1
|
Chen DJ, Gao FF, Ma XK, Shi GG, Huang YB, Su QX, Sudweeks S, Gao M, Dharshaun T, Eaton JB, Chang YC, Mcintosh JM, Lukas RJ, Whiteaker P, Steffensen SC, Wu J. Pharmacological and functional comparisons of α6/α3β2β3-nAChRs and α4β2-nAChRs heterologously expressed in the human epithelial SH-EP1 cell line. Acta Pharmacol Sin 2018; 39:1571-1581. [PMID: 29795357 PMCID: PMC6289390 DOI: 10.1038/aps.2017.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/21/2017] [Indexed: 02/05/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors containing α6 subunits (α6*-nAChRs) show highly restricted distribution in midbrain neurons associated with pleasure, reward, and mood control, suggesting an important impact of α6*-nAChRs in modulating mesolimbic functions. However, the function and pharmacology of α6*-nAChRs remain poorly understood because of the lack of selective agonists for α6*-nAChRs and the challenging heterologous expression of functional α6*-nAChRs in mammalian cell lines. In particular, the α6 subunit is commonly co-expressed with α4*-nAChRs in the midbrain, which masks α6*-nAChR (without α4) function and pharmacology. In this study, we systematically profiled the pharmacology and function of α6*-nAChRs and compared these properties with those of α4β2 nAChRs expressed in the same cell line. Heterologously expressed human α6/α3 chimeric subunits (α6 N-terminal domain joined with α3 trans-membrane domains and intracellular loops) with β2 and β3 subunits in the human SH-EP1 cell line (α6*-nAChRs) were used. Patch-clamp whole-cell recordings were performed to measure these receptor-mediated currents. Functionally, the heterologously expressed α6*-nAChRs exhibited excellent function and showed distinct nicotine-induced current responses, such as kinetics, inward rectification and recovery from desensitization, compared with α4β2-nAChRs. Pharmacologically, α6*-nAChR was highly sensitive to the α6 subunit-selective antagonist α-conotoxin MII but had lower sensitivity to mecamylamine and dihydro-β-erythroidine. Nicotine and acetylcholine were found to be full agonists for α6*-nAChRs, whereas epibatidine and cytisine were determined to be partial agonists. Heterologously expressed α6*-nAChRs exhibited pharmacology and function distinct from those of α4β2-nAChRs, suggesting that α6*-nAChRs may mediate different cholinergic signals. Our α6*-nAChR expression system can be used as an excellent cell model for future investigations of α6*-nAChR function and pharmacology.
Collapse
Affiliation(s)
- De-Jie Chen
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Fen-Fei Gao
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Pharmacology, Shantou University Medical College, Shantou, 515063, China
| | - Xiao-Kuang Ma
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Pharmacology, Shantou University Medical College, Shantou, 515063, China
| | - Gang-Gang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, 515063, China
| | - Yuan-Bing Huang
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Quang-Xi Su
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
| | - Sterling Sudweeks
- Departments of Psychology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Turner Dharshaun
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Jason Brek Eaton
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Yong-Chang Chang
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - J Michael Mcintosh
- George E Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84108, USA
- Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ronald J Lukas
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Paul Whiteaker
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Scott C Steffensen
- Department of Physiology and Neuroscience, Brigham Young University, Provo, UT, 84602, USA
| | - Jie Wu
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China.
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
- Department of Pharmacology, Shantou University Medical College, Shantou, 515063, China.
| |
Collapse
|
2
|
Stoichiometry of the Heteromeric Nicotinic Receptors of the Renshaw Cell. J Neurosci 2018; 38:4943-4956. [PMID: 29724797 DOI: 10.1523/jneurosci.0070-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are pentamers built from a variety of subunits. Some are homomeric assemblies of α subunits, others heteromeric assemblies of α and β subunits which can adopt two stoichiometries (2α:3β or 3α:2β). There is evidence for the presence of heteromeric nAChRs with the two stoichiometries in the CNS, but it has not yet been possible to identify them at a given synapse. The 2α:3β receptors are highly sensitive to agonists, whereas the 3α:2β stoichiometric variants, initially described as low sensitivity receptors, are indeed activated by low and high concentrations of ACh. We have taken advantage of the discovery that two compounds (NS9283 and Zn) potentiate selectively the 3α:2β nAChRs to establish (in mice of either sex) the presence of these variants at the motoneuron-Renshaw cell (MN-RC) synapse. NS9283 prolonged the decay of the two-component EPSC mediated by heteromeric nAChRs. NS9283 and Zn also prolonged spontaneous EPSCs involving heteromeric nAChRs, and one could rule out prolongations resulting from AChE inhibition by NS9283. These results establish the presence of 3α:2β nAChRs at the MN-RC synapse. At the functional level, we had previously explained the duality of the EPSC by assuming that high ACh concentrations in the synaptic cleft account for the fast component and that spillover of ACh accounts for the slow component. The dual ACh sensitivity of 3α:2β nAChRs now allows to attribute to these receptors both components of the EPSC.SIGNIFICANCE STATEMENT Heteromeric nicotinic receptors assemble α and β subunits in pentameric structures, which can adopt two stoichiometries: 3α:2β or 2α:3β. Both stoichiometric variants are present in the CNS, but they have never been located and characterized functionally at the level of an identified synapse. Our data indicate that 3α:2β receptors are present at the spinal cord synapses between motoneurons and Renshaw cells, where their dual mode of activation (by high concentrations of ACh for synaptic receptors, by low concentrations of ACh for extrasynaptic receptors) likely accounts for the biphasic character of the synaptic current. More generally, 3α:2β nicotinic receptors appear unique by their capacity to operate both in the cleft of classical synapses and at extrasynaptic locations.
Collapse
|
3
|
Hone AJ, Michael McIntosh J, Rueda-Ruzafa L, Passas J, de Castro-Guerín C, Blázquez J, González-Enguita C, Albillos A. Therapeutic concentrations of varenicline in the presence of nicotine increase action potential firing in human adrenal chromaffin cells. J Neurochem 2016; 140:37-52. [PMID: 27805736 DOI: 10.1111/jnc.13883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023]
Abstract
Varenicline is a nicotinic acetylcholine receptor (nAChR) agonist used to treat nicotine addiction, but a live debate persists concerning its mechanism of action in reducing nicotine consumption. Although initially reported as α4β2 selective, varenicline was subsequently shown to activate other nAChR subtypes implicated in nicotine addiction including α3β4. However, it remains unclear whether activation of α3β4 nAChRs by therapeutically relevant concentrations of varenicline is sufficient to affect the behavior of cells that express this subtype. We used patch-clamp electrophysiology to assess the effects of varenicline on native α3β4* nAChRs (asterisk denotes the possible presence of other subunits) expressed in human adrenal chromaffin cells and compared its effects to those of nicotine. Varenicline and nicotine activated α3β4* nAChRs with EC50 values of 1.8 (1.2-2.7) μM and 19.4 (11.1-33.9) μM, respectively. Stimulation of adrenal chromaffin cells with 10 ms pulses of 300 μM acetylcholine (ACh) in current-clamp mode evoked sodium channel-dependent action potentials (APs). Under these conditions, perfusion of 50 or 100 nM varenicline showed very little effect on AP firing compared to control conditions (ACh stimulation alone), but at higher concentrations (250 nM) varenicline increased the number of APs fired up to 436 ± 150%. These results demonstrate that therapeutic concentrations of varenicline are unlikely to alter AP firing in chromaffin cells. In contrast, nicotine showed no effect on AP firing at any of the concentrations tested (50, 100, 250, and 500 nM). However, perfusion of 50 nM nicotine simultaneously with 100 nM varenicline increased AP firing by 290 ± 104% indicating that exposure to varenicline and nicotine concurrently may alter cellular behavior such as excitability and neurotransmitter release.
Collapse
Affiliation(s)
- Arik J Hone
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain.,Departments of Biology, University of Utah, Salt Lake City, Utah, USA
| | - J Michael McIntosh
- Departments of Biology, University of Utah, Salt Lake City, Utah, USA.,Psychiatry, University of Utah, Salt Lake City, Utah, USA.,The George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Lola Rueda-Ruzafa
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Wang J, Kuryatov A, Lindstrom J. Expression of cloned α6* nicotinic acetylcholine receptors. Neuropharmacology 2014; 96:194-204. [PMID: 25446669 DOI: 10.1016/j.neuropharm.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/19/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|