1
|
Rios RL, Green M, Smith SK, Kafashan M, Ching S, Farber NB, Lin N, Lucey BP, Reynolds CF, Lenze EJ, Palanca BJA. Propofol enhancement of slow wave sleep to target the nexus of geriatric depression and cognitive dysfunction: protocol for a phase I open label trial. BMJ Open 2024; 14:e087516. [PMID: 38816055 PMCID: PMC11138309 DOI: 10.1136/bmjopen-2024-087516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Late-life treatment-resistant depression (LL-TRD) is common and increases risk for accelerated ageing and cognitive decline. Impaired sleep is common in LL-TRD and is a risk factor for cognitive decline. Slow wave sleep (SWS) has been implicated in key processes including synaptic plasticity and memory. A deficiency in SWS may be a core component of depression pathophysiology. The anaesthetic propofol can induce electroencephalographic (EEG) slow waves that resemble SWS. Propofol may enhance SWS and oral antidepressant therapy, but relationships are unclear. We hypothesise that propofol infusions will enhance SWS and improve depression in older adults with LL-TRD. This hypothesis has been supported by a recent small case series. METHODS AND ANALYSIS SWIPED (Slow Wave Induction by Propofol to Eliminate Depression) phase I is an ongoing open-label, single-arm trial that assesses the safety and feasibility of using propofol to enhance SWS in older adults with LL-TRD. The study is enrolling 15 English-speaking adults over age 60 with LL-TRD. Participants will receive two propofol infusions 2-6 days apart. Propofol infusions are individually titrated to maximise the expression of EEG slow waves. Preinfusion and postinfusion sleep architecture are evaluated through at-home overnight EEG recordings acquired using a wireless headband equipped with dry electrodes. Sleep EEG recordings are scored manually. Key EEG measures include sleep slow wave activity, SWS duration and delta sleep ratio. Longitudinal changes in depression, suicidality and anhedonia are assessed. Assessments are performed prior to the first infusion and up to 10 weeks after the second infusion. Cognitive ability is assessed at enrolment and approximately 3 weeks after the second infusion. ETHICS AND DISSEMINATION The study was approved by the Washington University Human Research Protection Office. Recruitment began in November 2022. Dissemination plans include presentations at scientific conferences, peer-reviewed publications and mass media. Positive results will lead to a larger phase II randomised placebo-controlled trial. TRIAL REGISTRATION NUMBER NCT04680910.
Collapse
Affiliation(s)
- Rachel Lynn Rios
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Michael Green
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - S Kendall Smith
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - ShiNung Ching
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St Louis, Missouri, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Nan Lin
- Department of Biostatistics and Data Science, Washington University in St Louis, St Louis, Missouri, USA
| | - Brendan P Lucey
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eric J Lenze
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Ben Julian Agustin Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Voss LJ, Andersson L, Jadelind A. The general anesthetic propofol induces ictal-like seizure activity in hippocampal mouse brain slices. SPRINGERPLUS 2015; 4:816. [PMID: 26722636 PMCID: PMC4690829 DOI: 10.1186/s40064-015-1623-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022]
Abstract
The general anesthetic propofol has been in clinical use for more than 30 years and has become the agent of choice for rapid intravenous induction. While its hypnotic and anti-convulsant properties are well known, the propensity for propofol to promote seizure activity is less well characterised. Electroencephalogram-confirmed reports of propofol-induced seizure activity implicate a predisposition in epileptic subjects. The aim of this study was to investigate the seizure-promoting action of propofol in mouse brain slices—with the goal of establishing an in vitro model of propofol pro-convulsant action for future mechanistic studies. Coronal slices were exposed to either normal artificial cerebrospinal fluid (aCSF) or no-magnesium (no-Mg) aCSF—and extracellular field potential recordings made from the hippocampus, entorhinal cortex and neocortex. Propofol (and etomidate for comparison) were delivered at three stepwise concentrations corresponding to clinically relevant levels. The main finding was that propofol induced ictal-like seizures in seven out of ten hippocampal recordings (p = 0.004 compared to controls) following pre-exposure to no-Mg aCSF—but strongly inhibited seizure-like event (SLE) activity in the neocortex. Propofol did not induce seizure activity in slices exposed to normal aCSF. The results support the contention that propofol has the capacity to promote seizure activity, particularly when there is an underlying seizure predisposition. This study establishes an in vitro model for exploring the mechanisms by which propofol promotes subcortical seizure activity.
Collapse
Affiliation(s)
- Logan J Voss
- Anaesthesia Department, Waikato District Health Board, Pembroke St, Hamilton, 3240 New Zealand
| | - Liisa Andersson
- School of Science and Engineering, University of Waikato, Knighton Road, Hamilton, 3240 New Zealand
| | - Anna Jadelind
- School of Science and Engineering, University of Waikato, Knighton Road, Hamilton, 3240 New Zealand
| |
Collapse
|