1
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Kumar V, Sharma C, Taleuzzaman M, Nagarajan K, Haque A, Bhatia M, Khan S, Salkini MA, Bhatt P. Neuroprotective Effect of Boswellia serrata against 3-NP Induced Experimental
Huntington’s Disease. CURRENT BIOACTIVE COMPOUNDS 2024; 20. [DOI: 10.2174/0115734072272233231119161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2025]
Abstract
Objectives:
The study aimed to assess the neuroprotective effect of Boswellia serrata
against 3-NP-induced experimental Huntington’s disease.
Background:
Previous studies have shown Boswellia to have sedative, analgesic, and anti-tumour
effects. Boswellia serrata yields four pentacyclic triterpene acids and boswellic acid, a bioactive
substance that prevents leukotriene biogenesis.
Methods:
The potential neuroprotective effect of Boswellia serrata against 3-nitro propionic acid
(3-NP)-induced Huntington's disease (HD) was examined at oral doses of 45 mg/kg, 90 mg/kg,
and 180 mg/kg. In this study, HD was induced by 3-NP at a dose of 10 mg/kg in Wistar rats. The
study used 56 Wistar rats (8 per group) for biochemical (inflammatory markers, acetylcholinesterase
activity) and behavioural (elevated plus maze, Y-maze, open-field, tail suspension tests,
etc.) assessments. Additionally, a histological examination of the brain was carried out. In addition,
the analysis of Boswellia serrata extract was performed by different analytical techniques,
like UV spectrophotometer, FTIR, and HPLC methods.
Results:
In the brain, succinate dehydrogenase is a mitochondrial enzyme irreversibly inhibited
by 3-NP. Administration of 3-NP resulted in HD with altered behavioural and motor changes
in rats. Treatment with Boswellia serrata resulted in remarkable protection of rats against
3-NP-induced behaviour and motor deficits in a dose-dependent manner. Moreover, in rats
administered with 3-NP, Boswellia serrata improved memory performance and lowered levels of
inflammatory biomarkers. These results have also been supported by histopathological analysis.
Acetyl-11-keto-p-boswellic acid was found to be the main active component of Boswellia serrata
extract.
Conclusion:
Boswellia serrata at a dose of 180 mg/kg exhibited better protection compared to the
other doses against HD induced by 3-NP. More detailed studies based on molecular targets are
needed for the Boswellia serrata to transition from the bench to the bedside for use as an adjuvant
in HD patients.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Pharmacology, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-Meerut
Road (NH-58), Ghaziabad, 201206 (UP), India
| | - Chanchal Sharma
- Department of Pharmacology, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-Meerut
Road (NH-58), Ghaziabad, 201206 (UP), India
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana
Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342008, Rajasthan, India
| | - Kandasamy Nagarajan
- Department of Pharmaceutical
Chemistry, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-Meerut Road (NH-58),
Ghaziabad, 201206 (UP), India
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Dentistry and Pharmacy, P.O.
Box, 31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Mamta Bhatia
- Department of Pharmacognosy, Faculty of Pharmacy, Maulana Azad
University, Village Bujhawar, Tehsil Luni, Jodhpur 342008, Rajasthan, India
| | - Sumayya Khan
- Department of Pharmacology, Faculty
of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342008, Rajasthan, India
| | - Mohamad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 1194, Saudi
Arabia
| | - Pankaj Bhatt
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-
Meerut Road (NH-58), Ghaziabad, 201206 (UP), India
| |
Collapse
|
3
|
Tashkandi HM, Althagafy HS, Jaber FA, Alamri T, Al-Abbas NS, Shaer NA, Harakeh S, Hassanein EHM. Vinpocetine mitigates methotrexate-induced duodenal intoxication by modulating NF-κB, JAK1/STAT-3, and RIPK1/RIPK3/MLKL signals. Immunopharmacol Immunotoxicol 2024; 46:11-19. [PMID: 37493389 DOI: 10.1080/08923973.2023.2239491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.
Collapse
Affiliation(s)
- Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
4
|
Mustafa AM, Shaheen AM, Zaki HF, Rabie MA. Nicorandil and carvedilol mitigates motor deficits in experimental autoimmune encephalomyelitis-induced multiple sclerosis: Role of TLR4/TRAF6/MAPK/NF-κB signalling cascade. Int Immunopharmacol 2024; 127:111387. [PMID: 38134593 DOI: 10.1016/j.intimp.2023.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating neurodegenerative disease that negatively affects neurotransmission. It can be pathologically mimicked by experimental autoimmune encephalomyelitis (EAE) animal model. ATP-sensitive potassium channels (KATP) plays a crucial role in the control of neuronal damage, however their role in MS are still obscure. Additionally, Carvedilol showed a promising neuroprotective activity against several neurological disorders. Therefore, the present study aimed to investigate the potential neuroprotective effect of KATP channel opener (nicorandil) as well as α and β adrenoceptor antagonist (Carvedilol) against EAE induced neurodegeneration in mice. Mice was treated with nicorandil (6 mg/kg/day; p.o.) and carvedilol (10 mg/kg/day; p.o.) for 14 days. Nicorandil and carvedilol showed improvement in clinical scoring, behaviour and motor coordination as established by histopathological investigation and immunohistochemical detection of MBP. Furthermore, both treatments downregulated the protein expression of TLR4/ MYD88/TRAF6 signalling cascade with downstream inhibition of (pT183/Y185)-JNK/p38 (pT180/Y182)-MAPK axis leading to reduction of neuroinflammatory status, as witnessed by reduction of NF-κB, TNF-α, IL-1β and IL-6 contents. Moreover, nicorandil and carvedilol attenuated oxidative damage by increasing Nrf2 content and SOD activity together with reduction of MDA content. In addition, an immunomodulating effect via inhibiting the gene expression of CD4, TGF-β, and IL-17 as well as TGF-β, IL-17, and IL-23 contents along with anti-apoptotic effect by decreasing Bax protein expression and Caspase-3 content and increasing Bcl-2 protein expression was observed with nicorandil and carvedilol treatments. In conclusion, nicorandil and carvedilol exerted a neuroprotective activity against EAE induced neuronal loss via inhibition of TLR4/MYD88/TRAF6/JNK/p38-MAPK axis besides antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
- Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
5
|
Zhu Z, Tang W, Qiu X, Xin X, Zhang J. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics. Eur J Med Chem 2024; 263:115967. [PMID: 38000211 DOI: 10.1016/j.ejmech.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Phosphodiesterase 1 (PDE1) is an enzyme entrusted with the hydrolysis of the second messengers cAMP and cGMP, thereby governing a plethora of metabolic processes, encompassing ion channel modulation and cellular apoptosis. Recent advancements in the realm of small molecule structural variations have greatly facilitated the exploration of innovative applications for PDE1. Remarkably, a recent series of PDE1 inhibitors (PDE1i) have been meticulously formulated and devised, showcasing enhanced selectivity and potency. Among them, ITI-214 has entered Phase II clinical trials, holding promise for the treatment of Parkinson's disease and heart failure. Nevertheless, the majority of current PDE1 inhibitors have encountered substantial side effects in clinical trials attributable to their limited selectivity, this predicament presents a formidable obstacle in the development of specific small molecule inhibitors targeting PDE1. This Perspective endeavors to illuminate the potential design approaches, structure-activity relationships, and biological activities of current PDE1i, aiming to offer support and insights for clinical practice and the development of novel PDE1i.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wentao Tang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Xin
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Gupta S, Singh P, Sharma B. Montelukast Ameliorates 2K1C-Hypertension Induced Endothelial Dysfunction and Associated Vascular Dementia. Curr Hypertens Rev 2024; 20:23-35. [PMID: 38192137 DOI: 10.2174/0115734021276985231204092425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Declined kidney function associated with hypertension is a danger for cognitive deficits, dementia, and brain injury. Cognitive decline and vascular dementia (VaD) are serious public health concerns, which highlights the urgent need for study on the risk factors for cognitive decline. Cysteinyl leukotriene (CysLT1) receptors are concerned with regulating cognition, motivation, inflammatory processes, and neurogenesis. OBJECTIVE This research aims to examine the consequence of montelukast (specific CysLT1 antagonist) in renovascular hypertension 2-kidney-1-clip-2K1C model-triggered VaD in experimental animals. METHODS 2K1C tactics were made to prompt renovascular hypertension in mature male rats. Morris water maze was employed to measure cognition. Mean arterial pressure (MAP), serum nitrite levels, aortic superoxide content, vascular endothelial activity, brain's oxidative stress (diminished glutathione, raised lipid peroxides), inflammatory markers (IL-10, IL-6, TNF-α), cholinergic activity (raised acetylcholinesterase), and cerebral injury (staining of 2, 3, 5- triphenylterazolium chloride) were also examined. RESULTS Montelukast in doses of 5.0 and 10.0 mg kg-1 was used intraperitoneally as the treatment drug. Along with cognitive deficits, 2K1C-operated rats showed elevated MAP, endothelial dysfunction, brain oxidative stress, inflammation, and cerebral damage with diminished serum nitrite/nitrate. Montelukast therapy significantly and dose-dependently mitigated the 2K1Chypertension- provoked impaired behaviors, biochemistry, endothelial functions, and cerebral infarction. CONCLUSION The 2K1C tactic caused renovascular hypertension and associated VaD, which was mitigated via targeted regulation of CysLT1 receptors by montelukast administration. Therefore, montelukast may be taken into consideration for the evaluation of its complete potential in renovascular-hypertension-induced VaD.
Collapse
MESH Headings
- Animals
- Sulfides
- Cyclopropanes
- Acetates/pharmacology
- Quinolines/pharmacology
- Male
- Dementia, Vascular/physiopathology
- Dementia, Vascular/drug therapy
- Dementia, Vascular/metabolism
- Dementia, Vascular/psychology
- Leukotriene Antagonists/pharmacology
- Oxidative Stress/drug effects
- Hypertension, Renovascular/physiopathology
- Hypertension, Renovascular/drug therapy
- Hypertension, Renovascular/metabolism
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Receptors, Leukotriene/metabolism
- Inflammation Mediators/metabolism
- Cognition/drug effects
- Rats, Wistar
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Rats
- Maze Learning/drug effects
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Uttar Pradesh, India
| | - Prabhat Singh
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
7
|
Gupta T, Singh V, Hefnawy M, Alanazi MM, Alsuwayt B, Kabra A, Kumar A, Pasricha C, Singh R. Ameliorating the Role of Aripiprazole in Memory Deficits Induced by Intracerebroventricular Streptozotocin-Induced Dementia of Alzheimer's Type. ACS OMEGA 2023; 8:25295-25302. [PMID: 37483219 PMCID: PMC10357558 DOI: 10.1021/acsomega.3c02550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing immense suffering for the patients. Dopamine D2 and 5-hydroxytryptamine receptor 1A (5-HT1A) receptors' activation has been reported to play a crucial role in managing neurological outcomes in the brain and other health disorders. This study aimed to investigate the role of aripiprazole, a dopamine D2 and 5-HT1A selective receptors' activator, in the restoration of memory deficit induced by streptozotocin in mice. The cognitive functions of animals were determined using the Morris water maze. Brain sections were stained with hematoxylin and eosin and Congo red to examine the structural deviations. Brain oxidative stress (thiobarbituric acid reactive substance and glutathione), acetylcholinesterase activity, IL-6, and IL-10 were measured to assess biochemical alterations. Activation of D2 and 5-HT1A with aripiprazole attenuated STZ-induced cognitive deficit, increased brain GSH levels, reduced TBARS levels, AChE activity, IL-6 levels, and IL-10 levels and prevented STZ-induced brain anomalies in mice. Hence, the present study concluded that aripiprazole mitigated STZ-induced memory impairment and can be used as an efficacious therapeutic target for the management of AD.
Collapse
Affiliation(s)
- Tarun Gupta
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Varinder Singh
- Department
of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Mohamed Hefnawy
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bader Alsuwayt
- Department
of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Atul Kabra
- University
Institute of Pharma Sciences, Chandigarh
University, Mohali 140301, Punjab, India
| | - Amit Kumar
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Chirag Pasricha
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ravinder Singh
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
8
|
Sharma N, Luhach K, Golani LK, Singh B, Sharma B. Vinpocetine, a PDE1 modulator, regulates markers of cerebral health, inflammation, and oxidative stress in a rat model of prenatal alcohol-induced experimental attention deficit hyperactivity disorder. Alcohol 2022; 105:25-34. [PMID: 35995260 DOI: 10.1016/j.alcohol.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/26/2023]
Abstract
Prenatal alcohol exposure (PAE) has been shown to induce symptomatology associated with attention deficit hyperactivity disorder (ADHD) by altering neurodevelopmental trajectories. Phosphodiesterase-1 (PDE1) is expressed centrally and has been used in various experimental brain conditions. We investigated the role of vinpocetine, a PDE1 inhibitor, on behavioral phenotypes and important biochemical deficits associated with a PAE rat model of ADHD. Protein markers of cerebral health (synapsin-IIa, BDNF, and pCREB), inflammation (IL-6, IL-10, and TNF-α), and oxidative stress (TBARS, GSH, and SOD) were analyzed in three brain regions (frontal cortex, striatum, and cerebellum). Hyperactivity, inattention, and anxiety introduced in the offspring due to PAE were assayed using open-field, Y-maze, and elevated plus maze, respectively. Administration of vinpocetine (10 & 20 mg/kg, p.o. [by mouth]) to PAE rat offspring for 4 weeks resulted in improvement of the behavioral profile of the animals. Additionally, levels of protein markers such as synapsin-IIa, BDNF, pCREB, IL-10, SOD, and GSH were found to be significantly increased, with a significant reduction in markers such as TNF-α, IL-6, and TBARS in selected brain regions of vinpocetine-treated animals. Vinpocetine, a selective PDE1 inhibitor, rectified behavioral phenotypes associated with ADHD, possibly by improving cerebral function, reducing brain inflammation, and reducing brain oxidative stress. This study provides preliminary analysis and suggests that the PDE1 enzyme may be an important pharmacological tool to study ADHD as a result of PAE.
Collapse
Affiliation(s)
- Niti Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Lalit K Golani
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Bhagwat Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
9
|
Lv J, Xiao X, Bi M, Tang T, Kong D, Diao M, Jiao Q, Chen X, Yan C, Du X, Jiang H. ATP-sensitive potassium channels: A double-edged sword in neurodegenerative diseases. Ageing Res Rev 2022; 80:101676. [PMID: 35724860 DOI: 10.1016/j.arr.2022.101676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
ATP-sensitive potassium channels (KATP channels), a group of vital channels that link the electrical activity of the cell membrane with cell metabolism, were discovered on the ventricular myocytes of guinea pigs by Noma using the patch-clamp technique in 1983. Subsequently, KATP channels have been found to be expressed in pancreatic β cells, cardiomyocytes, skeletal muscle cells, and nerve cells in the substantia nigra (SN), hippocampus, cortex, and basal ganglia. KATP channel openers (KCOs) diazoxide, nicorandil, minoxidil, and the KATP channel inhibitor glibenclamide have been shown to have anti-hypertensive, anti-myocardial ischemia, and insulin-releasing regulatory effects. Increasing evidence has suggested that KATP channels also play roles in Alzheimer's disease (AD), Parkinson's disease (PD), vascular dementia (VD), Huntington's disease (HD) and other neurodegenerative diseases. KCOs and KATP channel inhibitors protect neurons from injury by regulating neuronal excitability and neurotransmitter release, inhibiting abnormal protein aggregation and Ca2+ overload, reducing reactive oxygen species (ROS) production and microglia activation. However, KATP channels have dual effects in some cases. In this review, we focus on the roles of KATP channels and their related openers and inhibitors in neurodegenerative diseases. This will enable us to precisely take advantage of the KATP channels and provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jirong Lv
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Deao Kong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Meining Diao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Ali AA, Khalil MG, Abd El-Latif DM, Okda T, Abdelaziz AI, Abu-Elfotuh K, Kamal MM, Wahid A. The influence of vinpocetine alone or in combination with Epigallocatechin-3-gallate, Coenzyme COQ10, Vitamin E and Selenium as a potential neuroprotective combination against aluminium-induced Alzheimer's disease in Wistar Albino Rats. Arch Gerontol Geriatr 2021; 98:104557. [PMID: 34706318 DOI: 10.1016/j.archger.2021.104557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of such diseases that represent the most prominent cause of dementia in elderly people. To explore the possible neuroprotective effect as well as mechanism of action of Vinpocetine either alone or in combination with EGCG, CoQ10, or VE & Se in ameliorating aluminum chloride-induced AD in rats. Rats were received AlCl3 (70 mg/kg) intraperitoneal daily dose for 30 days along with EGCG (10 mg/kg, I.P), CoQ10 (200 mg/kg, P.O), VE (100 mg/kg, P.O) & Se (1 mg/kg, P.O) as well as Vinpocetine (20 mg/kg, P.O) either alone or in combination. Results revealed that the combination of Vinpocetine with EGCG showed the best neuroprotection. This protection in the brain was indicated by the significant decrease in Aβ and ACHE. The same pattern of results were shown in the levels of monoamines and BDNF. In addition, the combination of Vinpocetine with EGCG showed more pronounced anti-inflammatory (TNF-α, IL-1β) and antioxidant (MDA, SOD, TAC) effects in comparison to other combinations. These results were confirmed using histopathological examinations as well as DNA fragmentation assays. Vinpocetine with EGCG showed pronounced protection on neurons against AD induced by AlCl3 in rats.
Collapse
Affiliation(s)
- Azza A Ali
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona G Khalil
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Doaa M Abd El-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Tarek Okda
- Department of Biochemistry, Faculty of pharmacy, Damanhour University, Egypt
| | - Aya I Abdelaziz
- Medical Research Center, Faculty of pharmacy, Heliopolis University, Egypt
| | - Karema Abu-Elfotuh
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona M Kamal
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of pharmacy, Alexandria University, Egypt.
| |
Collapse
|
11
|
Luhach K, Kulkarni GT, Singh VP, Sharma B. Vinpocetine amended prenatal valproic acid induced features of ASD possibly by altering markers of neuronal function, inflammation, and oxidative stress. Autism Res 2021; 14:2270-2286. [PMID: 34415116 DOI: 10.1002/aur.2597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology and phenotypes. Phosphodiesterase-1 (PDE1) inhibitors are known to provide benefits in various brain conditions manifesting similar behavioral phenotypes. The pharmacological consequences of vinpocetine administration a PDE1 inhibitor in prenatal-valproic acid (pre-VPA) induced ASD related behavioral phenotypes (social behavior deficits, repetitive behavior, anxiety, hyperlocomotion, and nociception) was assessed. Also, effects on important biochemical markers of neuronal function (DCX-neurogenesis, BDNF-neuronal survival, synapsin-IIa-synaptic transmission, pCREB-neuronal transcription factor), inflammation (interleukin [IL]-6, IL-10, and TNF-α) and oxidative stress (thiobarbituric acid reactive substance [TBARS] and glutathione (GSH) were studied in important brain areas (frontal cortex, cerebral cortex, hippocampus, and striatum). Further, neuronal cell viability was determined in dentate gyrus using Nissl staining. Pre-VPA administration resulted into impaired behavior, brain biochemistry, and neuronal cell viability. Administration of vinpocetine resulted in improvements of pre-VPA impaired social behavior, repetitive behavior, anxiety, locomotion, and nociception. Also, vinpocetine resulted in a significant increase in the levels of BDNF, synapsin-IIa, DCX, pCREB/CREB, IL-10, and GSH along with significant decrease in TNF-α, IL-6, TBARS, number of pyknotic and chromatolytic cells in different brain areas of pre-VPA group. Finally, high association between behavioral parameters and biochemical parameters was observed upon Pearson's correlation analysis. Vinpocetine, a PDE1 inhibitor rectified important behavioral phenotypes related with ASD, possibly by improving neuronal function, brain inflammation and brain oxidative stress. Thus, PDE1 may be a possible target for further understanding ASD. LAY SUMMARY: ASD is a brain developmental disorder with a wide array of genetic and environmental factors. Many targets have been identified till date, but a clinical treatment is still afar. The results of this study indicate that vinpocetine administration resulted in amelioration of ASD associated symptomatology in rats, prenatally exposed to VPA. Our research adds a widely expressed brain enzyme PDE1, as a possible novel pharmacological target and opens-up a new line of enquiry for ASD treatment.
Collapse
Affiliation(s)
- Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | | | - Vijay P Singh
- CSIR-Institute of Genomics & Integrative Biology, Academy of scientific and Innovative research, New Delhi, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India.,CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
12
|
Samidurai A, Xi L, Das A, Iness AN, Vigneshwar NG, Li PL, Singla DK, Muniyan S, Batra SK, Kukreja RC. Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Pharmacol Ther 2021; 226:107858. [PMID: 33895190 DOI: 10.1016/j.pharmthera.2021.107858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are superfamily of enzymes that regulate the spatial and temporal relationship of second messenger signaling in the cellular system. Among the 11 different families of PDEs, phosphodiesterase 1 (PDE1) sub-family of enzymes hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in a mutually competitive manner. The catalytic activity of PDE1 is stimulated by their binding to Ca2+/calmodulin (CaM), resulting in the integration of Ca2+ and cyclic nucleotide-mediated signaling in various diseases. The PDE1 family includes three subtypes, PDE1A, PDE1B and PDE1C, which differ for their relative affinities for cAMP and cGMP. These isoforms are differentially expressed throughout the body, including the cardiovascular, central nervous system and other organs. Thus, PDE1 enzymes play a critical role in the pathophysiology of diseases through the fundamental regulation of cAMP and cGMP signaling. This comprehensive review provides the current research on PDE1 and its potential utility as a therapeutic target in diseases including the cardiovascular, pulmonary, metabolic, neurocognitive, renal, cancers and possibly others.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Audra N Iness
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Navin G Vigneshwar
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|
13
|
Salman M, Sharma P, Alam MI, Tabassum H, Parvez S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington's disease like symptoms in rats. Nutr Neurosci 2021; 25:1898-1908. [PMID: 33856270 DOI: 10.1080/1028415x.2021.1913319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naringenin is a powerful antioxidant and anti-inflammatory flavonoid which has been widely used as a therapeutic agent in various toxic models. However, few studies have clearly discussed the neuromodulatory effects of naringenin against different neurodegenerative disorders. AIM We investigated the neuroprotective efficacy of naringenin against 3-nitropropionic acid (3-NP)-induced neurobehavioral, biochemical and histopathological alterations in rats. METHODS Albino Wistar rats were randomly divided into three experimental groups. Group 1, the vehicle administered group, received saline. Group 2 received 3-NP (20 mg/kg body weight, i.p.) for 4 consecutive days. Group 3 received naringenin (50 mg/kg body weight, p.o.) twice daily for a period of 4 days, 30 min before and 6 h after the 3-NP administration. On the 5th day, neurobehavioral experiments were performed to access the behavioral outcomes and the striatum tissue was used for analysis of the monoamine oxidase (MAO) activity and serotonin (5-HT) levels. In addition, astrocytes activation was observed by glial fibrillary acidic protein (GFAP) immunostaining. RESULTS Our results showed that naringenin co-treatment provides neuroprotection against 3-NP-induced neurological disorders. Naringenin also increased the MAO activity and 5-HT levels in the striatum. Moreover, co-treatment with naringenin reduced the expression of GFAP protein in the striatal part and significantly attenuated the neuronal cell death. The findings of the present study suggest that naringenin provides neuroprotection and mitigates neurobehavioral alterations in experimental rats. CONCLUSION The results show that co-treatment with naringenin ameliorates 3-NP-induced HD-like symptoms in rats.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Pooja Sharma
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Md Iqbal Alam
- Department of Medical Physiology, HIMSR, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Schröder S, Scheunemann M, Wenzel B, Brust P. Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. Int J Mol Sci 2021; 22:ijms22083832. [PMID: 33917199 PMCID: PMC8068090 DOI: 10.3390/ijms22083832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.
Collapse
Affiliation(s)
- Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
- Correspondence: ; Tel.: +49-341-234-179-4631
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| |
Collapse
|
15
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
16
|
Song W, Yin W, Ding L, Gao Y, Xu J, Yang Y, He X, Gong P, Wei L, Chen W, Zhang J. Vinpocetine reduces cisplatin-induced acute kidney injury through inhibition of NF-κB pathway and activation of Nrf2/ARE pathway in rats. Int Urol Nephrol 2020; 52:1389-1401. [PMID: 32418008 DOI: 10.1007/s11255-020-02485-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Acute kidney injury is a complex clinical disease that is associated with a high incidence of morbidity and mortality. Drug-induced acute kidney injury occurs in approximately 19-33% of hospitalized patients. Cisplatin, one of the most commonly used and effective chemotherapeutic drugs not only exerts anti-tumor effects but also causes renal toxicity damage, affecting its clinical application. Vinpocetine is an anti-inflammatory and antioxidant drug that predominately acts in the nervous system. In this study, we investigated the effects and mechanisms of vinpocetine in an animal model of cisplatin-induced acute renal injury. Rats were randomly divided into three experimental groups. During a 10-day trial, rats in the control group were administered a physiological saline solution; rats in the model group received a 5 mg/kg intraperitoneal injection of cisplatin; and rats in the cisplatin + vinpocetine group received a 5 mg/kg intraperitoneal injection of cisplatin as well as a 5 mg/kg dose of vinpocetine via gavage. We observed that following cisplatin administration, the rats exhibited an increase in blood urea and creatinine levels as well as an increase in their inflammation and oxidative stress levels. In renal tissue, cisplatin caused the morphological changes typical of acute tubular injury. Vinpocetine reduced the cisplatin-induced acute renal function damage and tubular injury. In both in vivo and in vitro experiments, we found that vinpocetine can confer protection of rat renal cells by inhibiting the NF-κB signaling pathway and activating the Nrf2/ARE signaling pathway. Therefore, vinpocetine is a promising therapeutic drug for the treatment of cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Weinan Yin
- School of Basic Medical Sciences, Department of Pathology and Pathophysiology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Liang Ding
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yang Gao
- School of Basic Medical Sciences, Department of Pathology and Pathophysiology, Wuhan University, Wuhan, 430071, Hubei, China
| | - JingJing Xu
- School of Basic Medical Sciences, Department of Pathology and Pathophysiology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yan Yang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xin He
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Pengju Gong
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lei Wei
- School of Basic Medical Sciences, Department of Pathology and Pathophysiology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Wenli Chen
- Division of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
17
|
Khames A, Khalaf MM, Gad AM, Abd El-raouf OM, Kandeil MA. Nicorandil combats doxorubicin–induced nephrotoxicity via amendment of TLR4/P38 MAPK/NFκ-B signaling pathway. Chem Biol Interact 2019. [DOI: https://doi.org/10.1016/j.cbi.2019.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Khames A, Khalaf MM, Gad AM, Abd El-Raouf OM, Kandeil MA. Nicorandil combats doxorubicin-induced nephrotoxicity via amendment of TLR4/P38 MAPK/NFκ-B signaling pathway. Chem Biol Interact 2019; 311:108777. [PMID: 31376360 DOI: 10.1016/j.cbi.2019.108777] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Nicorandil ameliorated doxorubicin-induced nephrotoxicity; this study aimed to show and explain the mechanism of this protection. A precise method was elucidated to study the effect of nicorandil on doxorubicin-induced nephrotoxicity in rats depending on the critical inflammation pathway TLR4/MAPK P38/NFκ-B. Adult male rats were subdivided into four groups. The 1st group was normal control, the 2nd group received nicorandil (3 mg/kg; p.o., for 4 weeks), the 3rd group received doxorubicin (2.6 mg/kg, i.p., twice per week for 4 weeks), and the fourth group was combination of doxorubicin and nicorandil for 4 weeks. Nephrotoxicity was assessed by biochemical tests through measuring Kidney function biomarkers such as [serum levels of urea, creatinine, albumin and total protein] besides renal kidney injury molecule-1 (KIM-1) and cystatin C], oxidative stress parameters such as [renal tissue malondialdehyde (MDA), reduced glutathione (GSH), SOD, catalase and nrf-2], mediators of inflammation such as [Toll like receptor 4 (TLR-4), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), p38 MAPK, Interleukin 1 beta (IL-1 β), and Tumor necrosis factor alpha (TNF-α)] and markers of apoptosis [BAX and Bcl-2 in renal tissue]. Finally, our data were supported by histopathology examination. Nicorandil pretreatment resulted in a significant decrease in nephrotoxicity biomarkers, oxidative stress markers, inflammatory mediators and prevented apoptosis through decreasing BAX and increasing Bcl-2 in renal tissues. Nicorandil prevented all the histological alterations caused by doxorubicin. Nicorandil is a promising antidote against doxorubicin-induced nephrotoxicity by neutralizing all toxicity mechanisms caused by doxorubicin through normalizing inflammatory cascade of TLR4/MAPK P38/NFκ-B.
Collapse
Affiliation(s)
- Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Minia, Egypt; Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Ola M Abd El-Raouf
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Mohamed Ahmed Kandeil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
颜 文, 张 纯, 邢 通, 宫 雪, 杨 宇, 李 亦, 刘 玄, 阿依江·加马力丁, 郁 叶, 张 萌, 陈 莉. [Nicorandil improves cognitive dysfunction in mice with streptozotocin-induced diabetes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:384-389. [PMID: 29735436 PMCID: PMC6765662 DOI: 10.3969/j.issn.1673-4254.2018.04.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To observe the protective effects of potassium channel opener nicorandil against cognitive dysfunction in mice with streptozotocin (STZ)-induced diabetes. METHODS C57BL/6J mouse models of type 1 diabetes mellitus (T1DM) were established by intraperitoneal injection of STZ and received daily treatment with intragastric administration of nicorandil or saline (model group) for 4 consecutive weeks, with normal C57BL/6J mice serving as control. Fasting blood glucose level was recorded every week and Morris water maze was used to evaluate the cognitive behavior of the mice in the 4th week. At the end of the experiment, the mice were sacrificed to observe the ultrastructural changes in the hippocampus and pancreas under transmission electron microscopy; the contents of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the hippocampus and SOD activity and MDA level in the brain tissue were determined. RESULTS Compared with the control group, the model group showed significantly increased fasting blood glucose (P<0.001), significantly prolonged escape latency (P<0.05) and increased swimming distance (P<0.01) with ultrastructural damage of pancreatic β cells and in the hippocampus; GIP and GLP-1 contents in the hippocampus (P<0.01) and SOD activity in the brain were significantly decreased (P<0.05) and MDA content was significantly increased in the model group (P<0.05). Compared with the model group, nicorandil treatment did not cause significant changes in fasting blood glucose, but significantly reduced the swimming distance (P<0.05); nicorandil did not improve the ultrastructural changes in pancreatic β cells but obviously improved the ultrastructures of hippocampal neurons and synapses. Nicorandil also significantly increased the contents of GIP and GLP-1 in the hippocampus (P<0.05), enhanced SOD activity (P<0.05) and decreased MDA level (P<0.01) in the brain tissue. CONCLUSION Nicorandil improves cognitive dysfunction in mice with STZ-induced diabetes by increasing GIP and GLP-1 contents in the hippocampus and promoting antioxidation to relieve hippocampal injury.
Collapse
Affiliation(s)
- 文慧 颜
- 西安交通大学医学部 基础医学院药理学系 陕西 西安 710061Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 纯茜 张
- 西安交通大学医学部 临床医学系,陕西 西安 710061Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 通 邢
- 西安交通大学医学部 临床医学系,陕西 西安 710061Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 雪 宫
- 西安交通大学医学部 临床医学系,陕西 西安 710061Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 宇轩 杨
- 西安交通大学医学部 临床医学系,陕西 西安 710061Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 亦诺 李
- 西安交通大学医学部 临床医学系,陕西 西安 710061Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 玄 刘
- 西安交通大学医学部 临床医学系,陕西 西安 710061Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 阿依江·加马力丁
- 西安交通大学医学部 临床医学系,陕西 西安 710061Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 叶 郁
- 西安交通大学医学部 基础医学院药理学系 陕西 西安 710061Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 萌 张
- 西安交通大学医学部 基础医学院药理学系 陕西 西安 710061Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - 莉娜 陈
- 西安交通大学医学部 基础医学院药理学系 陕西 西安 710061Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
20
|
Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:729-742. [PMID: 29671021 DOI: 10.1007/s00210-018-1498-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain. Extensive accumulation of Mn in the brain may cause central nervous system dysfunction known as manganism, a motor disorder associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by vinpocetine in the Mn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other three groups were given MnCl2; two of them were treated with either L-dopa, the gold standard antiparkinsonian drug, or vinpocetine. Rats receiving MnCl2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress and inflammation were detected in the striata. L-dopa or vinpocetine exerted protective effects against MnCl2-induced neurotoxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant, antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine in the Mn-induced neurotoxicity model in rats.
Collapse
|
21
|
Cardinale A, Fusco FR. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease. CNS Neurosci Ther 2018; 24:319-328. [PMID: 29500937 DOI: 10.1111/cns.12834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative condition, due to a mutation in the IT15 gene encoding for huntingtin. Currently, disease-modifying therapy is not available for HD, and only symptomatic drugs are administered for the management of symptoms. In the last few years, preclinical and clinical studies have indicated that pharmacological strategies aimed at inhibiting cyclic nucleotide phosphodiesterase (PDEs) may develop into a novel therapeutic approach in neurodegenerative disorders. PDEs are a family of enzymes that hydrolyze cyclic nucleotides into monophosphate isoforms. Cyclic nucleotides are second messengers that transduce the signal of hormones and neurotransmitters in many physiological processes, such as protein kinase cascades and synaptic transmission. An alteration in their balance results in the dysregulation of different biological mechanisms (transcriptional dysregulation, immune cell activation, inflammatory mechanisms, and regeneration) that are involved in neurological diseases. In this review, we discuss the action of phosphodiesterase inhibitors and their role as therapeutic agents in HD.
Collapse
Affiliation(s)
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
22
|
Mei HF, Poonit N, Zhang YC, Ye CY, Cai HL, Yu CY, Zhou YH, Wu BB, Cai J, Cai XH. Activating adenosine A1 receptor accelerates PC12 cell injury via ADORA1/PKC/KATP pathway after intermittent hypoxia exposure. Mol Cell Biochem 2018; 446:161-170. [PMID: 29380238 DOI: 10.1007/s11010-018-3283-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with the neurocognitive deficits as a result of the neuronal cell injury. Previous studies have shown that adenosine A1 receptor (ADORA1) played an important role against hypoxia exposure, such as controlling the metabolic recovery in rat hippocampal slices and increasing the resistance in the combined effects of hypoxia and hypercapnia. However, little is known about whether ADORA1 takes part in the course of neuronal cell injury after intermittent hypoxia exposure which was the main pathological characteristic of OSAHS. The present study is performed to explore the underlying mechanism of neuronal cell injury which was induced by intermittent hypoxia exposure in PC12 cells. In our research, we find that the stimulation of the ADORA1 by CCPA accelerated the injury of PC12 cells as well as upregulated the expression of PKC, inwardly rectifying potassium channel 6.2(Kir6.2) and sulfonylurea receptor 1(SUR1) while inhibition of the ADORA1 by DPCPX alleviated the injury of PC12 cells as well as downregulated the expression of PKC, Kir6.2, and SUR1. Moreover, inhibition of the PKC by CHE, also mitigated the injury of PC12 cells, suppressed the Kir6.2 and SUR1 expressions induced by PKC. Taken together, our findings indicate that ADORA1 accelerated PC12 cells injury after intermittent hypoxia exposure via ADORA1/PKC/KATP signaling pathway.
Collapse
Affiliation(s)
- Hong-Fang Mei
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Neha Poonit
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi-Chun Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chu-Yuan Ye
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hui-Lin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen-Yi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bei-Bei Wu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China. .,Department of Pediatrics, Children's Hospital Research Institute, The University of Louisville, Louisville, KY, USA.
| | - Xiao-Hong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
23
|
Zhang X, Wan JQ, Tong XP. Potassium channel dysfunction in neurons and astrocytes in Huntington's disease. CNS Neurosci Ther 2018; 24:311-318. [PMID: 29377621 DOI: 10.1111/cns.12804] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is a late-onset fatal neurodegenerative disease, characterized by progressive movement disorders, psychiatric symptoms, and cognitive impairment. The cytosine-adenine-guanine (CAG) triplet expansion encoding glutamine present in the protein huntingtin (Htt), produces widespread neuronal and glial pathology. Mutant huntingtin (mHtt) nuclear aggregates are the primary cause of cortical and striatal neuron degeneration, neuronal inflammation, apoptosis and eventual cell loss. The precise mechanisms underlying the pathogenesis of neurodegeneration in HD remain poorly understood and HD patients have no current cure. Potassium channels are widely expressed in most cell types. In neurons, they play a crucial role in setting the resting membrane potential, mediating the rapid repolarization phase of the action potential and controlling sub-threshold oscillations of membrane potentials. In glial cells, their major contributions are maintaining the resting membrane potential and buffering extracellular K+ . Thus, potassium channels have an essential function in both physiological and pathological brain conditions. This review summarizes recent progress on potassium channels involved in the pathology of HD by using different HD mouse models. Exploring the dysfunction of potassium channels in the brain illustrates new approaches for targeting this channel for the treatment of HD.
Collapse
Affiliation(s)
- Xiao Zhang
- Discipline of Neuroscience and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Qing Wan
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Tong
- Discipline of Neuroscience and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
An update on vinpocetine: New discoveries and clinical implications. Eur J Pharmacol 2017; 819:30-34. [PMID: 29183836 DOI: 10.1016/j.ejphar.2017.11.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 01/02/2023]
Abstract
Vinpocetine, a derivative of the alkaloid vincamine, has been clinically used in many countries for treatment of cerebrovascular disorders such as stroke and dementia for more than 30 years. Currently, vinpocetine is also available in the market as a dietary supplement to enhance cognition and memory. Due to its excellent safety profile, increasing efforts have been put into exploring the novel therapeutic effects and mechanism of actions of vinpocetine in various cell types and disease models. Recent studies have revealed a number of novel functions of vinpocetine, including anti-inflammation, antagonizing injury-induced vascular remodeling and high-fat-diet-induced atherosclerosis, as well as attenuating pathological cardiac remodeling. These novel findings may facilitate the repositioning of vinpocetine for preventing or treating relevant disorders in humans.
Collapse
|
25
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
26
|
Silva-Palacios A, Colín-González AL, López-Cervantes SP, Zazueta C, Luna-López A, Santamaría A, Königsberg M. Tert-buthylhydroquinone pre-conditioning exerts dual effects in old female rats exposed to 3-nitropropionic acid. Redox Biol 2017; 12:610-624. [PMID: 28391182 PMCID: PMC5384325 DOI: 10.1016/j.redox.2017.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The brain is a very susceptible organ to structural and functional alterations caused by oxidative stress and its vulnerability increases with age. Understanding the antioxidant response activated by the transcription factor Nrf2 has become very important in the aging field in order to activate cellular protection. However, the role of Nrf2 inducers during old age has not been completely understood. Our aim was to activate the Nrf2 pathway by pre-treating old rats with a widely used Nrf2-inducer, tert-buthylhydroquinone (tBHQ), prior to 3-nitropropionic acid (3-NP) insult, in order to evaluate its effects at a behavioral, morphological and biochemical levels. 3-NP has been used to reproduce the biochemical and pathophysiological characteristics of Huntington's disease due to an oxidative effect. Our results suggest that tBHQ confers an important protective effect against 3-NP toxicity; nevertheless, Nrf2 seems not to be the main protective pathway associated to neuroprotection. Hormetic responses include the activation of more than one transcription factor. Nrf2 and NFκB are known to simultaneously initiate different cellular responses against stress by triggering parallel mechanisms, therefore NFκB nuclear accumulation was also evaluated. Old rats are able to activate an hormetic response against 3NP toxicity. tBHQ pre-conditioning exerts an antioxidant-prooxidant, dual role in old rats. tBHQ activates a crosstalk mechanism between NFκB and Nrf2.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico; Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; Posgrado en Biología Experimental, Universidad Autonomas Metropolitana, Iztapalapa, Ciudad de México, Mexico
| | - Ana L Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Ciudad de México 14269, Mexico
| | - Stefanie P López-Cervantes
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Ciudad de México 14269, Mexico
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| |
Collapse
|
27
|
Neuroprotective Effects of Nicorandil in Chronic Cerebral Hypoperfusion-Induced Vascular Dementia. J Stroke Cerebrovasc Dis 2016; 25:2717-2728. [PMID: 27622862 DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ischemia-induced chronic cerebral hypoperfusion (CCH) is associated with reduced cerebral blood flow and vascular dementia (VaD). Brain mitochondrial potassium (adenosine triphosphate-sensitive potassium [KATP]) channels have a beneficial role in various brain conditions. The utility of KATP channels in CCH-induced VaD is still unknown. The aim of this study is to investigate the role of nicorandil, a selective KATP channel opener, in CCH-induced VaD. METHODS The method of 2-vessel occlusion (2VO) was used to induce CCH in mice. Cognitive impairment was assessed using Morris water maze. Serum nitrosative stress (nitrite/nitrate), brain cholinergic dysfunction (acetylcholinesterase [AChE] activity), brain oxidative stress (thiobarbituric acid reactive substances, glutathione [GSH], catalase [CAT], and superoxide dismutase [SOD]), inflammation (myeloperoxidase [MPO]), and infarct size (2,3,5-triphenyltetrazolium chloride staining) were assessed. RESULTS 2-vessels-occluded animals have shown significant cognitive impairment, serum nitrosative stress (reduced nitrite/nitrate), cholinergic dysfunction (increased brain AChE activity), and increased brain oxidative stress (reduction in GSH content and SOD and CAT activities with a significant increase in lipid peroxidation), along with a significant increase in MPO activity and infarct size. However, nicorandil treatment has significantly attenuated various CCH-induced behavioral and biochemical impairments. CONCLUSIONS It may be said that 2VO provoked CCH leading to VaD, which was attenuated by the treatment of nicorandil. So, modulation of KATP channels may provide benefits in CCH-induced VaD.
Collapse
|
28
|
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1132-1146. [PMID: 27345267 DOI: 10.1016/j.bbadis.2016.06.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests a link between metabolic syndrome (MetS) such as diabetes, obesity, non-alcoholic fatty liver disease in the progression of Alzheimer's disease (AD), Parkinson's disease (PD) and other neurodegenerative diseases (NDDs). For instance, accumulated Aβ oligomer is enhancing neuronal Ca2+ release and neural NO where increased NO level in the brain through post translational modification is modulating the level of insulin production. It has been further confirmed that irrespective of origin; brain insulin resistance triggers a cascade of the neurodegeneration phenomenon which can be aggravated by free reactive oxygen species burden, ER stress, metabolic dysfunction, neuorinflammation, reduced cell survival and altered lipid metabolism. Moreover, several studies confirmed that MetS and diabetic sharing common mechanisms in the progression of AD and NDDs where mitochondrial dynamics playing a critical role. Any mutation in mitochondrial DNA, exposure of environmental toxin, high-calorie intake, homeostasis imbalance, glucolipotoxicity is causative factors for mitochondrial dysfunction. These cumulative pleiotropic burdens in mitochondria leads to insulin resistance, increased ROS production; enhanced stress-related enzymes that is directly linked MetS and diabetes in neurodegeneration. Since, the linkup mechanism between mitochondrial dysfunction and disease phenomenon of both MetS and NDDs is quite intriguing, therefore, it is pertinent for the researchers to identify and implement the therapeutic interventions for targeting MetS and NDDs. Herein, we elucidated the pertinent role of MetS induced mitochondrial dysfunction in neurons and their consequences in NDDs. Further, therapeutic potential of well-known biomolecules and chaperones to target altered mitochondria has been comprehensively documented. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
29
|
Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer's disease. Brain Res 2016; 1642:397-408. [PMID: 27084583 DOI: 10.1016/j.brainres.2016.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Alzheime's disease (AD) is an overwhelming neurodegenerative disorder, characterized by synaptic dysfunction, memory loss, neuro-inflammation and neural cell death. Very few treatments are in hand for the management of AD and they are only concentrating on peculiar aspects. Hence, an immense thrust is required to find utmost therapeutic targets to conquer this condition. This study investigates a potential role of vanillin, a selective agonist of transient receptor potential vanilloid subtype 1 (TRPV1) in the experimental models of AD viz. intracerebroventricular (i.c.v.) streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose induced AD in mice. The i.c.v. administration of STZ and intraperitoneally administration of AlCl3+d-galactose have significantly impaired learning-memory (Morris water maze and attentional set-shifting test), brain structure (hematoxylin, eosin and Congo red staining), enhanced brain oxidative stress (thiobarbituric acid reactive substance - TBARS and glutathione - GSH), nitrosative stress (nitrite/nitrate), acetylcholinesterase activity (AChE), inflammation (MPO), and calcium levels (Ca(++)). Treatment with vanillin in different doses and donepezil have significantly ameliorated i.c.v. STZ and AlCl3+d-galactose induced reduction in executive function, impaired reversal learning, cognition, memory and brain damage. Treatment with these drugs has also reduced the brain oxidative stress (TBARS and GSH), nitrosative stress (nitrite/nitrate), and AChE, MPO, and Ca(++) levels. These results indicate that vanillin, a selective agonist of TRPV1 and donepezil, a potent acetylcholine esterase inhibitor have attenuated i.c.v. STZ and AlCl3+d-galactose induced experimental AD. Hence, pharmacological positive modulation of TRPV1 channels may be a potential research target for mitigation of AD.
Collapse
|
30
|
Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Zarpelon AC, Staurengo-Ferrari L, Silva RL, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-κB. Chem Biol Interact 2015; 237:9-17. [PMID: 25980587 DOI: 10.1016/j.cbi.2015.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023]
Abstract
In response to lipopolysaccharide (LPS), tissue resident macrophages and recruited neutrophils produce inflammatory mediators through activation of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. These mediators include inflammatory cytokines and reactive oxygen species that, in turn, sensitize nociceptors and lead to inflammatory pain. Vinpocetine is a nootropic drug widely used to treat cognitive and neurovascular disorders, and more recently its anti-inflammatory properties through inhibition of NF-κB activation have been described. In the present study, we used the intraplantar and intraperitoneal LPS stimulus in mice to investigate the effects of vinpocetine pre-treatment (3, 10, or 30mg/kg by gavage) in hyperalgesia, leukocyte recruitment, oxidative stress, and pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-33). LPS-induced NF-κB activation and cytokine production were investigated using RAW 264.7 macrophage cell in vitro. Vinpocetine (30mg/kg) significantly reduces hyperalgesia to mechanical and thermal stimuli, and myeloperoxidase (MPO) activity (a neutrophil marker) in the plantar paw skin, and also inhibits neutrophil and mononuclear cell recruitment, superoxide anion and nitric oxide production, oxidative stress, and cytokine production (TNF-α, IL-1β and IL-33) in the peritoneal cavity. At least in part, these effects seem to be mediated by direct effects of vinpocetine on macrophages, since it inhibited the production of the same cytokines (TNF-α, IL-1β and IL-33) and the NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Our results suggest that vinpocetine represents an important therapeutic approach to treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Rangel L Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490 Ribeirão Preto, São Paulo, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490 Ribeirão Preto, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490 Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490 Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil.
| |
Collapse
|
31
|
Singh P, Gupta S, Sharma B. Melatonin receptor and KATP channel modulation in experimental vascular dementia. Physiol Behav 2015; 142:66-78. [PMID: 25659733 DOI: 10.1016/j.physbeh.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 01/08/2023]
Abstract
Cerebrovascular and cardiovascular diseases are stated as important risk factors of vascular dementia (VaD) and other cognitive disorders. In the central nervous system, melatonin (MT1/MT2) as well as serotonin subtype 2C (5-HT2C) receptors is pharmacologically associated with various neurological disorders. Brain mitochondrial potassium channels have been reported for their role in neuroprotection. This study has been structured to investigate the role of agomelatine, a melatonergic MT1/MT2 agonist and nicorandil, a selective ATP sensitive potassium (KATP) channel opener in renal artery ligation (two-kidney-one-clip: 2K1C) hypertension induced endothelial dysfunction, brain damage and VaD. 2K1C-renovascular hypertension has increased mean arterial blood pressure (MABP), impaired memory (elevated plus maze and Morris water maze), endothelial function, reduced serum nitrite/nitrate and increased brain damage (TTC staining of brain sections). Furthermore, 2K1C animals have shown high levels of oxidative stress in serum (increased thiobarbituric acid reactive species-TBARS with decreased levels of glutathione-GSH, superoxide dismutase-SOD and catalase-CAT), in the aorta (increased aortic superoxide anion) and in the brain (increased TBARS with decreased GSH, SOD and CAT). 2K1C has also induced a significant increase in brain inflammation (myeloperoxidase-MPO levels), acetylcholinesterase activity (AChE) and calcium levels. Impairment in mitochondrial complexes like NADH dehydrogenase (complex-I), succinate dehydrogenase (complex-II) and cytochrome oxidase (complex-IV) was also noted in 2K1C animals. Administration of agomelatine, nicorandil and donepezil significantly attenuated 2K1C-hypertension induced impairments in memory, endothelial function, nitrosative stress, mitochondrial dysfunction, inflammation and brain damage. Therefore, modulators of MT1/MT2 receptors and KATP channels may be considered as potential agents for the management of renovascular hypertension induced VaD.
Collapse
Affiliation(s)
- Prabhat Singh
- CNS and CVS Pharmacology Lab., Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103 Uttar Pradesh, India.
| | - Surbhi Gupta
- CNS and CVS Pharmacology Lab., Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103 Uttar Pradesh, India.
| | - Bhupesh Sharma
- School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103 Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Pocket F-233, B, Dilshad Garden, Delhi 110095, India.
| |
Collapse
|
32
|
|
33
|
Humphrey JM, Yang E, Ende CWA, Arnold EP, Head JL, Jenkinson S, Lebel LA, Liras S, Pandit J, Samas B, Vajdos F, Simons SP, Evdokimov A, Mansour M, Menniti FS. Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00113c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the discovery of potent, selective, brain penetrable quinazoline inhibitors of PDE1 that represent valuable new tools for the dissection of related biological events.
Collapse
Affiliation(s)
- John M. Humphrey
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Eddie Yang
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | | | - Eric P. Arnold
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Jenna L. Head
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Stephen Jenkinson
- Safety Pharmacology CoE
- Pfizer World Wide Research and Development
- 10646 Science Center Drive
- San Diego, USA
| | - Lorraine A. Lebel
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Spiros Liras
- Pfizer World Wide Research and Development
- Cambridge, USA
| | - Jayvardhan Pandit
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Brian Samas
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Felix Vajdos
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Samuel P. Simons
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Artem Evdokimov
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Mahmoud Mansour
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | | |
Collapse
|