1
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
2
|
Zhao Y, Tan DC, Peng B, Yang L, Zhang SY, Shi RP, Chong CM, Zhong ZF, Wang SP, Liang QL, Wang YT. Neuroendocrine-Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules 2022; 27:molecules27123697. [PMID: 35744822 PMCID: PMC9229650 DOI: 10.3390/molecules27123697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.
Collapse
Affiliation(s)
- Yi Zhao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - De-Chao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Lin Yang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Si-Yuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Rui-Peng Shi
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Cheong-Meng Chong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Zhang-Feng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Sheng-Peng Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Qiong-Lin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| | - Yi-Tao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| |
Collapse
|
3
|
Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 as Potential Drugs for Type 2 Diabetes Mellitus—A Systematic Review of Clinical and In Vivo Preclinical Studies. Sci Pharm 2021. [DOI: 10.3390/scipharm89010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Diabetes mellitus is a pathology with increasing frequency in society, being one of the main causes of death worldwide. For this reason, new therapeutic targets have been studied over the years. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme responsible for reducing cortisone to its active form cortisol, which can lead to metabolic changes such as insulin resistance and hyperglycemia. Therefore, 11β-HSD1 inhibition may offer a new therapeutic approach for type 2 diabetes mellitus. This work intends to systematically review the available scientific evidence on this subject. For this, a search was conducted in three databases and 15 clinical and in vivo preclinical studies were included in this review. Despite the high inhibitory and selectivity levels achieved with several molecules and the demonstrated clinical efficacy in diabetes treatment, no phase III clinical trials have yet been conducted. This is important because the long-term effects of 11β-HSD1 inhibitors including the consequences in hypothalamic–pituitary–adrenal axis must be evaluated. However, this enzyme remains a promising target for drug development, including due to its effectiveness in controlling various factors that constitute the metabolic syndrome and its potential for multiple indications in patients with diabetes, including wound healing and weight loss.
Collapse
|
4
|
Lin Y, Zhang Z, Wang S, Cai J, Guo J. Hypothalamus-pituitary-adrenal Axis in Glucolipid metabolic disorders. Rev Endocr Metab Disord 2020; 21:421-429. [PMID: 32889666 DOI: 10.1007/s11154-020-09586-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
With the change of life style, glucolipid metabolic disorders (GLMD) has become one of the major chronic disorders causing public health and clinical problems worldwide. Previous studies on GLMD pay more attention to peripheral tissues. In fact, the central nervous system (CNS) plays an important role in controlling the overall metabolic balance. With the development of technology and the in-depth understanding of the CNS, the relationship between neuro-endocrine-immunoregulatory (NEI) network and metabolism had been gradually illustrated. As the hub of NEI network, hypothalamus-pituitary-adrenal (HPA) axis is important for maintaining the balance of internal environment in the body. The relationship between HPA axis and GLMD needs to be further studied. This review focuses on the role of HPA axis in GLMD and reviews the research progress on drugs for GLMD, with the hope to provide the direction for exploring new drugs to treat GLMD by taking the HPA axis as the target and improve the level of prevention and control of GLMD.
Collapse
Affiliation(s)
- Yanduan Lin
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Ziwei Zhang
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Siyu Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jinyan Cai
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
5
|
Park SB, Koh B, Jung WH, Choi KJ, Na YJ, Yoo HM, Lee S, Kang D, Lee DM, Kim KY. Development of a three-dimensional in vitro co-culture model to increase drug selectivity for humans. Diabetes Obes Metab 2020; 22:1302-1315. [PMID: 32173999 DOI: 10.1111/dom.14033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
AIM Insulin resistance is a metabolic state where insulin sensitivity is lower than normal condition and strongly related to type 2 diabetes. However, an in vitro model mimicking insulin resistance is rare and thus screening drugs for insulin resistance severely depends on an in vivo model. Here, to increase anti-diabetic drug selectivity for humans, 3D ADMSCs and macrophages were co-cultured with in-house fabricated co-culture plates. MATERIAL AND METHODS 3D co-culture plates were designed to load ADMSCs and RAW264.7 cells containing hydrogels in separate wells while allowing cell-cell interaction with co-culturing media. Hydrogels were constructed using a 3D cell-printing system containing 20 mg/ml alginate, 0.5 mg/ml gelatin and 0.5 mg/ml type I collagen. Cells containing hydrogels in 3D co-culture plates were incubated for 10 min to allow stabilization before the experiment. 3D co-culture plates were incubated with the CaCl2 solution for 5 min to complete the cross linking of alginate hydrogel. Cells in 3D co-culture plates were cultured for up to 12 days depending on the experiment and wells containing adipocytes and macrophages were separated and used for assays. RESULTS KR-1, KR-2 and KR-3 compounds were applied during differentiation (12 days) in 3D co-cultured mouse 3T3-L1 adipocytes and 3D co-cultured human ADMSCs. Glucose uptake assay using 2-DG6P and 2-NBDG and western blot analysis were performed to investigate changes of insulin resistance in the 3D co-cultured model for interspecies selectivity of drug screening. KR-1 (mouse potent enantiomer) and KR-3 (racemic mixture) showed improvement of 2-DG and 2-NBDG uptake compared with KR-2 (human potent enantiomer) in 3D co-cultured 3T3-L1 adipocytes. In connection with insulin resistance in a 3D 3T3-L1 co-cultured model, KR-1 and KR-3 showed improvement of insulin sensitivity compared to KR-2 by markedly increasing GLUT4 expression. In contrast to the result of 3D co-cultured 3T3-L1 adipocytes, KR-1 failed to significantly improve 2-DG and 2-NBDG uptake in 3D co-cultured ADMSC adipocytes. Results of 2-NBDG accumulation and western blot analysis also showed that KR-2 and KR-3 improved insulin sensitivity relatively better than KR-1. CONCLUSIONS Our 3D co-culture model with/without 3D co-culture plates can successfully mimic insulin resistance while allowing investigation of the effects of anti-obesity or anti-diabetic drugs on human or mouse co-culturing cell type. This 3D co-culture system may accelerate screening of drugs for insulin resistance depending on species.
Collapse
Affiliation(s)
- Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Won Hoon Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyoung Jin Choi
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yoon Ju Na
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Hee Min Yoo
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Sunray Lee
- Cell Engineering for Origin Research Center, Jongno-gu, Republic of Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Chuanxin Z, Shengzheng W, Lei D, Duoli X, Jin L, Fuzeng R, Aiping L, Ge Z. Progress in 11β-HSD1 inhibitors for the treatment of metabolic diseases: A comprehensive guide to their chemical structure diversity in drug development. Eur J Med Chem 2020; 191:112134. [PMID: 32088493 DOI: 10.1016/j.ejmech.2020.112134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key metabolic enzyme that catalyzing the intracellular conversion of inactive glucocorticoids to physiologically active ones. Work over the past decade has demonstrated the aberrant overexpression of 11β-HSD1 contributed to the pathophysiological process of metabolic diseases like obesity, type 2 diabetes mellitus, and metabolic syndromes. The inhibition of 11β-HSD1 represented an attractive therapeutic strategy for the treatment of metabolic diseases. Therefore, great efforts have been devoted to developing 11β-HSD1 inhibitors based on the diverse molecular scaffolds. This review focused on the structural features of the most important 11β-HSD1 inhibitors and categorized them into natural products derivatives and synthetic compounds. We also briefly discussed the optimization process, binding modes, structure-activity relationships (SAR) and biological evaluations of each inhibitor. Moreover, the challenges and directions for 11β-HSD1 inhibitors were discussed, which might provide some useful clues to guide the future discovery of novel 11β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Zhong Chuanxin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wang Shengzheng
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dang Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xie Duoli
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Liu Jin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute for Research and Continuing Education (IRACE), Hong Kong Baptist University, Shenzhen, China
| | - Ren Fuzeng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Lu Aiping
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhang Ge
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
He J, Wang H, Vijg J. New Insights into Bioactive Compounds of Traditional Chinese Medicines for Insulin Resistance Based on Signaling Pathways. Chem Biodivers 2019; 16:e1900176. [PMID: 31368177 DOI: 10.1002/cbdv.201900176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes is a serious metabolic disease as a long-term threat to human health. Insulin resistance is not only the basis and major feature of type 2 diabetes, but also the main etiology of diseases such as hypertension, hyperlipidemia and coronary heart disease. It has been shown that Traditional Chinese Medicines (TCMs) play an important role in the treatment of type 2 diabetes, through attenuating insulin resistance, whereas the mechanism involved is not yet well understood. Therefore, it is important to elucidate the pharmacological mechanism of these bioactive compounds so that one can pave the way for the modernization of TCMs. In this review, we focus on the recent progresses of some bioactive ingredients from TCMs with different functional groups, which exhibit therapeutic potential for the treatment of diabetic insulin resistance. It is expected that this review can provide new references for developing TCM-derived drugs against diabetes and insulin resistance in the future.
Collapse
Affiliation(s)
- Jian He
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
8
|
Song Y, Zhang F, Ying C, Kumar KA, Zhou X. Inhibition of NF-κB activity by aminoguanidine alleviates neuroinflammation induced by hyperglycemia. Metab Brain Dis 2017. [PMID: 28634786 DOI: 10.1007/s11011-017-0013-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroinflammation is a key feature of cerebral complication which is associated with diabetes mellitus (DM). Inducible nitric oxide synthase (iNOS) is implicated in the pathogenesis of neuroinflammation. However, how iNOS facilitates the development of inflammation in brain is still unidentified. The aim of the present study was to investigate the association of iNOS and neuroinflammation in diabetic mice, and elucidate the potential mechanisms underlying aminoguanidine (AG), the selective inhibitor of iNOS, protected neurons against inflammation in diabetic mice. In present experiment, diabetic mice model were established by a single intraperitoneal injection of streptozotocin (STZ). AG was administered to diabetic mice for ten weeks after this disease induction. Then we measured iNOS activity in the serum and brain, detected the glial fibrillary acidic protein (GFAP) and ionised calcium binding adaptor molecule-1 (Iba-1) expressions in the brain. Moreover, nuclear factor-kappa B (NF-κB) in cytoplasm and nucleus were tested by IP and WB. Results revealed that high expression of iNOS in serum and brain could be reversed by AG treatment. Furthermore, AG could also inhibit GFAP and Iba-1 expressions, and NF-κB nuclear translocation by inhibiting it from binding to iNOS in cytoplasm. Our findings indicated that iNOS can combine with NF-κB in cytoplasm and promote its nuclear transfer in diabetic mice. Furthermore, AG decreased neuroinflammation through inhibiting iNOS activity and reducing NF-κB nuclear translocation by promoting its dissociation with iNOS in cytoplasm.
Collapse
Affiliation(s)
- Yuanjian Song
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fang Zhang
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Kiran Ashok Kumar
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiaoyan Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Laboratory of Morphology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
| |
Collapse
|
9
|
Leiva R, Griñan-Ferré C, Seira C, Valverde E, McBride A, Binnie M, Pérez B, Luque FJ, Pallàs M, Bidon-Chanal A, Webster SP, Vázquez S. Design, synthesis and in vivo study of novel pyrrolidine-based 11β-HSD1 inhibitors for age-related cognitive dysfunction. Eur J Med Chem 2017; 139:412-428. [PMID: 28818766 DOI: 10.1016/j.ejmech.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Recent findings suggest that treatment with 11β-HSD1 inhibitors provides a novel approach to deal with age-related cognitive dysfunctions, including Alzheimer's disease. In this work we report potent 11β-HSD1 inhibitors featuring unexplored pyrrolidine-based polycyclic substituents. A selected candidate administered to 12-month-old SAMP8 mice for four weeks prevented memory deficits and displayed a neuroprotective action. This is the first time that 11β-HSD1 inhibitors have been studied in this broadly-used mouse model of accelerated senescence and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Christian Griñan-Ferré
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Andrew McBride
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Belén Pérez
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Mercè Pallàs
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Axel Bidon-Chanal
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom.
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
10
|
Park SB, Park JS, Jung WH, Kim HY, Kwak HJ, Ahn JH, Choi KJ, Na YJ, Choi S, Dal Rhee S, Kim KY. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages. J Pharmacol Sci 2016; 131:241-50. [DOI: 10.1016/j.jphs.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 11/25/2022] Open
|
11
|
Dávila D, Fernández S, Torres-Alemán I. Astrocyte Resilience to Oxidative Stress Induced by Insulin-like Growth Factor I (IGF-I) Involves Preserved AKT (Protein Kinase B) Activity. J Biol Chem 2015; 291:2510-23. [PMID: 26631726 DOI: 10.1074/jbc.m115.695478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 12/16/2022] Open
Abstract
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.
Collapse
Affiliation(s)
- David Dávila
- From Department Systems Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid 28002, Spain
| | - Silvia Fernández
- From Department Systems Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid 28002, Spain
| | - Ignacio Torres-Alemán
- From Department Systems Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid 28002, Spain
| |
Collapse
|
12
|
Park SB, Park JS, Jung WH, Park A, Jo SR, Kim HY, Dal Rhee S, Ryu SY, Jeong HG, Park S, Lee H, Kim KY. Identification of a novel 11β-HSD1 inhibitor from a high-throughput screen of natural product extracts. Pharmacol Res 2015; 102:245-53. [PMID: 26515507 DOI: 10.1016/j.phrs.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/22/2023]
Abstract
Selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential as a treatment for metabolic syndrome including type 2 diabetes mellitus and obesity. To identify 11β-HSD1 inhibitors, we conducted high-throughput screening (HTS) of active natural product extracts from the Korea Chemical Bank, including Tanshinone I, Tanshinone IIA, and flavanone derivatives, and 2- and 3-phenyl-4H-chromen-4-one. Then Tanshinone IIA and its derivatives were targeted for the development of a lead compound according to the HTS results. However, the mechanism for anti-adipogenic effect through 11β-HSD1 enzyme inhibition by Tanshinone IIA is not clear. Tanshinone IIA (2a) concentration-dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 overexpressed cells and 3T3-L1 adipocytes. Tanshinone IIA (2a) also inhibited 11β-HSD1 enzyme activities in murine liver and fats. Furthermore, Tanshinone IIA (2a)-suppressed adipocyte differentiation of cortisone-induced adipogenesis in 3T3-L1 cells was associated with the suppression of the cortisone-induced adipogenesis-specific markers mRNA and protein expression. In 3T3-L1 preadipocytes, Tanshinone IIA (2a)-inhibited cortisone induced reactive oxygen species formation in a concentration-dependent manner. Thus, these results support the therapeutic potential of Tanshinone IIA (2a) as a 11β-HSD1 inhibitor in metabolic syndrome patients.
Collapse
Affiliation(s)
- Sung Bum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Ji Seon Park
- Department of Human and Environmental Toxicology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Won Hoon Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Areum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Sae Rom Jo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Hee Youn Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Sang Dal Rhee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Shi Yong Ryu
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Seongsoon Park
- Department of Chemistry, Center for NanoBio Applied Technology, Institute of Basic Sciences, Sungshin Women's University, 55 Dobon-ro 76ga-gil, Gangbuk-gu, Seoul 142-732, Republic of Korea
| | - Hyuk Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea.
| | - Ki Young Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
13
|
Leiva R, Seira C, McBride A, Binnie M, Luque FJ, Bidon-Chanal A, Webster SP, Vázquez S. Novel 11β-HSD1 inhibitors: C-1 versus C-2 substitution and effect of the introduction of an oxygen atom in the adamantane scaffold. Bioorg Med Chem Lett 2015; 25:4250-3. [PMID: 26306982 DOI: 10.1016/j.bmcl.2015.07.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
The adamantane scaffold is found in several marketed drugs and in many investigational 11β-HSD1 inhibitors. Interestingly, all the clinically approved adamantane derivatives are C-1 substituted. We demonstrate that, in a series of paired adamantane isomers, substitution of the adamantane in C-2 is preferred over the substitution at C-1 and is necessary for potency at human 11β-HSD1. Furthermore, the introduction of an oxygen atom in the hydrocarbon scaffold of adamantane is deleterious to 11β-HSD1 inhibition. Molecular modeling studies provide a basis to rationalize these features.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, s/n, Barcelona E-08028, Spain
| | - Constantí Seira
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Andrew McBride
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - F Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Axel Bidon-Chanal
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Scott P Webster
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, s/n, Barcelona E-08028, Spain.
| |
Collapse
|