1
|
Ruiz-Contreras HA, Santamaría A, Arellano-Mendoza MG, Sánchez-Chapul L, Robles-Bañuelos B, Rangel-López E. Modulatory Activity of the Endocannabinoid System in the Development and Proliferation of Cells in the CNS. Neurotox Res 2022; 40:1690-1706. [PMID: 36522511 DOI: 10.1007/s12640-022-00592-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 12/23/2022]
Abstract
The Endocannabinoid System (ECS, also known as Endocannabinoidome) plays a key role in the function of the Central Nervous System, though the participation of this system on the early development - specifically in neuroprotection and proliferation of nerve cells - has been poorly studied. Here, we collect and describe evidence regarding how cannabinoid receptors CB1R and CB2R regulate several cell markers related to proliferation. While CB1R participates in the modulation of neuronal and glial proliferation, CB2R is involved in the proliferation of glial cells. The endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) exert significant effects on nerve cell proliferation. AEA generated during embryogenesis induces major effects on the differentiation of neuronal progenitor cells, whereas 2-AG participates in modulating cell migration events rather than affecting the neural proliferation rate. However, although the ECS has been demonstrated to participate in neuroprotection, more characterization on its role in neuronal and glial proliferation and differentiation is needed, especially in brain areas with recognized high neurogenesis rates. This has encouraged scientists to elucidate and propose specific mechanisms related with these cell proliferation mechanisms to better understand some neurodegenerative disorders such as Parkinson, Huntington and Alzheimer diseases, in which neuronal loss and poor neurogenesis are crucial factors for their onset and progression. In this review, we collect and present recent evidence published pointing to an active role of the ECS in the development and proliferation of nerve cells.
Collapse
Affiliation(s)
- Hipolito A Ruiz-Contreras
- Maestría en Ciencias en Farmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
| | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Benjamín Robles-Bañuelos
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
| |
Collapse
|
2
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
3
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
4
|
Wang LN, Xing MD, Qu WT, Wang CB, Liu ZQ, Han J, Ren W, Qiao YN. Impaired vessel relaxation response and increased infarct size in smooth muscle cannabinoid receptor 1 knockout mice. Microvasc Res 2022; 139:104263. [PMID: 34655603 DOI: 10.1016/j.mvr.2021.104263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Cannabinoids are reported to regulate cardiovascular functions. Cannabinoid receptors 1 (CB1Rs) are widely expressed in both the neuronal system and vascular system, but the contribution of CB1Rs in vascular smooth muscle (CB1RSM) to cardiovascular functions is not clear yet. In this research, we analyzed the effects of CB1RSM on blood pressure, vasoconstriction, and vasodilation abilities by using conditionally CB1R knockout mice (CB1RSMKO). The results show no significant difference in basal blood pressure between the conscious CB1RSMKO and control mice, indicating that CB1RSM is not essential for basal blood pressure maintenance. The constriction of the CB1RSMKO mesenteric artery in vitro was not significantly altered compared with that of the control mice. In contrast, the relaxation to CB1R agonist 2-AG or WIN55212-2 was decreased in CB1RSMKO vessels, suggesting that activation of CB1RSM mediates the vasodilation effect of cannabinoids. Ischemia stroke mouse model was used to further identify the potential function of CB1RSM in pathological conditions, and the results showed that the infarct volume in CB1RSMKO mice is significantly increased compared with the control littermates. These results suggest that vascular CB1R may not play a central role in basal vascular health maintenance but is protective in ischemia states, such as stroke. The protection function may be mediated, at least partly, by the relaxation effect of CB1RSM-dependent activities of endocannabinoids.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Disease Models, Animal
- Endocannabinoids/metabolism
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Ischemic Stroke/genetics
- Ischemic Stroke/metabolism
- Ischemic Stroke/pathology
- Ischemic Stroke/physiopathology
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Cerebral Artery/metabolism
- Middle Cerebral Artery/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Signal Transduction
- Vasoconstriction
- Vasodilation
- Mice
Collapse
Affiliation(s)
- Lin-Na Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Meng-Dan Xing
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Wan-Ting Qu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Cong-Bei Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Zhi-Qiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China.
| | - Yan-Ning Qiao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
5
|
Cannabinoids-A New Perspective in Adjuvant Therapy for Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms221810048. [PMID: 34576212 PMCID: PMC8472313 DOI: 10.3390/ijms221810048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, no treatment can completely cure pulmonary hypertension (PH), which can lead to right ventricular failure and, consequently, death. Therefore, searching for new therapies remains important. Increased resistance in pulmonary circulation is mainly caused by the excessive contraction and proliferation of small pulmonary arteries. Cannabinoids, a group of lipophilic compounds that all interact with cannabinoid receptors, exert a pulmonary vasodilatory effect through several different mechanisms, including mechanisms that depend on vascular endothelium and/or receptor-based mechanisms, and may also have anti-proliferative and anti-inflammatory properties. The vasodilatory effect is important in regulating pulmonary resistance, which can improve patients’ quality of life. Moreover, experimental studies on the effects of cannabidiol (plant-derived, non-psychoactive cannabinoid) in animal PH models have shown that cannabidiol reduces right ventricular systolic pressure and excessive remodelling and decreases pulmonary vascular hypertrophy and pulmonary vascular resistance. Due to the potentially beneficial effects of cannabinoids on pulmonary circulation and PH, in this work, we review whether cannabinoids can be used as an adjunctive therapy for PH. However, clinical trials are still needed to recommend the use of cannabinoids in the treatment of PH.
Collapse
|
6
|
Ceballos-Gutiérrez A, Rodríguez-Hernández A, Álvarez-Valadez MDR, Limón-Miranda S, Andrade F, Figueroa-Gutiérrez A, Díaz-Reval I, Apolinar-Iribe A, Castro-Sánchez L, Alamilla J, Sánchez-Pastor E, Virgen-Ortiz A. ZnO Nanoparticles Induce Dyslipidemia and Atherosclerotic Lesions Leading to Changes in Vascular Contractility and Cannabinoid Receptors Expression as Well as Increased Blood Pressure. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2319. [PMID: 34578635 PMCID: PMC8472382 DOI: 10.3390/nano11092319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022]
Abstract
ZnO nanoparticles (ZnONPs) have been shown to have therapeutic potential in some diseases such as diabetes and cancer. However, concentration-dependent adverse effects have also been reported. Studies which evaluate the effects of ZnONPs on the cardiovascular system are scarce. This study aimed to evaluate the cardiovascular effects of a low dose of ZnONPs administered chronically in healthy rats. Changes in dyslipidemia biomarkers, blood pressure, aortic wall structure, vascular contractility, and expression of cannabinoid receptors in the aorta wall were evaluated. Healthy rats were divided into two groups: control or treated (one, two, and three months). The treated rats received an oral dose of 10 mg/kg/day. The results showed that treatment with ZnONPs induced dyslipidemia from the first month, increasing atherosclerosis risk, which was confirmed by presence of atherosclerotic alterations revealed by aorta histological analysis. In in vitro assays, ZnONPs modified the aorta contractile activity in response to the activation of cannabinoid receptors (CB1 and CB2). The expression of CB1 and CB2 was modified as well. Moreover, ZnONPs elicited an increase in blood pressure. In conclusion, long-time oral administration of ZnONPs induce dyslipidemia and atherosclerosis eliciting alterations in aorta contractility, CB1 and CB2 receptors expression, and an increase in blood pressure in healthy rats.
Collapse
Affiliation(s)
| | | | | | - Saraí Limón-Miranda
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa 85880, Mexico;
| | | | | | - Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| | | | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico; (L.C.-S.); (J.A.)
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico; (L.C.-S.); (J.A.)
| | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| | - Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| |
Collapse
|
7
|
Yeung BG, Ma MW, Scolaro JA, Nelson AM. Cannabis Exposure Decreases Need for Blood Pressure Support During General Anesthesia in Orthopedic Trauma Surgery. Cannabis Cannabinoid Res 2021; 7:328-335. [PMID: 34227872 PMCID: PMC9225405 DOI: 10.1089/can.2021.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: As cannabis use continues to increase in popularity, it is important to investigate how it impacts public health in all sectors of the population, including patients undergoing anesthetic management. This retrospective study focuses on the orthopedic trauma population presenting through an emergency department (ED) and receiving a urine drug screen (UDS) with subsequent urgent surgical intervention. We aimed to evaluate differences in response to general anesthesia in patients with exposure to THC, a major cannabinoid, compared to controls that screened negative for THC. Materials and Methods: All ED visits at UC Irvine, a level 1 trauma center between November 4, 2017 and January 7, 2020, were evaluated in this study. Only adult patients who received a UDS and underwent urgent orthopedic trauma surgery within 48 h of ED visit were included in this study. Additional inclusion criteria required an anesthesia time greater than 1 h as well as anesthesia induction and intubation while in the operating room. Overall, we analyzed a total of 221 adult patients. Discussion: When adjusting for demographic variability, there were statistically significant differences in response to general anesthesia between these two groups. The THC-positive (THC(+)) group was less likely to receive intraoperative vasopressors, had higher mean arterial blood pressure and mean diastolic blood pressure, needed less total fluid input and had a lower overall fluid balance. Chronic exposure to THC has been shown to downregulate cannabinoid 1 receptors and cause alterations in endocannabinoid tone. These are two potential mechanisms by which the THC(+) group in our study may have become more resistant to the typically observed hypotensive effects of general anesthesia. Conclusion: The present study suggests that prior use of cannabis, objectively assessed by urinalysis, results in a decreased need for blood pressure support during general anesthesia. The physiological basis for this phenomenon is unclear, but possible causes might include the downregulation of vascular cannabinoid receptor 1 and/or altered endocannabinoid levels after exposure to cannabis.
Collapse
Affiliation(s)
- Brent G Yeung
- Department of Anesthesiology and Perioperative Care and University of California-Irvine, Orange, California, USA
| | - Michael W Ma
- Department of Anesthesiology and Perioperative Care and University of California-Irvine, Orange, California, USA
| | - John A Scolaro
- Department of Orthopaedic Surgery, University of California-Irvine, Orange, California, USA
| | - Ariana M Nelson
- Department of Anesthesiology and Perioperative Care and University of California-Irvine, Orange, California, USA
| |
Collapse
|
8
|
Type 2 Diabetes Alters Vascular Cannabinoid Receptor 1 Expression, Phosphorylation Status, and Vasorelaxation in Rat Aorta. Molecules 2020; 25:molecules25214948. [PMID: 33114620 PMCID: PMC7662259 DOI: 10.3390/molecules25214948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Previous studies have suggested a role of the endocannabinoid system in metabolic diseases, such as diabetes. We investigated the effect of diabetes on cannabinoid receptor type 1 (CB1) expression and cannabinoid-induced vasorelaxation in rat aorta rings. Aortas from healthy rats and from rats with experimentally induced diabetes were used to compare the vasorelaxant effect of the cannabinoid agonist arachidonylcyclopropylamide (ACPA) and CB1 expression and localization. After 4–8 weeks of diabetes induction, CB1 receptor expression and CB1 phosphorylation were higher in aortic rings, in association with greater vasorelaxation induced by the CB1 agonist ACPA compared to healthy rats. The vasorelaxant effect observed in healthy rats is similar throughout the study. Further studies are needed to elucidate the implications of CB1 receptor overexpression in diabetes and its influence on the progression of the cardiovascular complications of this metabolic disease.
Collapse
|
9
|
Andrade F, Rangel-Sandoval C, Rodríguez-Hernández A, López-Dyck E, Elizalde A, Virgen-Ortiz A, Bonales-Alatorre E, Valencia-Cruz G, Sánchez-Pastor E. Capsaicin Causes Vasorelaxation of Rat Aorta through Blocking of L-type Ca 2+ Channels and Activation of CB 1 Receptors. Molecules 2020; 25:molecules25173957. [PMID: 32872656 PMCID: PMC7504815 DOI: 10.3390/molecules25173957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 01/21/2023] Open
Abstract
The aim of this work was to determine whether Capsaicin may exert a vascular regulation through the activation of CB1 and/or CB2 receptors causing vasorelaxation in the rat aorta. Our results show the location of TRPV1 mainly in the endothelial and smooth muscle cells membrane. Nevertheless, Capsaicin caused vasorelaxation of this artery through a mechanism independent of TRPV1, since the specific antagonists Capsazepine and SB-366791 did not block the effect of Capsaicin. Because the significant expression of CB1 and CB2 receptors has been previously reported in the rat aorta, we used antagonists for these two receptors prior to the addition of Capsaicin. In these experiments, we found that the inhibition of CB1 using AM281, decreases the vasorelaxant effect caused by Capsaicin. On the other hand, the vasorelaxant effect is not altered in the presence of the CB2 receptor antagonist AM630. Furthermore, a partial decrease of the effect of Capsaicin was also seen when L-type calcium channels are blocked. A complete block of Capsaicin-induced vasorelaxation was achieved using a combination of Verapamil and AM281. In accordance to our results, Capsaicin-induced vasorelaxation of the rat aorta is neither dependent of TRPV1 or CB2 receptors, but rather it is strongly suggested that a tandem mechanism between inactivation of L-type calcium channels and the direct activation of CB1 receptors is involved. These findings are supported by CB1 docking simulation which predicted a binding site on CB1 receptors for Capsaicin.
Collapse
Affiliation(s)
- Felipa Andrade
- National Technological Institute of Mexico/Technological Institute of Colima, Avenida Tecnológico No. 1, CP 28976 Villa de Álvarez, Colima, Mexico;
| | - Cinthia Rangel-Sandoval
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | | | - Evelyn López-Dyck
- State University of Sonora, Navojoa Academic Unit. Blvd. Manlio Fabio Beltrones 810, CP 85875 Navojoa, Sonora, Mexico;
| | - Alejandro Elizalde
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Adolfo Virgen-Ortiz
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Edgar Bonales-Alatorre
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Georgina Valencia-Cruz
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Enrique Sánchez-Pastor
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
- Correspondence: ; Tel.: +52 (312) 31-611-29
| |
Collapse
|
10
|
Saleh-Ghadimi S, Kheirouri S, Maleki V, Jafari-Vayghan H, Alizadeh M. Endocannabinoid system and cardiometabolic risk factors: A comprehensive systematic review insight into the mechanistic effects of omega-3 fatty acids. Life Sci 2020; 250:117556. [PMID: 32184122 DOI: 10.1016/j.lfs.2020.117556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Increased levels of endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA) have a pathophysiological role in the setting of cardiometabolic diseases. This systematic review was carried out to appraise the effect of omega-3 on cardiometabolic risk factors by highlighting the mediating effect of endocannabinoids. SCOPUS, PubMed, Embase, Google Scholar and ProQuest databases were searched until January 2020. All published English-language animal studies and clinical trials that evaluated the effects of omega-3 on cardiometabolic diseases with a focus on endocannabinoids were included. Of 1407 studies, 16 animal studies and three clinical trials were included for analysis. Eleven animal studies and two human studies showed a marked reduction in 2-AG and AEA levels following intake of omega-3 which correlated with decreased adiposity, weight gain and improved glucose homeostasis. Moreover, endocannabinoids were elevated in three studies that replaced omega-3 with omega-6. Omega-3 showed anti-inflammatory properties due to reduced levels of inflammatory cytokines, regulation of T-cells function and increased levels of eicosapentaenoyl ethanolamide, docosahexaenoyl ethanolamide and oxylipins; however, a limited number of studies examined a correlation between inflammatory cytokines and endocannabinoids following omega-3 administration. In conclusion, omega-3 modulates endocannabinoid tone, which subsequently attenuates inflammation and cardiometabolic risk factors. However, further randomized clinical trials are needed before any recommendations are made to target the ECS using omega-3 as an alternative therapy to drugs for cardiometabolic disease improvement.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Li Y, Zhang L, Wu Y, Zheng Q, Chen M, Qian Z, Wei C, Han J, Liu Z, Ren W, Liu Y. Cannabinoids-induced peripheral analgesia depends on activation of BK channels. Brain Res 2019; 1711:23-28. [PMID: 30615887 DOI: 10.1016/j.brainres.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
The endogenous cannabinoid system is involved in the physiological inhibitory control of pain and is of particular interest for the development of therapeutic approaches for pain management. Selective activation of the peripheral CB1 cannabinoid receptor has been shown to suppress the heightened firing of primary afferents, which is the peripheral mechanism underlying neuropathic pain after nerve injury. However, the mechanism underlying this effect of CB1 receptor remains unclear. The large-conductance calcium-activated potassium (BK) channels have been reported to participate in anticonvulsant and vasorelaxant effects of cannabinoids. We asked whether BK channels participate in cannabinoids-induced analgesia and firing-suppressing effects in primary afferents after nerve injury. Here, using mice with chronic constriction injury (CCI)-induced neuropathic pain, antinociception action and firing-suppressing effect of HU210 were measured before and after BK channel blocker application. We found that local peripheral application of HU210 alleviated CCI-induced pain behavior and suppressed the heightened firing of injured fibers. Co-administration of IBTX with HU210 significantly reversed the analgesia and the firing-suppressing effect of HU210. This result indicated that the peripheral analgesic effects of cannabinoids depends on activation of BK channels.
Collapse
Affiliation(s)
- Yongfeng Li
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Leili Zhang
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Yuwei Wu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Qiaohua Zheng
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Mengjiao Chen
- School of Physics & Information Technology, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an 710119, China
| | - Zhaoqiang Qian
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Chunling Wei
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Yihui Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China.
| |
Collapse
|
12
|
Bukiya AN. Physiology of the Endocannabinoid System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:13-37. [PMID: 31332732 DOI: 10.1007/978-3-030-21737-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocannabinoid (eCB) system comprises endogenously produced cannabinoids (CBs), enzymes of their production and degradation, and CB-sensing receptors and transporters. The eCB system plays a critical role in virtually all stages of animal development. Studies on eCB system components and their physiological role have gained increasing attention with the rising legalization and medical use of marijuana products. The latter represent exogenous interventions that target the eCB system. This chapter summarizes knowledge in the field of CB contribution to gametogenesis, fertilization, embryo implantation, fetal development, birth, and adolescence-equivalent periods of ontogenesis. The material is complemented by the overview of data from our laboratory documenting the functional presence of the eCB system within cerebral arteries of baboons at different stages of development.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Abstract
Cannabinoids influence cardiovascular variables in health and disease via multiple mechanisms. The chapter covers the impact of cannabinoids on cardiovascular function in physiology and pathology and presents a critical analysis of the proposed signalling pathways governing regulation of cardiovascular function by endogenously produced and exogenous cannabinoids. We know that endocannabinoid system is overactivated under pathological conditions and plays both a protective compensatory role, such as in some forms of hypertension, atherosclerosis and other inflammatory conditions, and a pathophysiological role, such as in disease states associated with excessive hypotension. This chapter focuses on the mechanisms affecting hemodynamics and vasomotor effects of cannabinoids in health and disease states, highlighting mismatches between some studies. The chapter will first review the effects of marijuana smoking on cardiovascular system and then describe the impact of exogenous cannabinoids on cardiovascular parameters in humans and experimental animals. This will be followed by analysis of the impact of cannabinoids on reactivity of isolated vessels. The article critically reviews current knowledge on cannabinoid induction of vascular relaxation by cannabinoid receptor-dependent and -independent mechanisms and dysregulation of vascular endocannabinoid signaling in disease states.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine.
| |
Collapse
|
14
|
Sáez JC, Contreras-Duarte S, Gómez GI, Labra VC, Santibañez CA, Gajardo-Gómez R, Avendaño BC, Díaz EF, Montero TD, Velarde V, Orellana JA. Connexin 43 Hemichannel Activity Promoted by Pro-Inflammatory Cytokines and High Glucose Alters Endothelial Cell Function. Front Immunol 2018; 9:1899. [PMID: 30158937 PMCID: PMC6104120 DOI: 10.3389/fimmu.2018.01899] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The present work was done to elucidate whether hemichannels of a cell line derived from endothelial cells are affected by pro-inflammatory conditions (high glucose and IL-1β/TNF-α) known to lead to vascular dysfunction. We used EAhy 926 cells treated with high glucose and IL-1β/TNF-α. The hemichannel activity was evaluated with the dye uptake method and was abrogated with selective inhibitors or knocking down of hemichannel protein subunits with siRNA. Western blot analysis, cell surface biotinylation, and confocal microscopy were used to evaluate total and plasma membrane amounts of specific proteins and their cellular distribution, respectively. Changes in intracellular Ca2+ and nitric oxide (NO) signals were estimated by measuring FURA-2 and DAF-FM probes, respectively. High glucose concentration was found to elevate dye uptake, a response that was enhanced by IL-1β/TNF-α. High glucose plus IL-1β/TNF-α-induced dye uptake was abrogated by connexin 43 (Cx43) but not pannexin1 knockdown. Furthermore, Cx43 hemichannel activity was associated with enhanced ATP release and activation of p38 MAPK, inducible NO synthase, COX2, PGE2 receptor EP1, and P2X7/P2Y1 receptors. Inhibition of the above pathways prevented completely the increase in Cx43 hemichannel activity of cells treated high glucose and IL-1β/TNF-α. Both synthetic and endogenous cannabinoids (CBs) also prevented the increment in Cx43 hemichannel opening, as well as the subsequent generation and release of ATP and NO induced by pro-inflammatory conditions. The counteracting action of CBs also was extended to other endothelial alterations evoked by IL-1β/TNF-α and high glucose, including increased ATP-dependent Ca2+ dynamics and insulin-induced NO production. Finally, inhibition of Cx43 hemichannels also prevented the ATP release from endothelial cells treated with IL-1β/TNF-α and high glucose. Therefore, we propose that reduction of hemichannel activity could represent a strategy against the activation of deleterious pathways that lead to endothelial dysfunction and possibly cell damage evoked by high glucose and pro-inflammatory conditions during cardiovascular diseases.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Susana Contreras-Duarte
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile.,Departamento de Ginecología y Obstetricia, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A Santibañez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz C Avendaño
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trinidad D Montero
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victoria Velarde
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Richter JS, Quenardelle V, Rouyer O, Raul JS, Beaujeux R, Gény B, Wolff V. A Systematic Review of the Complex Effects of Cannabinoids on Cerebral and Peripheral Circulation in Animal Models. Front Physiol 2018; 9:622. [PMID: 29896112 PMCID: PMC5986896 DOI: 10.3389/fphys.2018.00622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
While cannabis is perceived as a relatively safe drug by the public, accumulating clinical data suggest detrimental cardiovascular effects of cannabinoids. Cannabis has been legalized in several countries and jurisdictions recently. Experimental studies specifically targeting cannabinoids' effects on the cerebral vasculature are rare. There is evidence for transient vasoconstrictive effects of cannabinoids in the peripheral and cerebral vasculature in a complex interplay of vasodilation and vasoconstriction. Vasoreactivity to cannabinoids is dependent on the specific molecules, their metabolites and dose, baseline vascular tone, and vessel characteristics as well as experimental conditions and animal species. We systematically review the currently available literature of experimental results in in vivo and in vitro animal studies, examining cannabinoids' effects on circulation and reactive vasodilation or vasoconstriction, with a particular focus on the cerebral vascular bed.
Collapse
Affiliation(s)
- J. Sebastian Richter
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
| | - Véronique Quenardelle
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| | - Olivier Rouyer
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | | | - Rémy Beaujeux
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
| | - Bernard Gény
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Wolff
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| |
Collapse
|
16
|
Karpińska O, Baranowska-Kuczko M, Kloza M, Kozłowska H. Endocannabinoids modulate G q/11 protein-coupled receptor agonist-induced vasoconstriction via a negative feedback mechanism. ACTA ACUST UNITED AC 2017; 70:214-222. [PMID: 29148061 DOI: 10.1111/jphp.12854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The endocannabinoid (eCB) system centrally and peripherally regulates cardiovascular parameters, including blood pressure, in health and disease. The relationship between Gq/11 protein-coupled receptor activation, regulation of eCBs release (mainly 2-arachidonoylglycerol) and subsequent CB1 receptor activation was initially observed in the central nervous system. Here, we review the latest findings from systemic physiological studies which include for the first time data from pulmonary arteries. We present evidence for direct CB1 -dependent cannabinoid ligand-induced vasorelaxation, vascular expression of eCBs along with their degradation enzymes, and indicate the location of the described interaction. KEY FINDINGS Endocannabinoids (mainly 2-arachidonoylglycerol), acting via CB1 receptors, evoke vasodilatory effects and may modulate responses of vasoconstrictors for Gq/11 protein-coupled receptors including angiotensin II, thromboxane A2 , phenylephrine, noradrenaline in systemic or pulmonary arteries. However, the role of the endothelium in this interaction is not well-established, and the precise vascular location of eCB system components remains unclear, which contributes to discrepancies in the interpretation of results when describing the above-mentioned relationship. SUMMARY Endocannabinoid's negative feedback is responsible for diminishing agonist-induced vasoconstriction, which may be clinically important in the treatment of arterial and pulmonary hypertension. Further research is required to establish the importance of the eCB system and its downstream signalling pathways.
Collapse
Affiliation(s)
- Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
17
|
Li H, Kim HW, Shin SE, Seo MS, An JR, Jung WK, Ha KS, Han ET, Hong SH, Bang H, Choi IW, Na SH, Park WS. The vasorelaxant effect of antidiabetic drug nateglinide via activation of voltage-dependent K + channels in aortic smooth muscle. Cardiovasc Ther 2017; 36. [PMID: 28834298 DOI: 10.1111/1755-5922.12299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 08/13/2017] [Indexed: 01/16/2023] Open
Abstract
AIMS We investigated the vasorelaxant effect of nateglinide and its related mechanisms using phenylephrine (Phe)-induced precontracted aortic rings. METHODS Arterial tone measurement was performed in aortic smooth muscle. RESULTS The application of nateglinide induced vasorelaxation in a concentration-dependent manner. Pretreatment with the large-conductance Ca2+ -activated K+ (BKCa ) channel inhibitor paxilline, the inwardly rectifying K+ (Kir) channel inhibitor Ba2+ , and ATP-sensitive K+ (KATP ) channel inhibitor glibenclamide did not affect the vasorelaxant effect of nateglinide. However, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) effectively reduced the vasorelaxant effect of nateglinide. Pretreatment with the Ca2+ inhibitor nifedipine and the sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin did not change the vasorelaxant effect of nateglinide. Additionally, the vasorelaxant effect of nateglinide was not altered in the presence of an adenylyl cyclase, a protein kinase A, a guanylyl cyclase, or a protein kinase G inhibitor. The vasorelaxant effect of nateglinide was not affected by the elimination of the endothelium. In addition, pretreatment with a nitric oxide synthase inhibitor, L-NAME, and a small-conductance Ca2+ -activated K+ (SKCa ) channel inhibitor, apamin, did not change the vasorelaxant effect of nateglinide. CONCLUSION Nateglinide induced vasorelaxation via the activation of the Kv channel independent of other K+ channels, Ca2+ channels, intracellular Ca2+ ([Ca2+ ]i ), and the endothelium.
Collapse
Affiliation(s)
- Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, South Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
18
|
Baker D, Pryce G, Visintin C, Sisay S, Bondarenko AI, Vanessa Ho WS, Jackson SJ, Williams TE, Al-Izki S, Sevastou I, Okuyama M, Graier WF, Stevenson LA, Tanner C, Ross R, Pertwee RG, Henstridge CM, Irving AJ, Schulman J, Powell K, Baker MD, Giovannoni G, Selwood DL. Big conductance calcium-activated potassium channel openers control spasticity without sedation. Br J Pharmacol 2017; 174:2662-2681. [PMID: 28677901 PMCID: PMC5522996 DOI: 10.1111/bph.13889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Our initial aim was to generate cannabinoid agents that control spasticity, occurring as a consequence of multiple sclerosis (MS), whilst avoiding the sedative side effects associated with cannabis. VSN16R was synthesized as an anandamide (endocannabinoid) analogue in an anti‐metabolite approach to identify drugs that target spasticity. Experimental Approach Following the initial chemistry, a variety of biochemical, pharmacological and electrophysiological approaches, using isolated cells, tissue‐based assays and in vivo animal models, were used to demonstrate the activity, efficacy, pharmacokinetics and mechanism of action of VSN16R. Toxicological and safety studies were performed in animals and humans. Key Results VSN16R had nanomolar activity in tissue‐based, functional assays and dose‐dependently inhibited spasticity in a mouse experimental encephalomyelitis model of MS. This effect occurred with over 1000‐fold therapeutic window, without affecting normal muscle tone. Efficacy was achieved at plasma levels that are feasible and safe in humans. VSN16R did not bind to known CB1/CB2/GPPR55 cannabinoid‐related receptors in receptor‐based assays but acted on a vascular cannabinoid target. This was identified as the major neuronal form of the big conductance, calcium‐activated potassium (BKCa) channel. Drug‐induced opening of neuronal BKCa channels induced membrane hyperpolarization, limiting excessive neural‐excitability and controlling spasticity. Conclusions and Implications We identified the neuronal form of the BKCa channel as the target for VSN16R and demonstrated that its activation alleviates neuronal excitability and spasticity in an experimental model of MS, revealing a novel mechanism to control spasticity. VSN16R is a potential, safe and selective ligand for controlling neural hyper‐excitability in spasticity.
Collapse
Affiliation(s)
- David Baker
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Gareth Pryce
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Cristina Visintin
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK.,Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sofia Sisay
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alexander I Bondarenko
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - W S Vanessa Ho
- Vascular Biology Research Centre. St. George's, University of London, London, UK
| | - Samuel J Jackson
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas E Williams
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah Al-Izki
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ioanna Sevastou
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Masahiro Okuyama
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lesley A Stevenson
- Vascular Biology Research Centre. St. George's, University of London, London, UK
| | - Carolyn Tanner
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Ruth Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Roger G Pertwee
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher M Henstridge
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Andrew J Irving
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jesse Schulman
- Canbex Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Keith Powell
- Canbex Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Mark D Baker
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - David L Selwood
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Research, University College London, London, UK
| |
Collapse
|
19
|
López-Dyck E, Andrade-Urzúa F, Elizalde A, Ferrer-Villada T, Dagnino-Acosta A, Huerta M, Osuna-Calleros Z, Rangel-Sandoval C, Sánchez-Pastor E. ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BK Ca channels, and nitric oxide dependent mechanisms. Pharmacol Rep 2017; 69:1131-1139. [PMID: 29128791 DOI: 10.1016/j.pharep.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/26/2017] [Accepted: 06/20/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension. The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB1-selective agonist) and JWH-133 (CB2-selective agonist) regulate the vascular tone of rat superior mesenteric arteries. METHODS To screen the expression of CB1 (Cannabinoid receptor 1) and CB2 (Cannabinoid receptor 2) receptors in arterial rings or isolated smooth muscle cells obtained from the artery, immunocytochemistry, immunohistochemistry, and confocal microscopy were performed. In addition, the effects on vascular tone induced by the two cannabinoids were tested in isometric tension experiments in rings obtained from superior mesenteric arteries. The participation of voltage and calcium-activated potassium channel of big conductance (BKCa) and the role of nitric oxide (NO) release on the vascular effects induced by ACPA and JWH-133 were tested. RESULTS CB1 and CB2 receptors were highly expressed in the rat superior mesenteric artery, in both smooth muscle and endothelium. The vasodilation effect shown by ACPA was endothelium-dependent through a mechanism involving CB1 receptors, BKCa channel activation, and NO release; meanwhile, the vasodilator effect of JWH-133 was induced by the activation of CB2 receptors located in smooth muscle and by a CB2 receptor-independent mechanism inducing NO release. CONCLUSIONS CB1 and CB2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BKCa channels and NO release.
Collapse
Affiliation(s)
- Evelyn López-Dyck
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Alejandro Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Tania Ferrer-Villada
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Zyanya Osuna-Calleros
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico.
| |
Collapse
|
20
|
Khan ZN, Leite ADL, Charone S, Sabino IT, Martini T, Pereira HABDS, Oliveira RC, Buzalaf MAR. Liver proteome of mice with different genetic susceptibilities to the effects of fluoride. J Appl Oral Sci 2016; 24:250-7. [PMID: 27383706 PMCID: PMC5022220 DOI: 10.1590/1678-775720150364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE In this study, we investigated the differential pattern of protein expression in the liver of these mice to provide insights on why they have different responses to F. MATERIAL AND METHODS Weanling male A/J and 129P3/J mice (n=10 from each strain) were pared and housed in metabolic cages with ad libitum access to low-F food and deionized water for 42 days. Liver proteome profiles were examined using nLC-MS/MS. Protein function was classified by GO biological process (Cluego v2.0.7 + Clupedia v1.0.8) and protein-protein interaction network was constructed (PSICQUIC, Cytoscape). RESULTS Most proteins with fold change were increased in A/J mice. The functional category with the highest percentage of altered genes was oxidation-reduction process (20%). Subnetwork analysis revealed that proteins with fold change interacted with Disks large homolog 4 and Calcium-activated potassium channel subunit alpha-1. A/J mice had an increase in proteins related to energy flux and oxidative stress. CONCLUSION This could be a possible explanation for the high susceptibility of these mice to the effects of F, since the exposure also induces oxidative stress.
Collapse
Affiliation(s)
- Zohaib Nisar Khan
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aline de Lima Leite
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil.,- Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - Senda Charone
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Isabela Tomazini Sabino
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Tatiana Martini
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | - Rodrigo Cardoso Oliveira
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Marília Afonso Rabelo Buzalaf
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
21
|
Reece AS, Norman A, Hulse GK. Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: a longitudinal study. BMJ Open 2016; 6:e011891. [PMID: 27821595 PMCID: PMC5129004 DOI: 10.1136/bmjopen-2016-011891] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES Many reports exist of the cardiovascular toxicity of smoked cannabis but none of arterial stiffness measures or vascular age (VA). In view of its diverse toxicology, the possibility that cannabis-exposed patients may be ageing more quickly requires investigation. DESIGN Cross-sectional and longitudinal, observational. Prospective. SETTING Single primary care addiction clinic in Brisbane, Australia. PARTICIPANTS 11 cannabis-only smokers, 504 tobacco-only smokers, 114 tobacco and cannabis smokers and 534 non-smokers. EXCLUSIONS known cardiovascular disease or therapy or acute exposure to alcohol, amphetamine, heroin or methadone. INTERVENTION Radial arterial pulse wave tonometry (AtCor, SphygmoCor, Sydney) performed opportunistically and sequentially on patients between 2006 and 2011. MAIN OUTCOME MEASURE Algorithmically calculated VA. SECONDARY OUTCOMES other central haemodynamic variables. RESULTS Differences between group chronological ages (CA, 30.47±0.48 to 40.36±2.44, mean±SEM) were controlled with linear regression. Between-group sex differences were controlled by single-sex analysis. Mean cannabis exposure among patients was 37.67±7.16 g-years. In regression models controlling for CA, Body Mass Index (BMI), time and inhalant group, the effect of cannabis use on VA was significant in males (p=0.0156) and females (p=0.0084). The effect size in males was 11.84%. A dose-response relationship was demonstrated with lifetime exposure (p<0.002) additional to that of tobacco and opioids. In both sexes, the effect of cannabis was robust to adjustment and was unrelated to its acute effects. Significant power interactions between cannabis exposure and the square and cube of CA were demonstrated (from p<0.002). CONCLUSIONS Cannabis is an interactive cardiovascular risk factor (additional to tobacco and opioids), shows a prominent dose-response effect and is robust to adjustment. Cannabis use is associated with an acceleration of the cardiovascular age, which is a powerful surrogate for the organismal-biological age. This likely underlies and bi-directionally interacts with its diverse toxicological profile and is of considerable public health and regulatory importance.
Collapse
Affiliation(s)
- Albert Stuart Reece
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Amanda Norman
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Gary Kenneth Hulse
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
22
|
Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, Kovács A, Ruzsnavszky O, Dienes B, Szentesi P, Friedrich O, Csernoch L. Cannabinoid signalling inhibits sarcoplasmic Ca 2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle. J Physiol 2016; 594:7381-7398. [PMID: 27641745 DOI: 10.1113/jp272449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. ABSTRACT Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP3 )-mediated Ca2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP3 -mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization-evoked transients in a pertussis-toxin sensitive manner, indicating a Gi/o protein-dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R-knockout animals, depolarization-evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild-type mice. Our results show that CB1R-mediated signalling exerts both a constitutive and an agonist-mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs.
Collapse
Affiliation(s)
- Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Bodnár
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrienn Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Olga Ruzsnavszky
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
McKernan K, Spangler J, Zhang L, Tadigotla V, Helbert Y, Foss T, Smith D. Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade Cannabis flowers. F1000Res 2015; 4:1422. [PMID: 27303623 PMCID: PMC4897766 DOI: 10.12688/f1000research.7507.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 11/21/2022] Open
Abstract
The Center for Disease Control estimates 128,000 people in the U.S. are hospitalized annually due to food borne illnesses. This has created a demand for food safety testing targeting the detection of pathogenic mold and bacteria on agricultural products. This risk extends to medical Cannabis and is of particular concern with inhaled, vaporized and even concentrated Cannabis products . As a result, third party microbial testing has become a regulatory requirement in the medical and recreational Cannabis markets, yet knowledge of the Cannabis microbiome is limited. Here we describe the first next generation sequencing survey of the fungal communities found in dispensary based Cannabis flowers by ITS2 sequencing, and demonstrate the sensitive detection of several toxigenic Penicillium and Aspergillus species, including P. citrinum and P. paxilli, that were not detected by one or more culture-based methods currently in use for safety testing.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Medicinal Genomics Corporation, Woburn, MA, USA
| | | | | | | | | |
Collapse
|
24
|
McKernan K, Spangler J, Zhang L, Tadigotla V, Helbert Y, Foss T, Smith D. Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade Cannabis flowers. F1000Res 2015; 4:1422. [PMID: 27303623 PMCID: PMC4897766 DOI: 10.12688/f1000research.7507.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 05/31/2024] Open
Abstract
The Center for Disease Control estimates 128,000 people in the U.S. are hospitalized annually due to food borne illnesses. This has created a demand for food safety testing targeting the detection of pathogenic mold and bacteria on agricultural products. This risk extends to medical Cannabis and is of particular concern with inhaled, vaporized and even concentrated Cannabis products . As a result, third party microbial testing has become a regulatory requirement in the medical and recreational Cannabis markets, yet knowledge of the Cannabis microbiome is limited. Here we describe the first next generation sequencing survey of the microbial communities found in dispensary based Cannabis flowers and demonstrate the limitations in the culture-based regulations that are being superimposed from the food industry.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Medicinal Genomics Corporation, Woburn, MA, USA
| | | | | | | | | |
Collapse
|