mitoNEET in PVAT is associated with PVAT-dependent thermogenesis and prevents atherosclerosis development. The results of this study provide new insights on PVAT and mitoNEET biology and atherosclerosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhao Xiong
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China.,Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Xiangjie Zhao
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | | | - Jifeng Zhang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Jiandie Lin
- Life Science Institute, University of Michigan, Ann Arbor, MI, United States
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Zhisheng Jiang
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Lin Chang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochem J 2016; 473:4063-4082. [DOI: 10.1042/bcj20160012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis.
Collapse
|
9
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|