1
|
Chen Z, Li T, Tang HB, Lu ZW, Chen ZY, Zhao ZH, Yang XL, Zhao LL, Dang MJ, Li Y, Li WX, Wang XJ, Jiang PP, Zhan SQ, Zhang GL, Fan H. Edaravone Dexborneol provides neuroprotective effect by inhibiting neurotoxic activation of astrocytes through inhibiting NF-κB signaling in cortical ischemia. Brain Res Bull 2024; 218:111097. [PMID: 39395778 DOI: 10.1016/j.brainresbull.2024.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Edaravone Dexborneol (EDB), comprised of edaravone and (+)- bornel, has been demonstrated to have synergistic effects of antioxidant and anti-inflammatory, which makes it to be applied for stroke as a protectant. However, the underlying mechanism of neuroprotection of EDB has not been fully elucidated. Increasing evidence has shown that neurotoxic A1 astrocytes were closely related to neuronal death after cerebral ischemia. However, whether EDB could provide neuroprotection by modulating the activation of astrocytes has not yet been elucidated. The present study aimed to explore whether EDB afforded neuroprotection by modulating A1 polarization of astrocytes and the down-stream signaling after cerebral ischemia. We first validated the neuroprotective effects of EDB in mice suffering focal cerebral ischemia via evaluating behavioral test, infarct volumes and neuronal survival. As for the down-stream signaling, our data further showed that EDB alleviated neuronal death by suppressing activation of neurotoxic A1 astrocytes via inhibition of NF-κB signaling pathway in vitro. Additionally, administration of EDB reduced the number of A1 reactive astrocytes in mice of focal cerebral ischemia. The above findings demonstrated that EDB provided neuroprotective effect by inhibiting neurotoxic activation of A1 astrocytes in animal model of cerebral ischemia, which indicated that EDB-mediated phenotypic regulation of astrocytes is a potential research direction to promote neurological recovery in central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xi Wu Road, Xi'an, Shaanxi 710003, China.
| | - Zi-Wei Lu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Zi-Yi Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Zhi-Hong Zhao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Xue-Ling Yang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Li-Li Zhao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Mei-Juan Dang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Ye Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Wen-Xian Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Xiao-Juan Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Peng-Peng Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Shu-Qin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Gui-Lian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
2
|
Huang J, Hu X, Li J, Gong D. Edaravone dexborneol promotes M2 microglia polarization against lipopolysaccharide-induced inflammation via suppressing TLR4/MyD88/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6647-6659. [PMID: 38489082 DOI: 10.1007/s00210-024-03045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Edaravone dexborneol (ED) is a novel neuroprotective compound that consists of two active ingredients, edaravone and ( +)-borneol in a 4:1 ratio, which has been shown the anti-inflammatory properties in animal models of ischemic stroke, cerebral hemorrhage, and autoimmune encephalomyelitis. However, the effect of ED on the polarization of microglia in neuroinflammation has not been elucidated. This study was to investigate the effects of ED on the polarization of microglia induced by lipopolysaccharide (LPS) and potential mechanisms. BV-2 microglial cells were incubated with ED (100, 200, and 400 µM) for 2 h, followed by lipopolysaccharide (LPS, 1 µg/ml) for 12 h. The researchers used the Griess method, western blot, immunocytochemistry, and subcellular fractionation to assess the effects and potential mechanisms of ED on neuroinflammatory reactions. The expression of ROS and the activities of antioxidant enzymes (SOD, GPx, and CAT) in LPS-induced BV-2 cells were also measured using the DCFH-DA fluorescent probe and colorimetric methods, respectively. It was observed that ED significantly declined the levels of TLR4/NF-κB pathway-associated proteins (TLR4, MyD88, p65, p-p65, IκBα, p-IκBα, IKKβ, p-IKKβ) and therefore inhibited LPS-induced production of NO, IL-1β, and TNF-α. Moreover, ED markedly downregulated the M1 marker (iNOS) and upregulated the M2 marker (Arginase-1, Ym-1). In addition, ED also reduced ROS generation and enhanced GPx activity. ED induced the polarization of LPS-stimulated microglia from M1 to M2 against inflammation by negatively regulating the TLR4/MyD88/NF-κB signaling pathway. Additionally, ED performed antioxidative function by depleting the intracellular excessive ROS caused by LPS through the enhancement of the enzymatic activity of GPx. ED may be a potential agent to attenuate neuroinflammation via regulating the polarization of microglia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Xiaohui Hu
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Juanqin Li
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Daokai Gong
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
| |
Collapse
|
3
|
Wang J, Du L, Zhang T, Chu Y, Wang Y, Wang Y, Ji X, Kang Y, Cui R, Zhang G, Liu J, Shi G. Edaravone Dexborneol ameliorates the cognitive deficits of APP/PS1 mice by inhibiting TLR4/MAPK signaling pathway via upregulating TREM2. Neuropharmacology 2024; 255:110006. [PMID: 38763325 DOI: 10.1016/j.neuropharm.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aβ deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China; Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longyuan Du
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junyan Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
5
|
Yang R, Li J, Zhao L, Zhang M, Qin Y, Tong X, Wang S, Yang F, Jiang G. Edaravone dexborneol regulates γ-aminobutyric acid transaminase in rats with acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2024; 33:107738. [PMID: 38701940 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVES Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Rui Yang
- North Sichuan Medical College, Nanchong, Sichuan, China; Department of Neurology, Xichang People's Hospital, Xichang, Sichuan, China
| | - Jia Li
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Li Zhao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Zhang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yaya Qin
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoqiong Tong
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shenglin Wang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fanhui Yang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College; North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
6
|
Chen W, Zhang H, Li Z, Deng Q, Wang M, Chen Y, Zhang Y. Effects of edaravone dexborneol on functional outcome and inflammatory response in patients with acute ischemic stroke. BMC Neurol 2024; 24:209. [PMID: 38902691 PMCID: PMC11188235 DOI: 10.1186/s12883-024-03712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Edaravone dexborneol has been reported as an effective neuroprotective agent in the treatment of acute ischemic stroke (AIS). This study aimed at investigating the impact of edaravone dexborneol on functional outcomes and systematic inflammatory response in AIS patient. METHODS All participants were recruited from the AISRNA study (registered 21/11/2019, NCT04175691 [ClinicalTrials.gov]) between January 2022 and December 2022. The AIS patients were divided into two groups based on whether they received the treatment of edaravone dexborneol (37.5 mg/12 hours, IV) within 48 h after stroke onset. Inflammatory response was determined by detecting levels of cytokines (interleukin-2 [IL-2], IL-4, IL-5, IL-8, IL-6, IL-10, IL-12p70, IL-17, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], IFN-α, and IL-1β) within 14 days after stroke onset. RESULTS Eighty-five AIS patients were included from the AISRNA study. Patients treated with edaravone dexborneol showed a significantly higher proportion of modified Rankin Scale score < 2 compared to those who did not receive this treatment (70.7% versus 47.8%; P = 0.031). Furthermore, individuals receiving edaravone dexborneol injection exhibited lower expression levels of interleukin (IL)-1β, IL-6, and IL-17, along with higher levels of IL-4 and IL-10 expression during the acute phase of ischemic stroke (P < 0.05). These trends were not observed for IL-2, IL-5, IL-8, IL-12p70, tumor necrosis factor-α, interferon-γ [IFN-γ], and IFN-α (P > 0.05). CONCLUSIONS Treatment with edaravone dexborneol resulted in a favorable functional outcome at 90 days post-stroke onset when compared to patients without this intervention; it also suppressed proinflammatory factors expression while increasing anti-inflammatory factors levels. TRIAL REGISTRATION ClinicalTrials.gov NCT04175691. Registered November 21, 2019, https://www. CLINICALTRIALS gov/ct2/show/NCT04175691 .
Collapse
Affiliation(s)
- Wenxia Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68 Changle Road, Nanjing, 210006, China
| | - Hanqing Zhang
- Department of Neurology, the Fourth Affiliated Hospital of Nanjing Medical University, No.298 Nanpu Road, Nanjing, 210000, China
| | - Zhenzhen Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68 Changle Road, Nanjing, 210006, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68 Changle Road, Nanjing, 210006, China
| | - Meng Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68 Changle Road, Nanjing, 210006, China.
| | - Yingbin Chen
- Department of Ultrasound Medicine, Nanjing First Hospital, Nanjing Medical University, No.68 Changle Road, Nanjing, 210006, China.
| | - Yuan Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
7
|
Zhu K, Bi S, Zhu Z, Zhang W, Yang X, Li J, Liang G, Yu C, Pan P. Edaravone dexborneol attenuates oxidative stress in experimental subarachnoid hemorrhage via Keap1/Nrf2 signaling pathway. Front Pharmacol 2024; 15:1342226. [PMID: 38873422 PMCID: PMC11169797 DOI: 10.3389/fphar.2024.1342226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Background Subarachnoid hemorrhage (SAH) serves as a disease characterized by high incidence rate, which is exceedingly prevalent and severe. Presently, there is no unambiguous or efficacious intervention for the neurological impairment following SAH. Administering multi-targeted neuroprotective agents to reduce oxidative stress (OS) and neuroinflammation caused by early brain injury (EBI) has been demonstrated to improve neurological function and prognosis following SAH. Edaravone dexborneol (EDB), a novel multi targeted neuroprotective medication, combines four parts edaravone (EDA) with 1 part (+)-borneol in proportion. Clinical trials conducted in China have revealed during 2 days of acute ischemic stroke (AIS), early administration of EDB leads to improved therapeutic outcomes compared to treatment in EDA monotherapy. Currently, there is no clear evidence that EDB can effectively treat SAH, therefore, our study aims to investigate its potential therapeutic effects and mechanisms on EBI after SAH. Method We used the intravascular threading method to establish a mouse model of SAH to explore whether EDA and EDB could produce anti-OS and anti-apoptosis effects. Behavioral assessment of mice was conducted using the balance beam experiment and the modified Garcia scoring system. Neuronal damage due to OS and Keap1/Nrf2 signaling pathway were detected through techniques of immunofluorescence, Western blotting, spectrophotometry. The group of EDA and EDB were injected intraperitoneally for 72 h after SAH. Results The experiment results indicated that EDB lead to remarkably positive results by significantly enhancing neurological function, reducing blood-brain barrier (BBB) injury, and effectively inhibiting neuronal apoptosis after SAH. Further examination indicated EDB significantly reduced the expression of Keap1 and increased the expression of Nrf2, and it inhibited MDA, and enhanced SOD activity after SAH. These outcomes surpassed the effectiveness observed in EDA monotherapy. However, the application of ML385 reversed the anti-OS effects of EDB and EDA. Conclusion Our experimental findings indicated that EDB could activate Keap1/Nrf2 signaling pathway to reduce OS damage, thereby protecting neurological function and enhancing behavioral abilities after SAH. These outcomes could facilitate the creation of new approaches for the clinical management of SAH.
Collapse
Affiliation(s)
- Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zechao Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Wenxu Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Jiashuo Li
- China Medical University, Shenyang, Liaoning, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyong Yu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
8
|
Xiao P, Huang H, Zhao H, Liu R, Sun Z, Liu Y, Chen N, Zhang Z. Edaravone dexborneol protects against cerebral ischemia/reperfusion-induced blood-brain barrier damage by inhibiting ferroptosis via activation of nrf-2/HO-1/GPX4 signaling. Free Radic Biol Med 2024; 217:116-125. [PMID: 38548187 DOI: 10.1016/j.freeradbiomed.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE Ferroptosis has recently been recognized as a mechanism of cerebral ischemia-reperfusion (I/R) injury, attributed to blood-brain barrier (BBB) disruption. Edaravone dexboneol (Eda.B) is a novel neuroprotective agent widely employed in ischemic stroke, which is composed of edaravone (Eda) and dexborneol. This study aimed to investigate the protective effects of Eda.B on the BBB in cerebral I/R and explore its potential mechanisms. METHODS Transient middle cerebral artery occlusion (tMCAO) Sprague-Dawley-rats model was used. Rats were randomly assigned to sham-operated group (sham, n = 20), model group (tMCAO, n = 20), Eda.B group (Eda.B, n = 20), Eda group (Eda, n = 20) and dexborneol group (dexborneol, n = 20), and Eda.B + Zinc protoporphyria group (Eda.B + ZnPP, n = 5). Infarct area, cellular apoptosis and neurofunctional recovery were accessed through TTC staining, TUNEL staining, and modified Garcia scoring system, respectively. BBB integrity was evaluated via Evans blue staining. Nuclear factor E2 related factor 2 (Nrf-2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling were qualified by Western blot. Transmission electron microscopy (TEM) revealed alterations in ipsilateral brain tissue among groups. Glutathione (GSH) and malondialdehyde (MDA) levels, and Fe2+ tissue content determination were detected. RESULTS Eda.B effectively improved neurological deficits, diminished infarct area and cellular apoptosis, as well as ameliorated BBB integrity in tMCAO rats. Further, Eda.B significantly inhibited ferroptosis, as evidenced by ameliorated pathological features of mitochondria, down-regulated of MDA and Fe2+ levels and up-regulated GSH content. Mechanistically, Eda.B attenuated BBB disruption via Nrf-2-mediated ferroptosis, promoting nuclear translocation of Nrf-2, increasing HO-1, GPX4 expression, alleviating the loss of zonula occludens 1 (ZO-1) and occludin as well as decreasing 4-hydroxynonenal (4-HNE) level. CONCLUSIONS This study revealed for the first time that Eda.B safeguarded the BBB from cerebral I/R injury by inhibiting ferroptosis through the activation of the Nrf-2/HO-1/GPX4 axis, providing a novel insight into the neuroprotective effect of Eda.B in cerebral I/R.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China; Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, PR China.
| | - Haiyan Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| | - Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| | - Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| | - Zhiyu Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| | - Yushuang Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| | - Nan Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| |
Collapse
|
9
|
Zhang Y, Zhang P, Zhang X, Liu Y. HH-A, a modified honokiol, protects against cerebral ischemia/reperfusion induced brain injury in rodent via Nrf2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3389-3402. [PMID: 37955691 DOI: 10.1007/s00210-023-02816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Honokiol, a bioactive component found in Magnolia officinalis, has shown in protecting against ischemic stroke in animal models. However, its poor water solubility has limited its clinical applications. In this study, we introduced a hydrophilic building block on the aromatic ring of honokiol, resulting in the synthesis of four new compounds (HH-A, -B, -C and -D) with significantly improved water solubility. We then investigated the neuroprotective effects of these compounds in mouse and rat models of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) brain injury. Among the compounds tested, HH-A, also known as (S)-6-((3',5-diallyl-2,4'-dihydroxy-[1,1'-biphenyl]-3-yl)amino)-6-oxohexane-1,5-diaminium chloride, showed the most promising results. HH-A was found to significantly reduced the infarct volume and brain edema in mice. It also outperformed the other three compounds and honokiol, even surpassing the effects of edaravone dexborneol. Additionally, HH-A demonstrated dose-dependent improvements in body weight, neurological deficits, and infarct volume. Further analysis in tMCAO/R rat model revealed that HH-A treatment led to significant upregulations of Nrf2 and HO-1 in the brain. HH-A also significantly reduced the expression of HNE, and exhibited anti-apoptotic effects by decreasing the expression of Bax and increasing the expression of Bcl-2. This was further supported by a decrease in the number of TUNEL positive cells. Taken together, the neuroprotective effects of HH-A may be attributed to its ability to target the Nrf2/HO-1 signaling pathway, leading to reduced oxidative stress and apoptosis in the brain. These findings suggest that HH-A has potential as a therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China
| | - Pingping Zhang
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Ye Liu
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China.
| |
Collapse
|
10
|
Wang D, Wang Y, Shi J, Jiang W, Huang W, Chen K, Wang X, Zhang G, Li Y, Cao C, Lee KY, Lin L. Edaravone dexborneol alleviates ischemic injury and neuroinflammation by modulating microglial and astrocyte polarization while inhibiting leukocyte infiltration. Int Immunopharmacol 2024; 130:111700. [PMID: 38382262 DOI: 10.1016/j.intimp.2024.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Poststroke inflammation is essential in the mechanism of secondary injury, and it is orchestrated by resident microglia, astrocytes, and circulating immune cells. Edaravone dexborneol (EDB) is a combination of edaravone and borneol that has been identified as a clinical protectant for stroke management. In this study, we verified the anti-inflammatory effect of EDB in the mouse model of ischemia and investigated its modulatory action on inflammation-related cells. C57BL/6 male mice, which had the transient middle cerebral artery occlusion (tMCAO), were treated (i.p.) with EDB (15 mg/kg). EDB administration significantly reduced the brain infarction and improved the sensorimotor function after stroke. And EDB alleviated the neuroinflammation by restraining the polarization of microglia/macrophages and astrocyte toward proinflammatory phenotype and inhibiting the production of proinflammatory cytokines (such as IL-1β, TNF-α, and IL-6) and chemokines (including MCP-1 and CXCL1). Furthermore, EDB ameliorated the MCAO-induced impairment of Blood-brain barrier (BBB) by suppressing the degradation of tight junction protein and attenuated the accumulation of peripheral leukocytes in the ischemic brain. Additionally, systemic EDB administration inhibited the macrophage phenotypic shift toward the M1 phenotype and the macrophage-dependent inflammatory response in the spleen and blood. Collectively, EDB protects against ischemic stroke injury by inhibiting the proinflammatory activation of microglia/macrophages and astrocytes and through reduction by invasion of circulating immune cells, which reduces central and peripheral inflammation following stroke.
Collapse
Affiliation(s)
- Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yutao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junfeng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenyi Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gongchun Zhang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yuankuan Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chengkun Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
11
|
Wang C, Gu HQ, Dong Q, Xu A, Wang N, Yang Y, Wang F, Wang Y. Rationale and design of Treatment of Acute Ischaemic Stroke with Edaravone Dexborneol II (TASTE-2): a multicentre randomised controlled trial. Stroke Vasc Neurol 2024:svn-2023-002938. [PMID: 38471696 DOI: 10.1136/svn-2023-002938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Edaravone dexborneol is believed to be a novel cytoprotective drug, demonstrating a synergistic combination of antioxidative and anti-inflammatory properties in animal models. The Treatment of Acute Ischaemic Stroke with Edaravone Dexborneol (TASTE) trial demonstrated its superior efficacy over edaravone alone for acute ischaemic stroke (AIS) patients. However, its efficacy in individuals undergoing endovascular therapy (EVT) remains uncertain. AIM To clarify the rationale and design of the TASTE II (TASTE-2) trial. DESIGN The TASTE-2 is a multicentre, double-blind, randomised, placebo-controlled trial designed to evaluate the efficacy and safety of edaravone dexborneol in patients with AIS and large-vessel occlusion in the anterior circulation. The eligible participants, presenting with a National Institute of Health Stroke Scale score between 6 and 25 (range 0-42, with larger values suggesting severe neurological dysfunction) and an Alberta Stroke Program Early Computed Tomography Score ranging from 6 to 10 (range 0-10, with smaller values suggesting larger infarction) within the initial 24 hours after symptom onset, will be randomly allocated to either the edaravone dexborneol group or the placebo group in equal proportions prior to thrombectomy. The treatment will be continuously administered for a duration of 10-14 days. A follow-up period of 90 days will be implemented for all participants. STUDY OUTCOMES The primary efficacy outcome is defined as achieving favourable functional independence, measured by a modified Rankin Scale of 0-2 at 90 days. The primary safety outcome focuses on the incidence of serious adverse events. DISCUSSION The TASTE-2 trial will provide evidence to determine whether the administration of edaravone dexborneol in AIS patients undergoing EVT could yield significant improvements in neurological function.
Collapse
Affiliation(s)
- Chunjuan Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Anding Xu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ning Wang
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feng Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Fu Y, Tang R, Chen R, Wang A, Ren J, Zhu S, Feng X, Fan D. Efficacy and safety of Y-2 sublingual tablet for patients with acute ischaemic stroke: protocol of a phase III randomised double-blind placebo-controlled multicentre trial. Stroke Vasc Neurol 2024; 9:90-95. [PMID: 37308251 PMCID: PMC10956111 DOI: 10.1136/svn-2022-002014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/02/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Clinical studies have demonstrated that edaravone dexborneol can improve the functional outcomes in patients with acute ischaemic stroke (AIS). The present clinical trial aimed at testing the efficacy and safety of Y-2 sublingual tablet on 90-day functional outcome in patients with AIS. METHODS AND DESIGN This is a randomised, double-blind, placebo-controlled, multicentre, parallel-group trial of Y-2 sublingual tablet on patients with AIS.An estimated 914 patients at age of 18-80 years with AIS within 48 hours after symptom onset from 40 hospitals will be randomly assigned to receive Y-2 sublingual tablet or placebo for 14 days. Patients are at score 6-20 points on National Institutes of Health Stroke Scale (NIHSS) and had a modified Rankin Scale (mRS) ≤1 before this stroke, except mechanical thrombectomy and neuroprotective agents treatment. STUDY OUTCOMES The primary outcome is the proportion of patients with mRS ≤1 on day 90 after randomisation. Secondary efficacy outcomes include mRS score on day 90, the proportion of patients with mRS ≤2 on day 90; the change of NIHSS score from baseline to day 14 and the proportion of patients with NIHSS score ≤1 at the days 14, 30 and 90. DISCUSSION This trial will provide valuable evidence for the efficacy and safety of Y-2 sublingual table for improving 90 days the functional outcomes in patients with AIS. TRIAL REGISTRATION NUMBER NCT04950920.
Collapse
Affiliation(s)
- Yu Fu
- Deparment of Neurology, Peking University Third Hospital, Beijing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Rong Chen
- Neurodawn Pharmaceutical Co., Ltd, Nanjing, Jiangsu, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsheng Ren
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Shunwei Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Xiaofei Feng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Dongsheng Fan
- Deparment of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Fu Y, Wang A, Tang R, Li S, Tian X, Xia X, Ren J, Yang S, Chen R, Zhu S, Feng X, Yao J, Wei Y, Dong X, Ling Y, Yi F, Deng Q, Guo C, Sui Y, Han S, Wen G, Li C, Dong A, Sun X, Wang Z, Shi X, Liu B, Fan D. Sublingual Edaravone Dexborneol for the Treatment of Acute Ischemic Stroke: The TASTE-SL Randomized Clinical Trial. JAMA Neurol 2024; 81:2815107. [PMID: 38372981 PMCID: PMC10877503 DOI: 10.1001/jamaneurol.2023.5716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024]
Abstract
Importance Sublingual edaravone dexborneol, which can rapidly diffuse and be absorbed through the oral mucosa after sublingual exposure, is a multitarget brain cytoprotection composed of antioxidant and anti-inflammatory ingredients edaravone and dexborneol. Objective To investigate the efficacy and safety of sublingual edaravone dexborneol on 90-day functional outcome in patients with acute ischemic stroke (AIS). Design, Setting, and Participants This was a double-blind, placebo-controlled, multicenter, parallel-group, phase 3 randomized clinical trial conducted from June 28, 2021, to August 10, 2022, with 90-day follow-up. Participants were recruited from 33 centers in China. Patients randomly assigned to treatment groups were aged 18 to 80 years and had a National Institutes of Health Stroke Scale score between 6 and 20, a total motor deficit score of the upper and lower limbs of 2 or greater, a clinically diagnosed AIS symptom within 48 hours, and a modified Rankin Scale (mRS) score of 1 or less before stroke. Patients who did not meet the eligibility criteria or declined to participate were excluded. Intervention Patients were assigned, in a 1:1 ratio, to receive sublingual edaravone dexborneol (edaravone, 30 mg; dexborneol, 6 mg) or placebo (edaravone, 0 mg; dexborneol, 60 μg) twice daily for 14 days and were followed up until 90 days. Main Outcomes and Measures The primary efficacy outcome was the proportion of patients with mRS score of 1 or less on day 90 after randomization. Results Of 956 patients, 42 were excluded. A total of 914 patients (median [IQR] age, 64.0 [56.0-70.0] years; 608 male [66.5%]) were randomly allocated to the edaravone dexborneol group (450 [49.2%]) or placebo group (464 [50.8%]). The edaravone dexborneol group showed a significantly higher proportion of patients experiencing good functional outcomes on day 90 after randomization compared with the placebo group (290 [64.4%] vs 254 [54.7%]; risk difference, 9.70%; 95% CI, 3.37%-16.03%; odds ratio, 1.50; 95% CI, 1.15-1.95, P = .003). The rate of adverse events was similar between the 2 groups (89.8% [405 of 450] vs 90.1% [418 of 464]). Conclusion and Relevance Among patients with AIS within 48 hours, sublingual edaravone dexborneol could improve the proportion of those achieving a favorable functional outcome at 90 days compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT04950920.
Collapse
Affiliation(s)
- Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Anxin Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Shuya Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Tian
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xue Xia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsheng Ren
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | - Shibao Yang
- Neurodawn Pharmaceutical Co Ltd, Nanjing, China
| | - Rong Chen
- Neurodawn Pharmaceutical Co Ltd, Nanjing, China
| | - Shunwei Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | - Xiaofei Feng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | | | - Yan Wei
- Harrision International Peace Hospital, Hengshui, China
| | | | - Yun Ling
- Nanshi Hospital of Nanyang, Nanyang, China
| | - Fei Yi
- Pingxiang People’s Hospital, Pingxiang, China
| | - Qian Deng
- The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Cunju Guo
- Liaocheng People’s Hospital, Liaocheng, China
| | - Yi Sui
- The First People’s Hospital of Shenyang, Shenyang, China
| | - Shugen Han
- Mei He Kou Central Hospital, Jilin, China
| | | | | | | | - Xin Sun
- The First Hospital of Jilin University, Jilin, China
| | - Zhimin Wang
- Taizhou First People’s Hospital, Zhejiang, China
| | | | - Bo Liu
- The First Affiliated Hospital Baotou Medical College, Baotou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Shen G, Lou C, Li Q, Zhao B, Luo Y, Wu F, Jiao D, Fang M, Geng Y. Edaravone dexborneol alleviates cerebral ischemia-reperfusion injury through NF-κB/NLRP3 signal pathway. Anat Rec (Hoboken) 2024; 307:372-384. [PMID: 37475155 DOI: 10.1002/ar.25296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.
Collapse
Affiliation(s)
- Guanghong Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chengjian Lou
- Department of Neurosurgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qunfeng Li
- Department of Medicine, QuZhou College of Technology, Quzhou, Zhejiang, China
| | - Bingxin Zhao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Marong Fang
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Chen P, Luo M, Chen Y, Zhang Y, Wang C, Li H. Cost-effectiveness of edaravone dexborneol versus human urinary kallidinogenase for acute ischemic stroke in China. HEALTH ECONOMICS REVIEW 2024; 14:7. [PMID: 38285185 PMCID: PMC10823610 DOI: 10.1186/s13561-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Clinical trials have demonstrated the efficacy of edaravone dexborneol in the treatment of acute ischemic stroke. This study aims to determine the cost-effectiveness of edaravone dexborneol compared with human urinary kallidinogenase from China's healthcare system perspective. METHODS A combination of the decision tree and Markov model was constructed to evaluate the cost-effectiveness of edaravone dexborneol versus human urinary kallidinogenase in the treatment of acute ischemic stroke over a lifetime horizon. Efficacy data were derived from pivotal clinical trials of edaravone dexborneol and human urinary kallidinogenase (TASTE trial and RESK trial, respectively) and adjusted using matching-adjusted indirect comparison. Cost and health utility inputs were extracted from published literature and open databases. One-way deterministic sensitivity and probabilistic sensitivity analyses were performed to examine the robustness of the results. RESULTS Compared with human urinary kallidinogenase, edaravone dexborneol generated 0.153 incremental quality-adjusted life years (QALYs) with an incremental cost of ¥856, yielding an incremental cost-effectiveness ratio of ¥5,608 per QALY gained under the willingness-to-pay threshold (one-time gross domestic product per capita). Both one-way deterministic sensitivity analysis and probabilistic sensitivity analysis demonstrated the robustness of the base case results. CONCLUSIONS Edaravone dexborneol is a cost-effective treatment choice for acute ischemic stroke patients compared with human urinary kallidinogenase in China.
Collapse
Affiliation(s)
- Pingyu Chen
- School of International Pharmaceutical Business, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 211198, Jiangsu Province, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengjie Luo
- School of International Pharmaceutical Business, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 211198, Jiangsu Province, China
| | - Yanqiu Chen
- School of International Pharmaceutical Business, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 211198, Jiangsu Province, China
| | - Yanlei Zhang
- State Key Laboratory of Neurology and Oncology Drug Development (Jiangsu Simcere Pharmaceutical Co.,Ltd., Jiangsu Simcere Diagnostics Co.,Ltd.), Nanjing, Jiangsu, China
| | - Chao Wang
- State Key Laboratory of Neurology and Oncology Drug Development (Jiangsu Simcere Pharmaceutical Co.,Ltd., Jiangsu Simcere Diagnostics Co.,Ltd.), Nanjing, Jiangsu, China
| | - Hongchao Li
- School of International Pharmaceutical Business, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 211198, Jiangsu Province, China.
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Lv S, Geng X, Yun HJ, Ding Y. Phenothiazines reduced autophagy in ischemic stroke through endoplasmic reticulum (ER) stress-associated PERK-eIF2α pathway. Exp Neurol 2023; 369:114524. [PMID: 37673390 DOI: 10.1016/j.expneurol.2023.114524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Neuroprotective effects have been the main focus of new treatment modalities for ischemic stroke. Phenothiazines, or chlorpromazine plus promethazine (C + P), are known to prevent the generation of free radicals and uptake of Ca2+ by plasma membrane; they have a potential as a treatment for acute ischemic stroke (AIS). This study aims to investigate the role of endoplasmic reticulum (ER) stress-associated PERK-eIF2α pathway underlying the phenothiazine-induced neuroprotective effects after cerebral ischemia/reperfusion (I/R) injury. METHODS A total of 49 male Sprague Dawley rats (280-320 g) were randomly divided into 4 groups (n = 7 per group): (1) sham, (2) I/R that received 2 h of middle cerebral artery occlusion (MCAO), followed by 6 or 24 h of reperfusion, (3) MCAO treated by C + P without temperature control and (4) MCAO treated by C + P with temperature control. Human neuroblastoma (SH-SY5Y) cells were used in 5 groups: (1) control, (2) oxygen-glucose deprivation (OGD) for 2 h followed by reoxygenation (OGD/R), (3) OGD/R with C + P; (4) OGD/R with PERK inhibitor, GSK2656157, and (5) OGD/R with C + P and GSK2656157. The molecules of ER stress, unfolded protein response (UPR) (Bip, PERK, p-PERK, p-PERK/PERK, eIF2α, p-eIF2α, p-eIF2α/eIF2α), autophagy (ATG12, LC3II/I), and apoptosis (BAX, Bcl-XL) were measured at mRNA levels by real time PCR and protein levels by Western blotting. RESULTS In ischemic rats followed by reperfusion, expression of Bip, p-PERK/PERK, p-eIF2α/eIF2α, ATG12, and LC3II/I, as well as BAX were all significantly increased. These markers were significantly reduced by C + P at both 6 and 24 h of reperfusion. Anti-apoptotic Bcl-XL expression was increased, while pro-apoptotic BAX expression was decreased by C + P. In SH-SY5Y cell lines, both C + P and GSK2656157 significantly reduced the level of autophagy and apoptosis after I/R, respectively. The combination of GSK2656157 and C + P did not promote the same effect, suggesting that C + P did not induce any neuroprotective effect by inhibiting autophagy and apoptosis through the PERK-eIF2α pathway when this pathway was already blocked by GSK2656157. In general, the reduction in body temperature by phenothiazines was associated with better neuroprotection but it did not reach significant levels. CONCLUSION The combined treatment of C + P plays a crucial role in stroke therapy by inhibiting ER stress-mediated autophagy, thereby leading to reduced apoptosis and increased neuroprotection. Our findings highlight the PERK-eIF2α pathway as a central mechanism through which C + P exerts its beneficial effects. The results from this study may pave the way for the development of more targeted and effective treatments for stroke patients.
Collapse
Affiliation(s)
- Shuyu Lv
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Xi Y, Ma J, Lu S. Favorable neuroprotective effect of intra-arterial application of edaravone dexborneol in ischemic stroke rats. J Stroke Cerebrovasc Dis 2023; 32:107356. [PMID: 37740991 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the neuroprotective effects of intra-arterial administration of edaravone dexborneol in rats with acute ischemic stroke and determine the optimal dose. MATERIALS AND METHODS Firstly, 120 male Sprague-Dawley rats (265-300 g) were selected to establish ischemic stroke models and were randomly divided into groups of sham-operation (Sham group), cerebral ischemia-reperfusion (IS group), permanent focal ischemia (PI group) and treatment (2MG group: 2 mg/kg, 4MG group: 4 mg/kg, 6MG group: 6 mg/kg) groups. There are 20 rats in each group, and ten rats in each group were randomly selected for Longa score and 2,3,5-triphenyl tetrazolium chloride staining to observe the changes in neurological function and the proportion of cerebral infarct volume in each group. Secondly, the remaining ten rats in each group were scored for Longa and tested for free radicals (hydroxyl radical; peroxynitrite; nitric oxide) and pro-inflammatory cytokines (interleukin 6; interleukin-1β; tumor necrosis factor-α). We monitored changes in the indicators in each group of rats. RESULTS There were no significant differences among the enrolled Sprague-Dawley rats concerning age, sex, and feeding conditions. Edaravone dexborneol could significantly reduce the cerebral levels of hydroxyl radical, interleukin 6, interleukin-1β, tumor necrosis factor-α, and their behavioral scores of acute ischemic stroke rats after a single dose in the carotid artery. The results suggested that 4 mg/kg might be an appropriate dose. CONCLUSIONS A single intra-arterial administration of edaravone dexborneol can improve neurobehavioral function and alleviate cerebral injury in acute ischemic stroke rats through anti-inflammatory and free radical scavenging effects.
Collapse
Affiliation(s)
- Yalin Xi
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, China
| | - Jingxia Ma
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, China
| | - Shujun Lu
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, China.
| |
Collapse
|
18
|
Li L, He G, Shi M, Zhu J, Cheng Y, Chen Y, Chen J, Xue Q. Edaravone dexborneol ameliorates cognitive impairment by regulating the NF-κB pathway through AHR and promoting microglial polarization towards the M2 phenotype in mice with bilateral carotid artery stenosis (BCAS). Eur J Pharmacol 2023; 957:176036. [PMID: 37673366 DOI: 10.1016/j.ejphar.2023.176036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of stroke and vascular dementia, so exploring effective treatment modalities for CSVD is warranted. This study aimed to explore the anti-inflammatory effects of Edaravone dexborneol (C.EDA) in a CSVD model. Mice with CSVD showed distinct cognitive decline, as assessed by the Morris water maze (MWM). Pathological staining verified leakage across the blood‒brain barrier (BBB), microglial proliferation, neuronal loss and demyelination. Western blot analysis demonstrated that M1 microglia dominated prophase and released proinflammatory molecules; the aryl hydrocarbon receptor (AHR) was found to participate in modulating nuclear factor-kappa B (NF-κB) signalling activation through tumour necrosis factor receptor-associated factor-6 (TRAF6). C.EDA treatment resulted in the polarization of microglia from the M1 to the M2 phenotype. Mice sequentially treated with C.EDA exhibited a significant improvement in cognitive function; expression of the anti-inflammatory cytokines and modulatory proteins AHR and TRAF6 was upregulated, while the levels of pNF-κBp65 and pIΚBα were downregulated. C.EDA promoted microglial activation towards the M2 phenotype by upregulating AHR expression, which prevented TRAF6 ubiquitination, promoted NF-κB RelA/p65 protein degradation and inhibited subsequent NF-κB phosphorylation. Mechanistically, the anti-inflammatory effect of C.EDA alleviated neuronal loss and myelin damage, while at the functional level, C.EDA improved cognitive function and thus showed good application prospects.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China; Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Guojun He
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Mingyu Shi
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Yongqing Cheng
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Yang Chen
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Jin Chen
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
19
|
Chen Y, Jin X, Kuang Y, Zhang S, Zhang C, Li C, Guo B. A Novel Oral Drugs Delivery System for Borneol Based on HiCap ®100 and Maltodextrin: Preparation, Characterization, and the Investigation as an Intestinal Absorption Enhancer. AAPS PharmSciTech 2023; 24:197. [PMID: 37783919 DOI: 10.1208/s12249-023-02654-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
The objective of this study was to create a new method for delivering oral borneol (BN) drug that would improve stability. This was accomplished through microencapsulation using HiCap®100 and maltodextrin (MD), resulting in HiCap®100/MD/BN microcapsules (MCs). The HiCap®100/MD/BN MCs were evaluated in terms of encapsulation efficiency (EE%), drug loading (DL%), morphological observations, particle size distribution, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal analysis, drug degradation rate studies, and in vitro release behavior. The effect of MCs on intestinal permeability in a rat model was assessed using the model drug "florfenicol" (FF) in single-pass intestinal perfusion (SPIP) study. The relationship between MCs and P-glycoprotein (P-gp) was further investigated in comparison with verapamil (Ver). The irritation of MCs was assessed by histological analysis. The MCs in a spherical structure with micron-scale dimensions were obtained. The EE% and DL% were (86.71 ± 0.96)% and (6.03 ± 0.32)%, respectively. MCs played a significantly protective role in drug degradation rate studies. In vitro release studies indicated that the release behavior of MCs was significantly better than BN at the three-release media, and the cumulative release rate exceeded 90% in 15 min. The SPIP studies showed that MCs significantly enhanced the absorption of FF in rats. Compared with Ver, MCs were not promoted by a single inhibition of P-gp. Hematoxylin-eosin (HE)-stained images showed that MCs had no obvious irritation and toxic effects on the intestines of rats. Thus, the preparation of HiCap®100/MD/BN MCs improves the stability of BN, which has certain scientific value for the development and application of BN, and provides unique perspectives for future BN-related researches.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pharmaceutics, School of Pharmacy, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaowei Jin
- Department of Pharmaceutics, School of Pharmacy, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yanhui Kuang
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Sisi Zhang
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Chuanping Zhang
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Chuyuan Li
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
20
|
Cao Y, Yue X, Jia M, Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 2023; 9:e17986. [PMID: 37519706 PMCID: PMC10372247 DOI: 10.1016/j.heliyon.2023.e17986] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Stroke remains one of the most devastating and challenging neurological diseases worldwide. Inflammation, as well as oxidative stress is one of the main contributors to post-stroke injuries, and oxidative stress can further induce inflammation. Moreover, the inflammatory response is closely related to immune modulation in ischemic stroke progression. Hence, major ischemic stroke treatment strategies include targeting inflammatory responses, immune modulation (especially immune cells), and inflammatory response to suppress stroke progression. To date, several drugs have demonstrated clinical efficacy, such as Etanercept and Fingolimod. However, only edaravone dexborneol has successfully passed the phase III clinical trial and been approved by the National Medical Products Administration (NMPA) to treat ischemic stroke in China, which can restore redox balance and regulate inflammatory immune responses, thus providing neuroprotection in ischemic stroke. In this review, we will comprehensively summarize the current advances in the application of inflammatory biomarkers, neuroinflammation and neuro-immunotherapeutic scenarios for ischemic stroke, thus aiming to provide a theoretical basis and new prospects and frontiers for clinical applications.
Collapse
Affiliation(s)
- Yangyue Cao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuanye Yue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Jia
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Zhang H, Wang L, Zhu B, Yang Y, Cai C, Wang X, Deng L, He B, Cui Y, Zhou W. A comparative study of the neuroprotective effects of dl-3-n-butylphthalide and edaravone dexborneol on cerebral ischemic stroke rats. Eur J Pharmacol 2023; 951:175801. [PMID: 37207969 DOI: 10.1016/j.ejphar.2023.175801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION DL-3-n-butylphthalide (NBP) and edaravone dexborneol (Eda-Dex) are two promising reagents for stroke treatment. However, the impacts of NBP and Eda-Dex on poststroke mental deficits are still poorly understood. In this study, we aimed to investigate and compare the influences of NBP and Eda-Dex on neurological function and cognitive behavior in rats with ischemic stroke. METHODS An ischemic stroke model was established by middle cerebral artery occlusion (MCAO). After peritoneal administration of the drugs, the rats were subjected to neurological deficit evaluation, cerebral blood flow (CBF) assays, cerebral infarct area evaluations or behavioral tests. Brain tissues were collected and further analyzed by enzyme-linked immunosorbent assay (ELISA), western blotting or immunohistochemistry. RESULTS NBP and Eda-Dex significantly decreased the neurological score, reduced the cerebral infarct area and improved CBF. Behavioral changes as assessed in the sucrose preference test, novel object recognition test, and social interaction test were significantly alleviated by NBP and Eda-Dex in rats with ischemic stroke. Moreover, NBP and Eda-Dex significantly suppressed inflammation by targeting the nuclear factor kappa-B/inducible nitric oxide synthase (NF-κB/iNOS) pathway and significantly inhibited oxidative stress by targeting the kelch-1ike ECH-associated protein l/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway. In addition, NBP and Eda-Dex distinctly suppressed the activation of microglia and astrocytes and improved neuronal viability in the ischemic brain. CONCLUSIONS NBP and Eda-Dex improved neurological function and alleviated cognitive disorders in rats with ischemic stroke by synergistically inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hui Zhang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410000, China
| | - Laifa Wang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China; Wuzhou Medical College, Wuzhou, 543199, China
| | - Bi Zhu
- Class 2011 Clinical Medicine Eight-year Program of Central South University, Changsha, 410000, China
| | - Yongping Yang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China
| | - Chuanhai Cai
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China
| | - Xueqin Wang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China; Wuzhou Medical College, Wuzhou, 543199, China
| | - Ling Deng
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China; Wuzhou Medical College, Wuzhou, 543199, China
| | - Binsheng He
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410000, China
| | - Yanhui Cui
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China; Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410000, China.
| | - Wenhu Zhou
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410000, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, China.
| |
Collapse
|
22
|
Liu P, Liu H, Wei L, Shi X, Wang W, Yan S, Zhou W, Zhang J, Han S. Docetaxel-induced cognitive impairment in rats can be ameliorated by edaravone dexborneol: Evidence from the indicators of biological behavior and anisotropic fraction. Front Neurosci 2023; 17:1167425. [PMID: 37077321 PMCID: PMC10106566 DOI: 10.3389/fnins.2023.1167425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
ObjectiveThis study aimed to investigate the effect of Edaravone Dexborneol (ED) on impaired learning and memory in docetaxel (DTX)-treated rats using cognitive behavior assessments and magnetic resonance diffusion tensor imaging (DTI).Materials and methodsIn total, 24 male Sprague–Dawley rats were divided into control, low-dose DTX (L-DTX) model, and high-dose DTX(H-DTX) model groups, with eight rats in each group, numbered 1–8. The rats were intraperitoneally injected with 1.5 mL of either normal saline (control group), or 3 mg/kg and 6 mg/kg DTX (L-DTX and H-DTX groups, respectively), once a week for 4 weeks. The learning and memory abilities of each group were tested using a water maze. At the end of the water maze test, rats 1–4 in each group were treated with ED (3 mg/kg, 1 mL), and rats 5–8 were injected with an equal volume of normal saline once a day for 2 weeks. The learning and memory abilities of each group were evaluated again using the water maze test, and the image differences in the hippocampus of each group were analyzed using DTI.Results(1) H-DTX group (32.33 ± 7.83) had the longest escape latency, followed by the L-DTX group (27.49 ± 7.32), and the Control group (24.52 ± 8.11) having the shortest, with the difference being statistically significant (p < 0.05). (2) Following ED treatment, compared to rats treated with normal saline, the escape latency of the L-DTX (12.00 ± 2.79 vs. 10.77 ± 3.97, p < 0.05), and the H-DTX (12.52 ± 3.69 vs. 9.11 ± 2.88, p < 0.05) rats were significantly shortened. The residence time in the target quadrant of H-DTX rats was significantly prolonged (40.49 ± 5.82 vs. 55.25 ± 6.78, p < 0.05). The CNS damage in the L-DTX rats was repaired to a certain extent during the interval between the two water maze tests (28.89 ± 7.92 vs. 12.00 ± 2.79, p < 0.05). (3) The fractional anisotropy (FA) value of DTI in the hippocampus of rats in the different groups showed variable trends. After treatment with ED, though the FA values of most areas in the hippocampus of rats in L-DTX and H-DTX groups were higher than before, they did not reach the normal level.ConclusionED can ameliorate the cognitive dysfunctions caused by DTX in rats by improving the learning and memory impairment, which is reflected in the recovery of biological behavior and DTI indicators of the hippocampus.
Collapse
Affiliation(s)
- Ping Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hai Liu
- Department of Urology Surgery, The People’s Hospital of Qijiang District, Chongqing, China
| | - Lijun Wei
- Department of Urology Surgery, The People’s Hospital of Qijiang District, Chongqing, China
| | - Xun Shi
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Wei Wang
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Shengxiang Yan
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Wenya Zhou
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jiangong Zhang
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
- *Correspondence: Jiangong Zhang, ; Suxia Han,
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
- *Correspondence: Jiangong Zhang, ; Suxia Han,
| |
Collapse
|
23
|
Tan YF, Fu YH, Zhang MZ. Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies. Chin J Integr Med 2023:10.1007/s11655-023-3633-0. [DOI: 10.1007/s11655-023-3633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 03/28/2023]
|
24
|
Tang L, Fu C, Zhang A, Li X, Cao Y, Feng J, Liu H, Dong H, Wang W. Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomater Sci 2023; 11:791-812. [PMID: 36545758 DOI: 10.1039/d2bm01790c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral ischemic stroke remains one of the most serious neurological disorders that pose threats to human health, causing a large amount of long-term disability or even death throughout the world. Based on its physiologic and pathological features, there are limited available therapeutic options for effective ischemic stroke management. Encouragingly, a rapid advancement of nanobiotechnology is bringing new insights into exploring more alternative strategies against cerebral ischemic stroke, which can cleverly overcome the limitations related to conventional treatment methods. Therefore, this review focuses on the recent achievements of nanobiotechnology for ischemic stroke management, which emphasizes diverse targeted delivery strategies using various nanoplatforms including liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanomaterials, and cell-derived nano-vectors based on the pathophysiological features of ischemic stroke. Moreover, different therapeutic approaches against ischemic stroke such as neuroprotection, anti-inflammation, thrombolysis, increased blood-brain barrier penetration and reactive oxygen species scavenging are highlighted. Meanwhile, this review discusses how these versatile nanoplatforms were designed to assist in the treatment of ischemic stroke. Based on this, challenges, opportunities, and future perspectives using nanobiotechnology through rational design for effective ischemic stroke management are revealed.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Xiyue Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, 210009 Nanjing, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
25
|
Exploring the potential to enhance drug distribution in the brain subregion via intranasal delivery of nanoemulsion in combination with borneol as a guider. Asian J Pharm Sci 2023. [DOI: 10.1016/j.ajps.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
26
|
Hu R, Liang J, Ding L, Zhang W, Liu X, Song B, Xu Y. Edaravone dexborneol provides neuroprotective benefits by suppressing NLRP3 inflammasome-induced microglial pyroptosis in experimental ischemic stroke. Int Immunopharmacol 2022; 113:109315. [DOI: 10.1016/j.intimp.2022.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
27
|
Wu X, Yu J, Tan B, Chen Z. Research progress on mechanism of Chinese Kaiqiao herbs in management of neuropathic pain. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:523-533. [PMID: 36581573 PMCID: PMC10264986 DOI: 10.3724/zdxbyxb-2022-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
Abstract
The Chinese herbal medicine for Kaiqiao, such as borneol, musk, grassleaf sweetflag rhizome, storax and camphor, have been prescribed in traditional Chinese medicine for thousands of years and now are widely used for neuropathic pain, the main components of which are annular compounds. Studies have shown that their analgesic mechanisms include regulating the expression of γ-aminobutyric acid, N-methyl- D-aspartic acid and other receptors; regulating ion channel function; inhibiting inflammatory response, oxidative stress and apoptosis; regulating neurotransmission and neuronal excitability; and participating in neuroprotection and neurological repair. It is suggested that the mechanisms of action of Kaiqiao herbs in central nervous system analgesia should be further explored; high-quality rapid screening of drug targets may be used, and the targeted agents using the characteristics of Kaiqiao herbs would be developed. This article reviews the research progress on the effect mechanism of traditional Kaiqiao herbs in the treatment of neuropathic pain to provide further research directions.
Collapse
|
28
|
Shi F, He Z, Wang L, Su H, Han S. Cost-effectiveness of edaravone dexborneol versus edaravone for the treatment of acute ischemic stroke in China: Based on the TASTE study. Front Pharmacol 2022; 13:938239. [PMID: 36330098 PMCID: PMC9622952 DOI: 10.3389/fphar.2022.938239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background and purpose: The TASTE trial indicated that patients with acute ischemic stroke (AIS) using edaravone dexborneol have a significantly higher proportion of 90-day good functional outcomes (mRS 0–1) than those using edaravone. This study compared the cost-effectiveness of the aforementioned interventions in treating AIS in the Chinese setting, aiming to inform treatment decisions in clinical practice. Methods: A model combining a decision tree and a Markov model was developed to assess the cost-effectiveness of edaravone dexborneol versus edaravone for AIS over a 30-year time horizon from the Chinese healthcare system’s perspective. Both efficacy and safety data were extracted from the TASTE study. Local costs and utilities were derived from publications and open-access databases; both cost and effectiveness were discounted at a rate of 5% per year. Sensitivity analyses were conducted to ensure robustness and identify the main drivers of the result. Results: Compared with edaravone, edaravone dexborneol for AIS was found to be cost-effective in the first year and highly cost-effective as the study time horizons extended. In the long term (30 years), edaravone dexborneol yielded a lifetime gain of 0.25 (0.07–0.45) quality-adjusted life years (QALYs) at an additional cost of CNY 2201.07 (-3,445.24–6,637.23), yielding an ICER of CNY 8823.41 per QALY gained under the willingness-to-pay (WTP) of 1.5 times per capita GDP (121,464 CNY). The result is robust in both deterministic and probabilistic sensitivity analysis (PSA) methods, with the advantage of the edaravone dexborneol strategy increasing over time. Specifically, the probability of edaravone dexborneol dominant dexborneol is 76.30%, 98.90%, and 99.50% over 1-, 5-, and 30-year time horizons. Conclusion: Both short- and long-term economic analyses suggest that edaravone dexborneol is highly likely to be a cost-effective alternative to treat AIS compared with edaravone in China.
Collapse
Affiliation(s)
- Fenghao Shi
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zixuan He
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lin Wang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Hang Su
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sheng Han
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- *Correspondence: Sheng Han,
| |
Collapse
|
29
|
Edaravone Dexborneol Alleviates Cerebral Ischemic Injury via MKP-1-Mediated Inhibition of MAPKs and Activation of Nrf2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4013707. [PMID: 36110124 PMCID: PMC9470337 DOI: 10.1155/2022/4013707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
The edaravone and dexborneol concentrated solution for injection (edaravone-dexborneol) is a medication used clinically to treat neurological impairment induced by ischemic stroke. This study was aimed at investigating the preventive effects and the underlying mechanisms of edaravone-dexborneol on cerebral ischemic injury. A rat four-vessel occlusion (4-VO) model was established, and the neuronal injury and consequent neurological impairment of rats was investigated. Brain tissue malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels were determined. The levels of proteins in mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-κB (NF-κB) signaling pathways were determined by western immunoblotting. The function of mitogen-activated protein kinase phosphatase 1 (MKP-1) was investigated using both western blot and immunofluorescence methods, and the effect of the MKP-1 inhibitor, (2E)-2-benzylidene-3-(cyclohexylamino)-3H-inden-1-one (BCI), was investigated. The results indicated that edaravone-dexborneol alleviated neurological deficiency symptoms and decreased apoptosis and neuron damage in the hippocampal CA1 area of the ischemic rats. Edaravone-dexborneol increased the MKP-1 level; decreased the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK); inhibited NF-κB p65 activation; and boosted Nrf2 activation, all of which were partially reversed by the MKP-1 inhibitor, BCI. The above results indicated that the upregulation of MKP-1 contributed to the protective effects of edaravone-dexborneol against ischemic brain injury. Our findings support the hypothesis that edaravone-dexborneol can alleviate cerebral ischemic injury via the upregulation of MKP-1, which inhibits MAPKs and activates Nrf2.
Collapse
|
30
|
Edaravone Dexborneol Downregulates Neutrophil Extracellular Trap Expression and Ameliorates Blood-Brain Barrier Permeability in Acute Ischemic Stroke. Mediators Inflamm 2022; 2022:3855698. [PMID: 36032782 PMCID: PMC9410976 DOI: 10.1155/2022/3855698] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Our previous work has shown that inflammatory processes play a detrimental role in the pathophysiology of acute ischemic stroke (AIS). Neutrophil extracellular traps (NETs) have been recognized as a key contributor to the proinflammatory response in AIS and could aggravate blood-brain barrier (BBB) damage. Recently, experimental and clinical researches showed that Edaravone Dexborneol (Eda.B), which is comprised of two active ingredients, Edaravone and (+)-Borneol, was effective in treatment of AIS. However, it is not clear whether the effects of Eda.B against AIS are related to NETs and BBB permeability. Methods Experiment 1 was to detect the effects of Eda.B in AIS patients. Serum samples of volunteers and AIS patients were collected before and 3 days after Edaravone Dexborneol treatment. Markers of NETs and occludin were detected by ELISA kit. Experiment 2 was to explore the effects of Eda.B on experimental stroke mice. Male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (MCAO) and treated with vehicle, Eda.B, or DeoxyribonueleaseI (DNase I). After stroke, the neurobehavioral tests, infarct volume, and cerebral blood flow evaluation were determined. Leakage of Evans blue was to assess the integrity of BBB. Western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence were used to examine the expression of NETs and tight junction- (TJ-) associated proteins. Results Eda.B significantly improved neurological function and cerebral blood flow but reduced infarct volume after experimental stroke. Eda.B downregulated level of NETs in serum samples of AIS patients and tissue samples of MCAO mouse cortex. Eda.B and DNase I alleviated BBB permeability by upregulating TJ-associated proteins. Conclusion NETs are related to the early stage of AIS. Eda.B exerted neuroprotective effects and ameliorated BBB permeability after AIS.
Collapse
|
31
|
Xu L, Gao Y, Hu M, Dong Y, Xu J, Zhang J, Lv P. Edaravone dexborneol protects cerebral ischemia reperfusion injury through activating Nrf2/HO-1 signaling pathway in mice. Fundam Clin Pharmacol 2022; 36:790-800. [PMID: 35470467 PMCID: PMC9545784 DOI: 10.1111/fcp.12782] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Stroke is the leading cause of disability and death. When blood flow is restored after prolonged ischemia and hypoxia, it leads to excessive production of reactive oxygen species (ROS), increased local inflammation, and apoptosis, which are the cause of most cerebral ischemia reperfusion injury (CIRI), leading to secondary brain tissue damage. Edaravone dexborneol is a novel neuroprotective agent consisting of edaravone and borneol. Studies have shown that it has synergistic antioxidant and anti‐inflammatory effects. However, whether Edaravone dexborneol stimulates the Nrf2/HO‐1 pathway to regulate NADPH oxidase 2 (NOX2) remains unclear. In this study, wild‐type (WT) mice and Nrf2 knockout (KO) mice were used to investigate the antioxidant, anti‐inflammatory, and anti‐apoptotic effects of Edaravone dexborneol on CIRI and its mechanism. The cognitive function of mice was evaluated with the Morris water maze (MWM), test and the cell structures of hippocampus were observed by hematoxylin and eosin (H&E) staining. Nrf2, HO‐1, and NOX2 proteins and apoptosis‐related proteins Bcl‐2, Bax, and Caspase 3 were detected by western blotting. Nrf2, HO‐1, NOX2, and inflammatory factors TNF‐α, IL‐1β, IL‐4, and IL‐10 were detected by real‐time polymerase chain reaction. The results showed that Edaravone dexborneol treatment improved learning and memory performance, neuronal damage, and enhanced antioxidant, inflammation, and apoptosis in CIRI mice. In addition, Edaravone dexborneol induced the activation Nrf2/HO‐1 signaling pathway activation while inhibiting NOX2 expression. Overall, these results indicate that Edaravone dexborneol ameliorates CIRI‐induced memory impairments by activating Nrf2/HO‐1 signaling pathway and inhibiting NOX2.
Collapse
Affiliation(s)
- Lili Xu
- Hebei North University, Zhangjiakou, China
| | - Yaran Gao
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Ming Hu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jiawei Zhang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Peiyuan Lv
- Hebei North University, Zhangjiakou, China.,Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
32
|
Chen Q, Cai Y, Zhu X, Wang J, Gao F, Yang M, Mao L, Zhang Z, Sun B. Edaravone Dexborneol Treatment Attenuates Neuronal Apoptosis and Improves Neurological Function by Suppressing 4-HNE-Associated Oxidative Stress After Subarachnoid Hemorrhage. Front Pharmacol 2022; 13:848529. [PMID: 35529450 PMCID: PMC9068884 DOI: 10.3389/fphar.2022.848529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Edaravone dexborneol is a novel neuroprotective drug that comprises edaravone and (+)-borneol in a 4:1 ratio. Phase II and III studies have demonstrated that Chinese patients treated with edaravone dexborneol within 48 h of AIS onset have better functional outcomes than those treated with edaravone alone. However, the effect of edaravone dexborneol on subarachnoid hemorrhage (SAH) has not yet been elucidated. This study aimed to investigate the therapeutic effects of edaravone dexborneol on SAH-induced brain injury and long-term behavioral deficits and to explore the possible mechanisms. The experimental rat SAH model was induced by an intraluminal puncture of the left middle cerebral artery (MCA). Edaravone dexborneol or edaravone at a clinical dose was infused into the tail vein for 3 days post-SAH surgery. Behavioral outcomes were assessed by a modified Garcia scoring system and rotarod, foot-fault, and corner tests. Immunofluorescence, Western blot, and ELISA methods were used to evaluate neuronal damage and oxidative stress. Our results showed that a post-SAH therapeutic regimen with edaravone dexborneol helped improve neurological function up to 21 days after SAH surgery and demonstrated a greater beneficial effect than edaravone alone, accompanied by an obvious inhibition of neuronal apoptosis in the CA1 hippocampus and basal cortex regions. Mechanistically, edaravone dexborneol not only suppressed the lipid peroxidation product malondialdehyde (MDA) but also improved the total antioxidant capability (TAC) 3 days after SAH. Notably, edaravone dexborneol treatment significantly inhibited the expression of another lipid peroxidation product, 4-hydroxynonenal (4-HNE), in the CA1 hippocampus and basal cortex, which are vital participants in the process of neuronal oxidative damage and death after SAH because of their acute cytotoxicity. Together, our results demonstrate that edaravone dexborneol confers neuroprotection and stabilizes long-term behavioral ability after SAH injury, possibly by suppressing 4-HNE-associated oxidative stress. These results may help develop new clinical strategies for SAH treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leilei Mao
- *Correspondence: Leilei Mao, ; Zongyong Zhang, ; Baoliang Sun,
| | - Zongyong Zhang
- *Correspondence: Leilei Mao, ; Zongyong Zhang, ; Baoliang Sun,
| | - Baoliang Sun
- *Correspondence: Leilei Mao, ; Zongyong Zhang, ; Baoliang Sun,
| |
Collapse
|
33
|
Hua Y, Zhou L, Yang W, An W, Kou X, Ren J, Su H, Chen R, Zhang Z, Zou J, Zhao Z. Y-2 reduces oxidative stress and inflammation and improves neurological function of collagenase-induced intracerebral hemorrhage rats. Eur J Pharmacol 2021; 910:174507. [PMID: 34536364 DOI: 10.1016/j.ejphar.2021.174507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease, and there is currently no specific pharmacological treatment that can improve clinical outcomes. Y-2 sublingual tablets, each containing 30 mg edaravone and 6 mg (+)-borneol, is undergoing a phase III clinical trial for treatment of ischemic stroke in China. The purpose of the present study is to investigate the efficacy and potential mechanism of Y-2 in a rat model of collagenase IV injection induced ICH. Sublingual administration of Y-2 at the dose of 1, 3 and 6 mg/kg improved ICH-induced sensorimotor dysfunction, alleviated cell death and histopathological change, restored the hippocampal long-term potentiation (LTP), reduced brain edema and maintained blood-brain barrier (BBB) integrality in ICH rats. Further study demonstrated that Y-2 could reduce inflammatory response and oxidative stress by decreasing the levels of myeloperoxidase (MPO), ionized calcium-binding adaptor protein-1 (Iba-1), inflammatory cytokines and oxidative products, inhibit transcription factor nuclear factor-κB (NF-κB) activation, cyclooxygenase-2 (COX-2) and matrix metallopeptidase 9 (MMP-9) expression in brain tissue around in the core regions of hematoma. Importantly, the protective efficacy of Y-2 from ICH-induced injury was superior to edaravone. In conclusion, Y-2 sublingual tablets might be a promising therapeutic agent for the treatment of ICH.
Collapse
Affiliation(s)
- Yao Hua
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Limei Zhou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Weidong Yang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Wenji An
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Xiaolin Kou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Jian Ren
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Hailang Su
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Rong Chen
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Zhengping Zhang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China; State Key Laboratory of Translational Medicine and Innovative Drug, No.699-18, Xuanwu Avenue, Nanjing, Jiangsu, 210042, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410005, China.
| |
Collapse
|
34
|
Edaravone Combined with Clopidogrel Is Beneficial to Improve Efficacy, Neurological Impairment, and Life Function in Acute Cerebral Infarction Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8030521. [PMID: 34691225 PMCID: PMC8531786 DOI: 10.1155/2021/8030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Objective This research aimed at investigating the efficacy of edaravone combined with clopidogrel on acute cerebral infarction (ACI) and its influence on the neurological deficit and life function. Methods Totally, 154 ACI cases were included and then divided into the control group (CG) (n = 71) and research group (RG) (n = 83) according to the treatment methods. Patients in the CG were treated with clopidogrel alone, and those in the RG were under edaravone-clopidogrel combination therapy. The efficacy, adverse reactions, NIHSS score, cerebral hemodynamic indexes, and Fugl-Meyer scale (FMA) and Barthel index (BI) of activities of daily living (ADL) scores were observed. Results Compared with before treatment, the symptoms of both groups were improved after treatment: the NIHSS scores decreased, FMA and ADL scores increased, and cerebral hemodynamic indexes were improved. Compared with the CG, the efficacy and cerebral hemodynamic indexes of the RG were better, the adverse reactions were equivalent, the NIHSS score was lower, and the ADL and FMA scores were higher. Conclusion Edaravone combined with clopidogrel can effectively treat ACI and improve the neurological deficit and life function of patients.
Collapse
|
35
|
Chen W, Jiang L, Hu Y, Fang G, Yang B, Li J, Liang N, Wu L, Hussain Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J Control Release 2021; 340:342-360. [PMID: 34695522 DOI: 10.1016/j.jconrel.2021.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lingfei Jiang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Gang Fang
- Guangxi Zhuang and Yao Medicine Engineering Technology Research Center, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Bilin Yang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Junhong Li
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Ni Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
36
|
Chen N, Wen J, Wang Z, Wang J. Multiple regulation and targeting effects of borneol in the neurovascular unit in neurodegenerative diseases. Basic Clin Pharmacol Toxicol 2021; 130:5-19. [PMID: 34491621 DOI: 10.1111/bcpt.13656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Efficient delivery of brain-targeted drugs is highly important for the success of therapies in neurodegenerative diseases. Borneol has several biological activities, such as anti-inflammatory and cell penetration enhancing effect, and can regulate processes in the neurovascular unit (NVU), such as protein toxic stress, autophagosome/lysosomal system, oxidative stress, programmed cell death and neuroinflammation. However, the influence of borneol on NVU in neurodegenerative diseases has not been fully explained. This study searched the keywords 'borneol', 'neurovascular unit', 'endothelial cell', 'astrocyte', 'neuron', 'blood-brain barrier', 'neurodegenerative diseases' and 'brain disease', in PubMed, BioMed Central, China National Knowledge Infrastructure (CNKI), and Bing search engines to explore the influence of borneol on NVU. In addition to the principle and mechanism of penetration of borneol in the brain, this study also showed its multiple regulation effects on NVU. Borneol was able to penetrate the blood-brain barrier (BBB), affecting the signal transmission between BBB and the microenvironment of the brain, down-regulating the expression of inflammatory and oxidative stress proteins in NVU, especially in microglia and astrocytes. In summary, borneol is a potential drug delivery agent for drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Nian Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- Department of Pharmacology, North Sichuan Medical College, Nanchong, China
| | - Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Wu JR, Lu PC, Khine AA, Simaremare SRS, Hung CC, Yiin LM, Ho TJ, Tung CH, Chen HP. Borneol dehydrogenase from Pseudomonas sp. TCU-HL1 possesses novel quinuclidinone reductase activities. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1955865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jia-Ru Wu
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Pei-Chieh Lu
- Department of Biochemistry, Tzu Chi University, Hualien, Taiwan
| | - Aye Aye Khine
- Department of Biochemistry, Tzu Chi University, Hualien, Taiwan
| | - Sailent Rizki Sari Simaremare
- Department of Public Health and Institute of Medical Science, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chien-Chi Hung
- Department of Public Health and Institute of Medical Science, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Lin-Ming Yiin
- Department of Public Health and Institute of Medical Science, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chi-Hua Tung
- Department of Bioinformatics, Chung Hua University, Hsinchu City, Taiwan
- Department of Optoelectronics and Materials Engineering, Chung Hua University, Hsinchu City, Taiwan
| | - Hao-Ping Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Biochemistry, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
38
|
Li Y, Ren M, Wang J, Ma R, Chen H, Xie Q, Li H, Li J, Wang J. Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review. Front Pharmacol 2021; 12:606682. [PMID: 34017247 PMCID: PMC8129537 DOI: 10.3389/fphar.2021.606682] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Borneol is a terpene and bicyclic organic compound that can be extracted from plants or chemically synthesized. As an important component of proprietary Chinese medicine for the treatment of stroke, its neuroprotective effects have been confirmed in many experiments. Unfortunately, there is no systematic review of these studies. This study aimed to systematically examine the neuroprotective effects of borneol in the cascade reaction of experimental ischemic stroke at different periods. Methods: Articles on animal experiments and cell-based research on the actions of borneol against ischemic stroke in the past 20°years were collected from Google Scholar, Web of Science, PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), and other biomedical databases. Meta-analysis was performed on key indicators in vivo experiments. After sorting the articles, we focused on the neuroprotective effects and mechanism of action of borneol at different stages of cerebral ischemia. Results: Borneol is effective in the prevention and treatment of nerve injury in ischemic stroke. Its mechanisms of action include improvement of cerebral blood flow, inhibition of neuronal excitotoxicity, blocking of Ca2+ overload, and resistance to reactive oxygen species injury in the acute ischemic stage. In the subacute ischemic stage, borneol may antagonize blood-brain barrier injury, intervene in inflammatory reactions, and prevent neuron excessive death. In the late stage, borneol promotes neurogenesis and angiogenesis in the treatment of ischemic stroke. Conclusion: Borneol prevents neuronal injury after cerebral ischemia via multiple action mechanisms, and it can mobilize endogenous nutritional factors to hasten repair and regeneration of brain tissue. Because the neuroprotective effects of borneol are mediated by various therapeutic factors, deficiency caused by a single-target drug is avoided. Besides, borneol promotes other drugs to pass through the blood-brain barrier to exert synergistic therapeutic effects.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
40
|
Wang K, Wang Y, Zhang H, Li X, Han W. A review of the synthesis of nitric oxide donor and donor derivatives with pharmacological activities. Mini Rev Med Chem 2021; 22:873-883. [PMID: 33845741 DOI: 10.2174/1389557521666210412161801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Endogenous nitric oxide (NO) is an important effector molecule and signal transduction molecule, which participates in the regulation of multiple functions in organisms, involving a variety of physiological and pathological processes, especially playing a very important role in the cardiovascular, immune, and nervous systems. NO is a gaseous substance with a short half-life in the body and is unstable in aqueous solutions. Therefore, many researchers focus on the release and activity of NO donors and their derivatives. However, NO donors can release free NO or NO analogues under physiological conditions to meet the human need. NO donors can be coupled with the corresponding active basic nucleus, so that they have the biological activity derived from both the basic nucleus and the NO donors, thus performing better bioactivity. This paper reviewed the routes of synthesis and advance activities of NO donor derivatives.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin,150081. China
| | - Yue Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin,150081. China
| | - Hualin Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin,150081. China
| | - Xintong Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin,150081. China
| | - Weina Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin,150081. China
| |
Collapse
|
41
|
Xu J, Wang A, Meng X, Yalkun G, Xu A, Gao Z, Chen H, Ji Y, Xu J, Geng D, Zhu R, Liu B, Dong A, Mu H, Lu Z, Li S, Zheng H, Chen X, Wang Y, Zhao X, Wang Y. Edaravone Dexborneol Versus Edaravone Alone for the Treatment of Acute Ischemic Stroke: A Phase III, Randomized, Double-Blind, Comparative Trial. Stroke 2021; 52:772-780. [PMID: 33588596 DOI: 10.1161/strokeaha.120.031197] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Edaravone dexborneol, comprised of 2 active ingredients, edaravone and (+)-borneol, has been developed as a novel neuroprotective agent with synergistic effects of antioxidant and anti-inflammatory in animal models. The present clinical trial aimed at testing the effects of edaravone dexborneol versus edaravone on 90-day functional outcome in patients with acute ischemic stroke (AIS). METHODS A multicenter, randomized, double-blind, comparative, phase III clinical trial was conducted at 48 hospitals in China between May 2015 and December 2016. Inclusion criteria included patients diagnosed as AIS, 35 to 80 years of age, National Institutes of Health Stroke Scale Score between 4 and 24, and within 48 hours of AIS onset. AIS patients were randomized in 1:1 ratio into 2 treatment arms: 14-day infusion of edaravone dexborneol or edaravone injection. The primary end point was the proportion of patients with modified Rankin Scale score ≤1 on day 90 after randomization. RESULTS One thousand one hundred sixty-five AIS patients were randomly allocated to the edaravone dexborneol group (n=585) or the edaravone group (n=580). The edaravone dexborneol group showed significantly higher proportion of patients experiencing good functional outcomes on day 90 after randomization, compared with the edaravone group (modified Rankin Scale score ≤1, 67.18% versus 58.97%; odds ratio, 1.42 [95% CI, 1.12-1.81]; P=0.004). The prespecified subgroup analyses indicated that a greater benefit was observed in female patients than their male counterparts (2.26, 1.49-3.43 versus 1.14, 0.85-1.52). CONCLUSIONS When edaravone dexborneol versus edaravone was administered within 48 hours after AIS, 90-day good functional outcomes favored the edaravone dexborneol group, especially in female patients. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02430350.
Collapse
Affiliation(s)
- Jie Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Gulbahram Yalkun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China (A.X.)
| | - Zhiqiang Gao
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, China (Z.G.)
| | - Huisheng Chen
- Department of Neurology, The General Hospital of Shenyang Military, China (H.C.)
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, China (Y.J.)
| | - Jun Xu
- Department of Neurology, Subei People's Hospital of Jiangsu Province, Yangzhou, China (Jun Xu)
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, China (D.G.)
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China (R.Z.)
| | - Bo Liu
- Department of Neurology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, China (B.L.)
| | - Aiqin Dong
- Department of Neurology, Cangzhou Central Hospital, China (A.D.)
| | - Hua Mu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China (H.M., Z.L.)
| | - Zhihong Lu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China (H.M., Z.L.)
| | - Shuya Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Huaguang Zheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Xia Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
- China National Clinical Research Center for Neurological Diseases, Beijing (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Jie Xu, A.W., X.M., G.Y., S.L., H.Z., X.C., Yilong Wang, X.Z., Yongjun Wang)
| |
Collapse
|
42
|
Yuan R, Zhang D, Yang J, Wu Z, Luo C, Han L, Yang F, Lin J, Yang M. Review of aromatherapy essential oils and their mechanism of action against migraines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113326. [PMID: 32877718 DOI: 10.1016/j.jep.2020.113326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraines have become a major threat to human health, as they significantly affect human health and quality of life due to a high prevalence rate, attack rate and pain intensity. Aromatherapy, with its comfortable and pleasant natural characteristics and rapid and efficient characteristics, is widely favored by patients in the folk. Chinese folk also have the application history and related records of aromatic plants in the treatment of migraine. AIM OF THE STUDY This study was conducted to review the pathogenesis of migraine, the application of plant essential oils in the treatment of migraine, and further explore the material basis and mechanism of action of plant essential oils against migraine. MATERIALS AND METHODS Search the electronic literature of essential oils with anti-migraine effect in Google Scholar, PubMed and China National Knowledge Infrastructure, and further search the research situation of the monomer components of essential oils in migraine, inflammation, pain and other aspects. RESULTS studies show that there are 10 types of plant essential oils that could relieve migraine symptoms, and that 16 monomers may play a role in migraine treatment by effectively inhibiting neurogenic inflammation, hyperalgesia and balancing vasorelaxation. CONCLUSION Aromatic plant essential oils can relieve migraine effectively, these findings can be used as an important part of the development of anti-migraine drugs.
Collapse
Affiliation(s)
- Ruifang Yuan
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Dingkun Zhang
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jinhui Yang
- Sichuan Baicao Jinggong Biotechnology Co., Ltd., Chengdu, 610000, PR China
| | - Zhenfeng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Chuanhong Luo
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li Han
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fangli Yang
- Sinopharm Sichuan Orthopedic Tehnology & Equipment Co., Ltd., Chengdu, 610000, PR China
| | - Junzhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
43
|
Yu B, Yao Y, Zhang X, Xu H, Lu J, Ruan M. Synergic Effect of Ligusticum chuanxiong Hort Extract and Borneol in Protecting Brain Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Reperfusion Injury. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.447.459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Queiroz AN, Martins CC, Santos KLB, Carvalho ES, Owiti AO, Oliveira KRM, Herculano AM, da Silva ABF, Borges RS. Experimental and theoretical study on structure-tautomerism among edaravone, isoxazolone, and their heterocycles derivatives as antioxidants. Saudi Pharm J 2020; 28:819-827. [PMID: 32647483 PMCID: PMC7335820 DOI: 10.1016/j.jsps.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
Edaravone is a heterocyclic pyrazolone compound. It has pronounced effect against free radicals, however renal and hepatic disorders have been reported. Isoxazolones are considered bioisosteric analogues of pyrazolones and may have comparable properties. Thus, we investigated the structural and electronic influences for edaravone, isoxazolone, and their tautomers on antioxidant process. Structure and tautomerism study among edaravone, isoxazolone and their heterocycles derivatives were related to antioxidant mechanisms by using the hybrid DFT method B3LYP with the basis sets 6-31++G(2d,2p). The C—H tautomer was the most stable and energetically favored among them. Intramolecular N—H—N hydrogen bonds and polar medium were responsible for the low energy differences among all possible tautomers. N—H tautomers in both systems proved to be better antioxidant by SET (single electron transfer), while O—H tautomers were better antioxidant on HAT (homolytic hydrogen atom transfer) mechanism. Theoretical calculation showed that edaravone is more potent than phenylisoxazolone, however, both has similar antioxidant scavenging on experimental DPPH. The carbonyliminic system played a very important role in the antioxidant activity for both studied classes.
Collapse
Affiliation(s)
- Auriekson N Queiroz
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Camila C Martins
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Kelton L B Santos
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil.,Faculdade de Química, Campus Santana, Universidade Federal do Amapá, Santana, AP, Brazil
| | - Ederson S Carvalho
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Alex O Owiti
- California University of Science and Medicine, San Bernardino, CA, United States
| | - Karen R M Oliveira
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Biological Sciences Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Anderson M Herculano
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Biological Sciences Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Albérico B F da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, São Carlos, SP, Brazil
| | - Rosivaldo S Borges
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| |
Collapse
|
45
|
|
46
|
Yu B, Ruan M, Liang T, Yu Y. Synergy Between Borneol and Extract of Ligusticum chuanxiong Hort Against Cortex and Striatum Ischemia. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.104.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Xiao S, Yan Y, Zhao J, Zhang Y, Feng N. Increased microneedle-mediated transdermal delivery of tetramethylpyrazine to the brain, combined with borneol and iontophoresis, for MCAO prevention. Int J Pharm 2019; 575:118962. [PMID: 31857187 DOI: 10.1016/j.ijpharm.2019.118962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
The aim of this research was to improve transdermal delivery and distribution of tetramethylpyrazine (TMP) in the brain, by adding borneol (BN) and iontophoresis (ITP), and using microneedles (MN), to prevent middle cerebral artery occlusion (MCAO). BN was encapsulated into sulfobutylated-β-cyclodextrin (BN-SBE-β-CD), and then dispersed together with TMP. Four delivery groups were tested: passive (with no ITP and MN), ITP, MN, and MN combined with ITP (MN-ITP). In vitro transdermal fluxes of the drugs in those groups and in that corresponding order were 79.12 ± 14.5, 395.43 ± 12.37, 319.16 ± 29.99, and 1018.07 ± 108.92 μg/cm2 (for TMP), and 39.34 ± 1.31, 202.81 ± 53.56, 715.47 ± 75.52, and 1088.60 ± 53.90 μg/cm2 (for BN), respectively, which indicated that the use of MN-ITP greatly enhanced transdermal TMP and BN delivery compared to the other groups. The AUC0-t for the combined use of TMP and BN drugs was measured using two in vivo studies, cutaneous microdialysis and pharmacodynamic, yielding increased folds of 3.69 and 1.98 in ITP, 6.05 and 2.73 in MN, and 12.43 and 7.47 in MN-ITP groups, respectively, as compared to those in the passive group. In addition, the combined use of TMP and BN increased TMP distribution in the heart and the brain, indicated by TMP Cmax of 1.76- and 1.59-fold higher (p < 0.05), and TMP AUC0-t of 1.50 times and 1.19-fold higher (p < 0.01), than with administration of TMP in absence of BN, respectively. The brain infarction area and IL-β expression in the MCAO rat were significantly decreased in the MN-ITP group, compared with the control group (p < 0.05). In conclusion, combination of MN and ITP resulted in a synergistic enhancement of transdermal delivery and distribution of TMP in the brain, when in combination with BN, thereby significantly decreasing the infarct volumes and improving the neurological scores of MCAO.
Collapse
Affiliation(s)
- Sirui Xiao
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulu Yan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jihui Zhao
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
48
|
Pang HQ, An HM, Yang H, Wu SQ, Fan JL, Mi L, Wang H, Li P, Gao W. Comprehensive chemical profiling of Yindan Xinnaotong soft capsule and its neuroprotective activity evaluation in vitro. J Chromatogr A 2019; 1601:288-299. [DOI: 10.1016/j.chroma.2019.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
|
49
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
50
|
Xu J, Wang Y, Wang A, Gao Z, Gao X, Chen H, Zhou J, Zhao X, Wang Y. Safety and efficacy of Edaravone Dexborneol versus edaravone for patients with acute ischaemic stroke: a phase II, multicentre, randomised, double-blind, multiple-dose, active-controlled clinical trial. Stroke Vasc Neurol 2019; 4:109-114. [PMID: 31709115 PMCID: PMC6812637 DOI: 10.1136/svn-2018-000221] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Edaravone Dexborneol is a novel neuroprotective agent that comprised edaravone and (+)-borneol, a food additive with an anti-inflammatory effect in animal ischaemic stroke models. This study aims to assess the safety and efficacy of Edaravone Dexborneol compared with edaravone in treating patients with acute ischaemic stroke (AIS). Methods In this multicentre, randomised, double-blind, multiple-dose, active-controlled, phase II clinical trial, patients with AIS within 48 hours after stroke onset were randomly assigned (1:1:1:1) to low-dose (12.5 mg), medium-dose (37.5 mg) or high-dose (62.5 mg) Edaravone Dexborneol groups, and an active control group with edaravone (30 mg) by 30 min intravenous infusion every 12 hours, for 14 consecutive days. The primary efficacy outcome was the proportion of modified Rankin Scale (mRS)score ≤1 at 90 days and National Institutes of Health Stroke Scale (NIHSS) score change from baseline to 14 days after randomisation. The safety outcome included any adverse event during 90 days after treatment. Results Of 385 patients included in the efficacy analysis, 94 were randomised to low-dose group, 97 to medium-dose group, 98 to high-dose group and 96 to the control group. No significant difference was observed among the four groups on mRS score (mRS ≤1, p=0.4054) at 90 days or NIHSS score change at 14 days (p=0.6799). However, a numerically higher percentage of patients with mRSscore ≤1 at 90 days in the medium-dose (69.39%) and high-dose (65.63%) groups was observed than in the control group (60.64%). No significant difference in severe adverse events was found among the four groups (p=0.3815). Conclusions Compared with edaravone alone, Edaravone Dexborneol was safe and well tolerated at all doses, although no significant improvement in functional outcomes was observed at 90days. Trial registration number NCT01929096.
Collapse
Affiliation(s)
- Jie Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiqiang Gao
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoping Gao
- Department of Neurology, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Huisheng Chen
- Department of Neurology, General Hospital, PLA Shenyang Military Region, Shenyang, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|