1
|
Ramsay S, Keightley L, Brookes S, Zagorodnyuk V. TRPV1 and TRPM8 antagonists reduce cystitis-induced bladder hypersensitivity via inhibition of different sensitised classes of bladder afferents in guinea pigs. Br J Pharmacol 2022; 180:1482-1499. [PMID: 36549668 DOI: 10.1111/bph.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Interstitial cystitis (=painful bladder syndrome) is a chronic bladder syndrome characterised by pelvic and bladder pain, urinary frequency and urgency, and nocturia. Transient receptor potential (TRP) channels are an attractive target in reducing the pain associated with interstitial cystitis. The current study aims to determine the efficacy of combination of TRP vanilloid 1 (TRPV1) and TRP melastatin 8 (TRPM8) channel inhibition in reducing the pain associated with experimental cystitis in guinea pigs. EXPERIMENTAL APPROACH A novel animal model of non-ulcerative interstitial cystitis has been developed using protamine sulfate/zymosan in female guinea pigs. Continuous voiding cystometry was performed in conscious guinea pigs. Ex vivo "close-to-target" single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder. Visceromotor responses in vivo were used to determine the effects of TRP channel antagonists on cystitis-induced bladder hypersensitivity. KEY RESULTS Protamine sulfate/zymosan treatment evoked mild inflammation in the bladder and increased micturition frequency in conscious animals. In cystitis, high threshold muscular afferents were sensitised via up-regulation of TRPV1 channels, high threshold muscular-mucosal afferents were sensitised via TRPM8 channels, and mucosal afferents by both. Visceromotor responses evoked by noxious bladder distension were significantly enhanced in cystitis and were returned to control levels upon administration of combination of low doses of TRPV1 and TRPM8 antagonists. CONCLUSIONS AND IMPLICATIONS The data demonstrate the therapeutic promises of combination of TRPV1 and TRPM8 antagonists for the treatment of bladder hypersensitivity in cystitis.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren Keightley
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon Brookes
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Hernández-Ortego P, Torres-Montero R, de la Peña E, Viana F, Fernández-Trillo J. Validation of Six Commercial Antibodies for the Detection of Heterologous and Endogenous TRPM8 Ion Channel Expression. Int J Mol Sci 2022; 23:ijms232416164. [PMID: 36555804 PMCID: PMC9784522 DOI: 10.3390/ijms232416164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
TRPM8 is a non-selective cation channel expressed in primary sensory neurons and other tissues, including the prostate and urothelium. Its participation in different physiological and pathological processes such as thermoregulation, pain, itch, inflammation and cancer has been widely described, making it a promising target for therapeutic approaches. The detection and quantification of TRPM8 seems crucial for advancing the knowledge of the mechanisms underlying its role in these pathophysiological conditions. Antibody-based techniques are commonly used for protein detection and quantification, although their performance with many ion channels, including TRPM8, is suboptimal. Thus, the search for reliable antibodies is of utmost importance. In this study, we characterized the performance of six TRPM8 commercial antibodies in three immunodetection techniques: Western blot, immunocytochemistry and immunohistochemistry. Different outcomes were obtained for the tested antibodies; two of them proved to be successful in detecting TRPM8 in the three approaches while, in the conditions tested, the other four were acceptable only for specific techniques. Considering our results, we offer some insight into the usefulness of these antibodies for the detection of TRPM8 depending on the methodology of choice.
Collapse
|
3
|
Wei C, Kim B, McKemy DD. Transient receptor potential melastatin 8 is required for nitroglycerin- and calcitonin gene-related peptide-induced migraine-like pain behaviors in mice. Pain 2022; 163:2380-2389. [PMID: 35353773 PMCID: PMC9519811 DOI: 10.1097/j.pain.0000000000002635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Migraine is a complex neurovascular disorder that is one of the leading causes of disability and a reduced quality of life. Even with such a high societal impact, our understanding of the cellular and molecular mechanisms that contribute to migraine headaches is limited. To address this complex disorder, several groups have performed genome-wide association studies to elucidate migraine susceptibility genes, with many identifying transient receptor potential melastatin 8 (TRPM8), a cold-sensitive cation channel expressed in peripheral afferents innervating the trigeminovascular system, and the principal mediator of cold and cold pain associated with injury and disease. Interestingly, these migraine-associated single-nucleotide polymorphisms reside in noncoding regions of TRPM8, with those correlated with reduced migraine risk exhibiting lower TRPM8 expression and decreased cold sensitivity. Nonetheless, as a role for TRPM8 in migraine has yet to be defined, we sought to address this gap in our knowledge using mouse genetics and TRPM8 antagonism to determine whether TRPM8 channels or neurons are required for migraine-like pain (mechanical allodynia and facial grimace) in inducible migraine models. Our results show that both evoked and spontaneous pain behaviors are dependent on both TRPM8 channels and neurons, as well as required in both acute and chronic migraine models. Moreover, inhibition of TRPM8 channels prevented acute but not established chronic migraine-like pain. These results are consistent with its association with migraine in genetic analyses and establish that TRPM8 channels are a component of the underlying mechanisms of migraine.
Collapse
Affiliation(s)
- Chao Wei
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - Brian Kim
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - David D. McKemy
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| |
Collapse
|
4
|
Aizawa N, Fujita T. The TRPM8 channel as a potential therapeutic target for bladder hypersensitive disorders. J Smooth Muscle Res 2022; 58:11-21. [PMID: 35354708 PMCID: PMC8961290 DOI: 10.1540/jsmr.58.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the lower urinary tract, transient receptor potential (TRP) channels are primarily involved in physiological function, especially in cellular sensors responding to chemical and physical stimuli. Among TRP channels, TRP melastatin 8 (TRPM8) channels, responding to cold temperature and/or chemical agents, such as menthol or icilin, are mainly expressed in the nerve endings of the primary afferent neurons and in the cell bodies of dorsal root ganglia innervating the urinary bladder (via Aδ- and C-fibers); this suggests that TRPM8 channels primarily contribute to bladder sensory (afferent) function. Storage symptoms of overactive bladder, benign prostatic hyperplasia, and interstitial cystitis are commonly related to sensory function (bladder hypersensitivity); thus, TRPM8 channels may also contribute to the pathophysiology of bladder hypersensitivity. Indeed, it has been reported in a pharmacological investigation using rodents that TRPM8 channels contribute to the pathophysiological bladder afferent hypersensitivity of mechanosensitive C-fibers. Similar findings have also been reported in humans. Therefore, a TRPM8 antagonist would be a promising therapeutic target for bladder hypersensitive disorders, including urinary urgency or nociceptive pain. In this review article, the functional role of the TRPM8 channel in the lower urinary tract and the potential of its antagonist for the treatment of bladder disorders was described.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
5
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Liu Y, Mikrani R, He Y, Faran Ashraf Baig MM, Abbas M, Naveed M, Tang M, Zhang Q, Li C, Zhou X. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol 2020; 882:173312. [PMID: 32610057 DOI: 10.1016/j.ejphar.2020.173312] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Ion channels are important therapeutic targets due to their plethoric involvement in physiological and pathological consequences. The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a nonselective cation channel that controls Ca2+ homeostasis. It has been proposed to be the predominant thermoreceptor for cellular and behavioral responses to cold stimuli in the transient receptor potential (TRP) channel subfamilies and exploited so far to reach the clinical-stage of drug development. TRPM8 channels can be found in multiple organs and tissues, regulating several important processes such as cell proliferation, migration and apoptosis, inflammatory reactions, immunomodulatory effects, pain, and vascular muscle tension. The related disorders have been expanded to new fields ranging from cancer and migraine to dry eye disease, pruritus, irritable bowel syndrome (IBS), and chronic cough. This review is aimed to summarize the distribution of TRPM8 and disorders related to it from a clinical perspective, so as to broaden the scope of knowledge of researchers to conduct more studies on this subject.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Yanjun He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Naveed
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, 210017, PR China.
| |
Collapse
|
8
|
Ueno M, Minagawa T, Saito T, Imamura T, Nagai T, Ogawa T, Ishizuka O. Therapeutic effects of Choreito, a traditional Japanese (Kampo) medicine, on detrusor overactivity induced by acetic acid in rats. Low Urin Tract Symptoms 2020; 12:198-205. [PMID: 32017455 DOI: 10.1111/luts.12302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 01/20/2023]
Abstract
Choreito (CRT), a traditional Japanese (Kampo) medicine, is widely used for the treatment of overactive bladder (OAB) and other lower urinary tract symptoms in Japan. This study aimed to identify the effects and therapeutic mechanism of CRT on the improvement of detrusor overactivity (DO) using an experimental rat model. Forty-five female Sprague-Dawley rats were equally divided into three groups: intravesical saline instillation with normal food (normal group), intravesical acetic acid (AA) instillation with normal food (AA group), and intravesical AA instillation with CRT (AA with CRT group). To induce a decrease in bladder capacity, instillation of 0.2% AA was used based on prior studies. Cystometric investigation was employed to clarify the effects of AA and CRT. Microcirculation was performed using a laser blood flowmeter, and the localization of hypoxia-inducible factor 1α (HIF1α) was assessed by immunohistochemistry. The bladder capacities of the normal, AA, and AA with CRT groups were 1.2 ± 0.3 mL, 0.4 ± 0.1 mL, and 0.8 ± 0.1 mL, respectively. CRT significantly attenuated AA irritation of the urinary bladder and exerted protective effects on basal pressure, micturition pressure, micturition interval, and micturition volume. Furthermore, CRT could prevent the excess blood flow and edematous change under the urothelium induced by intravesical AA instillation. No obvious changes in immunohistochemical HIF1α staining were observed among the groups. CRT attenuated DO induced by intravesical AA instillation in a rat experimental model. CRT might impart therapeutic effects on OAB via the mitigation of urothelial damage and regulation of excess blood flow.
Collapse
Affiliation(s)
- Manabu Ueno
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuichi Saito
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuya Imamura
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Nagai
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
9
|
Andersson KE. TRP Channels as Lower Urinary Tract Sensory Targets. Med Sci (Basel) 2019; 7:E67. [PMID: 31121962 PMCID: PMC6572419 DOI: 10.3390/medsci7050067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Several members of the transient receptor potential (TRP) superfamily, including TRPV1, TRPV2, TRPV4, TRM4, TRPM8 and TRPA1, are expressed in the lower urinary tract (LUT), not only in neuronal fibers innervating the bladder and urethra, but also in the urothelial and muscular layers of the bladder and urethral walls. In the LUT, TRP channels are mainly involved in nociception and mechanosensory transduction. Animal studies have suggested the therapeutic potential of several TRP channels for the treatment of both bladder over- and underactivity and bladder pain disorders,; however translation of this finding to clinical application has been slow and the involvement of these channels in normal human bladder function, and in various pathologic states have not been established. The development of selective TRP channel agonists and antagonists is ongoing and the use of such agents can be expected to offer new and important information concerning both normal physiological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA.
- Institute of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| |
Collapse
|
10
|
TRP Channels as Drug Targets to Relieve Itch. Pharmaceuticals (Basel) 2018; 11:ph11040100. [PMID: 30301231 PMCID: PMC6316386 DOI: 10.3390/ph11040100] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Although acute itch has a protective role by removing irritants to avoid further damage, chronic itch is debilitating, significantly impacting quality of life. Over the past two decades, a considerable amount of stimulating research has been carried out to delineate mechanisms of itch at the molecular, cellular, and circuit levels. There is growing evidence that transient receptor potential (TRP) channels play important roles in itch signaling. The purpose of this review is to summarize our current knowledge about the role of TRP channels in the generation of itch under both physiological and pathological conditions, thereby identifying them as potential drug targets for effective anti-itch therapies.
Collapse
|
11
|
Toktanis G, Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Potential therapeutic value of transient receptor potential channels in male urogenital system. Pflugers Arch 2018; 470:1583-1596. [PMID: 30194638 DOI: 10.1007/s00424-018-2188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes including light, mechanical or chemical stimuli, temperature, pH, or osmolarity. TRP channel proteins are a diverse family of proteins that are expressed in many tissues. We debated our recent knowledge about the expression, function, and regulation of TRP channels in the different parts of the male urogenital system in health and disease. Emerging evidence suggests that dysfunction of TRP channels significantly contributes to the pathophysiology of urogenital diseases. So far, there are many efforts underway to determine if these channels can be used as drug targets to reverse declines in male urogenital function. Furthermore, developing safe and efficacious TRP channel modulators is warranted for male urogenital disorders in a clinical setting.
Collapse
Affiliation(s)
| | - Ecem Kaya-Sezginer
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmacology, Cukurova University, Adana, Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
12
|
Hüsch T, Reitz A, Ulm K, Haferkamp A. Ice water test in multiple sclerosis: A pilot trial. Int J Urol 2018; 25:938-943. [PMID: 30103278 DOI: 10.1111/iju.13786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the significance of the ice water test in patients with multiple sclerosis and to evaluate a novel ice water test nomogram in a large patient cohort. METHODS A total of 201 ice water tests of patients with multiple sclerosis were retrospectively evaluated. Incontinence episodes in 24 h and sex were correlated with the ice water test. Furthermore, an ice water test nomogram was developed in order to categorize the detrusor overactivity in severity degrees. Descriptive statistics were carried out for population characteristics. Correlations of categorical variables were calculated by the χ2 -test. The independent t-test was carried out for correlations of continuous variables. Furthermore, the data were evaluated in the novel ice water test nomogram. RESULTS The patient population consisted of 141 (70.1%) women and 60 (39.9%) men. A clinically positive ice water test (maximum detrusor pressure >15 cmH2 O) was identified in 75 patients (37.3%). Significantly more men presented a clinically positive ice water test (P = 0.006). In 16.5%, the ice water test unmasked an involuntary detrusor contraction, although routine cystometry did not show any detrusor overactivity. The ice water test nomogram could be successfully applied. The incontinence episodes and maximum detrusor pressure correlated positively with a higher categorization in the nomogram. Therapeutic interventions and follow-up controls could be successfully illustrated by the nomogram. CONCLUSIONS The ice water test is a simple tool for unmasking non-identified detrusor overactivity in neurogenic bladder dysfunction. A severity categorization of the detrusor overactivity can be facilitated by the use of the ice water test nomogram. After further validation, the ice water test could be ultimately used in future as objective assessment for bladder dysfunction.
Collapse
Affiliation(s)
- Tanja Hüsch
- Department of Urology and Pediatric Urology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - André Reitz
- Department of Urology and Pediatric Urology, University Medical Center of Johannes Gutenberg University, Mainz, Germany.,KontinenzZentrum Hirslanden, Zurich, Switzerland
| | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Technical University of Munich, Munich, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
13
|
[Menthol in the control of bladder activity: A review]. Prog Urol 2018; 28:523-529. [PMID: 30098904 DOI: 10.1016/j.purol.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Menthol is a natural compound, of which the known effects on human physiology are manifold (a feeling of freshness, decongestant, bowel antispasmodic). Its implication in vesico-sphincteral physiopathology has been studied since the nineties. METHOD Literature review of the previous studies having implied menthol in pelvi-perineal physiology through the articles indexed on the Pubmed database, with keywords menthol, menthol and bladder, menthol and toxicity, and TRPM8. Only articles in English were selected. RESULTS Of the 30 articles that were included, most demonstrated the existence of a micturition reflex to menthol and cold, mediated by the C-type nerve to the spine through activation of TRPM8 urothelial receptors. More recent experiments paradoxically showed an inhibitory effect of menthol on detrusor contractility, independently of TRPM8, when muscle tissue is directly exposed to the compound. However, similar effects of targeted cutaneous exposure or urothelial exposure on detrusorian function have also been demonstrated through TRPM8. This receptor also appears to be involved in interstitial cystitis and idiopathic detrusor overactivity. Lastly, the potential toxicity of menthol appears negligible. Most of the referenced studies are related to animal experiments. Of the three studies that implied humans, only one elucidates some therapeutic applications. CONCLUSION It seems that menthol and its receptors are involved in vesico-sphincteral physiopathology and could provide therapeutic potential in detrusorian overactivity and interstitial cystitis with reduced toxicity.
Collapse
|
14
|
Aizawa N, Fujimori Y, Kobayashi JI, Nakanishi O, Hirasawa H, Kume H, Homma Y, Igawa Y. KPR-2579, a novel TRPM8 antagonist, inhibits acetic acid-induced bladder afferent hyperactivity in rats. Neurourol Urodyn 2018; 37:1633-1640. [DOI: 10.1002/nau.23532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/27/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Naoki Aizawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | | | | | - Osamu Nakanishi
- Discovery Research R&D; Kissei Pharmaceutical Co., Ltd.; Azumino Japan
| | - Hideaki Hirasawa
- Discovery Research R&D; Kissei Pharmaceutical Co., Ltd.; Azumino Japan
| | - Haruki Kume
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yukio Homma
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yasuhiko Igawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
15
|
Reitz A, Hüsch T, Haferkamp A. A Nomogram to Characterize the Severity of Detrusor Overactivity during the Ice Water Test: Description of the Method and Proof of Concept. Urol Int 2018; 100:294-300. [PMID: 29339638 DOI: 10.1159/000485901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022]
Abstract
AIMS To develop a nomogram with severity categories for detrusor overactivity (DO). METHODS By conducting ice water tests (IWT) in 55 patients with Parkinson's disease, we identified criteria to describe characteristics of the detrusor pressure curves: (1) a gradient of Δpdet over Δt at the maximum detrusor pressure and (2) the area under the curve. In a nomogram, 10 severity categories of DO were established: 1 and 2 were assigned to group A (mild), 3 and 4 to group B (moderate) and 5-10 to group C (severe). RESULTS In the nomogram, negative IWT (20) appeared in category 1. Positive IWT (35) spread over the categories 1-8, 17 in group A, 11 in group B and 7 in categories 5-10. A relationship of incontinence episodes and nomogram category was observed. The nomogram category was reproducible in repeated IWT. Therapeutic interventions to treat DO lowered the nomogram category. CONCLUSION From the relationship of detrusor pressure and time in the IWT, a nomogram with 10 severity categories of DO was developed. First observations show a relationship of nomogram category and the number of incontinence episodes, reproducibility in repeated tests and the representation of effects of therapeutic interventions to treat DO.
Collapse
Affiliation(s)
- André Reitz
- KontinenzZentrum Hirslanden, Zurich, Switzerland
| | - Tanja Hüsch
- Department of Urology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Axel Haferkamp
- Department of Urology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Joshi A, Joshi A, Patel H, Ponnoth D, Stagni G. Cutaneous Penetration-Enhancing Effect of Menthol: Calcium Involvement. J Pharm Sci 2017; 106:1923-1932. [PMID: 28400197 DOI: 10.1016/j.xphs.2017.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
Menthol is a naturally occurring terpene used as a penetration enhancer in topical and transdermal formulations. Literature shows a growing interest in menthol's interactions with the transient receptor potential melastatin 8. A decrease in extracellular Ca2+ due to the activation of the transient receptor potential melastatin 8 receptor produces inhibition of E-cadherin expression that is responsible for cell-cell adhesion. Because calcium is present in the entire epidermis, the purpose of this study is to evaluate whether the aforementioned properties of menthol are also related to its penetration-enhancing effects. We formulated 16 gels: (i) drug-alone (diphenhydramine or lidocaine), (ii) drug with menthol, (iii) drug, menthol, and calcium channel blocker (CCB; verapamil or diltiazem), and (iv) drug and CCB. In vitro studies showed no effect of the CCB on the release of the drugs either with or without menthol. In vivo experiments were performed for each drug/menthol/CCB combination gel by applying 4 formulations on a shaved rabbit's dorsum on the same day. Dermis concentration profiles were assessed with microdialysis. The gels containing menthol showed higher penetration of drugs than those without whereas the addition of the CCB consistently inhibited the penetration-enhancing effects of menthol. In summary, these findings strongly support the involvement of calcium in the penetration-enhancing effect of menthol.
Collapse
Affiliation(s)
- Amit Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Abhay Joshi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Hiren Patel
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Dovenia Ponnoth
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201
| | - Grazia Stagni
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York 11201.
| |
Collapse
|
17
|
Role of the Excitability Brake Potassium Current I KD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury. J Neurosci 2017; 37:3109-3126. [PMID: 28179555 DOI: 10.1523/jneurosci.3553-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 11/21/2022] Open
Abstract
Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current IKD Here we studied the role of IKD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. IKD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including IKD and TRPM8, showing that a reduction in IKD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of IKD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration.SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current IKD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of IKD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of IKD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain.
Collapse
|
18
|
Synthesis and optimization of novel α-phenylglycinamides as selective TRPM8 antagonists. Bioorg Med Chem 2017; 25:727-742. [DOI: 10.1016/j.bmc.2016.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023]
|
19
|
Morris NB, Filingeri D, Halaki M, Jay O. Evidence of viscerally-mediated cold-defence thermoeffector responses in man. J Physiol 2016; 595:1201-1212. [PMID: 27929204 DOI: 10.1113/jp273052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Visceral thermoreceptors that modify thermoregulatory responses are widely accepted in animal but not human thermoregulation models. Recently, we have provided evidence of viscerally-mediated sweating alterations in humans during exercise brought about by warm and cool fluid ingestion. In the present study, we characterize the modification of shivering and whole-body thermal sensation during cold stress following the administration of a graded thermal stimuli delivered to the stomach via fluid ingestion at 52, 37, 22 and 7°C. Despite no differences in core and skin temperature, fluid ingestion at 52°C rapidly decreased shivering and sensations of cold compared to 37°C, whereas fluid ingestion at 22 and 7°C led to equivalent increases in these responses. Warm and cold fluid ingestion independently modifies cold defence thermoeffector responses, supporting the presence of visceral thermoreceptors in humans. However, the cold-defence thermoeffector response patterns differed from previously identified hot-defence thermoeffectors. ABSTRACT Sudomotor activity is modified by both warm and cold fluid ingestion during heat stress, independently of differences in core and skin temperatures, suggesting independent viscerally-mediated modification of thermoeffectors. The present study aimed to determine whether visceral thermoreceptors modify shivering responses to cold stress. Ten males (mean ± SD: age 27 ± 5 years; height 1.73 ± 0.06 m, weight 78.4 ± 10.7 kg) underwent whole-body cooling via a water perfusion suit at 5°C, on four occasions, to induce a steady-state shivering response, at which point two aliquots of 1.5 ml kg-1 (SML) and 3.0 ml kg-1 (LRG), separated by 20 min, of water at 7, 22, 37 or 52°C were ingested. Rectal, mean skin and mean body temperature (Tb ), electromyographic activity (EMG), metabolic rate (M) and whole-body thermal sensation on a visual analogue scale (WBTS) ranging from 0 mm (very cold) to 200 mm (very hot) were all measured throughout. Tb was not different between all fluid temperatures following SML fluid ingestion (7°C: 35.7 ± 0.5°C; 22°C: 35.6 ± 0.5°C; 37°C: 35.5 ± 0.4°C; 52°C: 35.5 ± 0.4°C; P = 0.27) or LRG fluid ingestion (7°C: 35.3 ± 0.6°C; 22°C: 35.3 ± 0.5°C; 37°C: 35.2 ± 0.5°C; 52°C: 35.3 ± 0.5°C; P = 0.99). With SML fluid ingestion, greater metabolic rates and cooler thermal sensations were observed with ingestion at 7°C (M: 179 ± 55 W, WBTS: 29 ± 21 mm) compared to 52°C (M: 164 ± 34 W, WBTS: 51 ± 28 mm; all P < 0.05). With LRG ingestion, compared to shivering and thermal sensations with ingestion at 37°C (M: 215 ± 47 W, EMG: 3.9 ± 2.5% MVC, WBTS: 33 ± 2 mm), values were different (all P < 0.05) following ingestion at 7°C (M: 269 ± 77 W, EMG: 5.5 ± 0.9% MVC, WBTS: 14 ± 12 mm), 22°C (M: 270 ± 86 W, EMG: 5.6 ± 1.0% MVC, WBTS: 18 ± 19 mm) and 52°C (M: 179 ± 34 W, EMG: 3.3 ± 2.1% MVC, WBTS: 53 ± 28 mm). In conclusion, fluid ingestion at 52°C decreased shivering and the sensation of coolness, whereas fluid ingestion at 22 and 7°C increased shivering and sensations of coolness to similar levels, independently of core and skin temperature.
Collapse
Affiliation(s)
- Nathan B Morris
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, NSW, Australia
| | - Davide Filingeri
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, NSW, Australia.,Centre for Environmental Design Research, University of California at Berkeley, Berkeley, CA, USA
| | - Mark Halaki
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, NSW, Australia
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, NSW, Australia
| |
Collapse
|
20
|
Andersson KE. Potential Future Pharmacological Treatment of Bladder Dysfunction. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:75-85. [DOI: 10.1111/bcpt.12577] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem NC USA
- Aarhus Institute for Advanced Sciences (AIAS); Aarhus University; Aarhus Denmark
| |
Collapse
|
21
|
Liu Z, Wu H, Wei Z, Wang X, Shen P, Wang S, Wang A, Chen W, Lu Y. TRPM8: a potential target for cancer treatment. J Cancer Res Clin Oncol 2016; 142:1871-81. [PMID: 26803314 DOI: 10.1007/s00432-015-2112-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 01/09/2023]
Abstract
Transient receptor potential (TRP) cation channel superfamily plays critical roles in variety of processes, including temperature perception, pain transduction, vasorelaxation, male fertility, and tumorigenesis. One of seven families within the TRP superfamily of ion channels, the melastatin, or TRPM family comprises a group of eight structurally and functionally diverse channels. Of all the members of TRPM subfamily, TRPM8 is the most notable one. A lot of literatures have demonstrated that transient receptor potential melastatin 8 (TRPM8) could perform a myriad of functions in vertebrates and invertebrates alike. In addition to its well-known function in cold sensation, TRPM8 has an emerging role in a variety of biological systems, including thermoregulation, cancer, bladder function, and asthma. Recent studies have shown that TRPM8 is necessary to the initiation and progression of tumors, and the aberrant expression of TRPM8 was found in varieties of tumors, such as prostate tumor, melanoma, breast adenocarcinoma, bladder cancer, and colorectal cancer, making it a novel molecular target potentially useful in the diagnosis and treatment of cancer. This review outlines our current understanding on the role of TRPM8 in occurrence and development of different kinds of tumor and also includes discussion about the regulation of TRPM8 during carcinogenesis as well as therapeutic potential of targeting TRPM8 in tumor, which may be utilized for a potential pharmacological use as a target for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongyan Wu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China.,Department of Pharmacy, Yancheng Health Vocational and Technical College, Yancheng, 224005, Jiangsu Province, China
| | - Zhonghong Wei
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xu Wang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Peiliang Shen
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Siliang Wang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Aiyun Wang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Wenxing Chen
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Yin Lu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
22
|
Hüsch T, Neuerburg T, Reitz A, Haferkamp A. [The ice water test and bladder cooling reflex. Physiology, pathophysiology and clinical importance]. Urologe A 2015; 55:499-505. [PMID: 26459574 DOI: 10.1007/s00120-015-3981-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Urodynamic studies are utilised for identification and follow-up of functional disorders of the lower urinary tract. Provocation tests are used to determine disorders which could not be revealed in standard cystometry. The ice water test is a simple test to identify neurogenic bladder dysfunction and to screen the integrity of the upper motor neuron in neurogenic bladder dysfunction. OBJECTIVES Development and significance of the ice water test is presented in this review against the background of physiology and pathophysiology of the lower urinary tract. MATERIALS AND METHODS A systematic review of PubMed and ScienceDirect databases was performed in April 2015. No language or time limitation was applied. The following key words and Medical Subject Heading terms were used to identify relevant studies: "ice water test", "bladder cooling reflex", "micturition" and "neuronal control". Review articles and bibliographies of other relevant studies identified were hand searched to find additional studies. RESULTS The ice water test is performed by rapid instillation of 4-8 °C cold fluid into the urinary bladder. Hereby, afferent C fibers are activated by cold receptors in the bladder leading to the bladder cooling reflex. It is a spinal reflex which causes an involuntarily contraction of the urinary bladder. The test is normally positive in young infants during the first 4 years of life and become negative with maturation of the central nervous system afterwards by inhibition of the reflex. The damage of the upper motor neuron causes the recurrence of the reflex in the adulthood and indicates spinal and cerebral lesions. DISCUSSION The ice water test is utilised to identify lesions of the upper motor neuron. However, in the case of detrusor acontractility the test will always be negative and can not be utilized to distinguish between neurogenic or muscular causes. Furthermore, the test is also positive in a small percentage of cases of non-neurogenic diseases, e.g. in prostate-related bladder outlet obstruction or idiopathic overactive bladder. Although no clear explanation exists, a positive ice water test could be the first sign of an otherwise asymptomatic neurological disease. CONCLUSIONS Due to the simple procedure, the ice water test is a reliable possibility to identify neurologic bladder hyperactivity subsequent to standard cystometry.
Collapse
Affiliation(s)
- T Hüsch
- Klinik für Urologie und Kinderurologie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| | - T Neuerburg
- Klinik für Urologie und Kinderurologie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| | - A Reitz
- Kontinenzzentrum Hirslanden, Zürich, Schweiz
| | - A Haferkamp
- Klinik für Urologie und Kinderurologie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| |
Collapse
|
23
|
Ito H, Aizawa N, Sugiyama R, Watanabe S, Takahashi N, Tajimi M, Fukuhara H, Homma Y, Kubota Y, Andersson KE, Igawa Y. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry andex vivomeasurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int 2015; 117:484-94. [DOI: 10.1111/bju.13225] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hiroki Ito
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
- Department of Urology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Naoki Aizawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Rino Sugiyama
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | | | | | | | - Hiroshi Fukuhara
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yukio Homma
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yoshinobu Kubota
- Department of Urology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | | | - Yasuhiko Igawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
24
|
Andrews MD, af Forselles K, Beaumont K, Galan SRG, Glossop PA, Grenie M, Jessiman A, Kenyon AS, Lunn G, Maw G, Owen RM, Pryde DC, Roberts D, Tran TD. Discovery of a Selective TRPM8 Antagonist with Clinical Efficacy in Cold-Related Pain. ACS Med Chem Lett 2015; 6:419-24. [PMID: 25893043 DOI: 10.1021/ml500479v] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential (TRP) family of ion channels comprises nonselective cation channels that respond to a wide range of chemical and thermal stimuli. TRPM8, a member of the melastatin subfamily, is activated by cold temperatures (<28 °C), and antagonists of this channel have the potential to treat cold induced allodynia and hyperalgesia. However, TRPM8 has also been implicated in mammalian thermoregulation and antagonists have the potential to induce hypothermia in patients. We report herein the identification and optimization of a series of TRPM8 antagonists that ultimately led to the discovery of PF-05105679. The clinical finding with this compound will be discussed, including both efficacy and its ability to affect thermoregulation processes in humans.
Collapse
Affiliation(s)
| | | | - Kevin Beaumont
- Pharmacokinetics,
Dynamics and Metabolism, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | - Robert M. Owen
- Worldwide
Medicinal Chemistry, Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - David C. Pryde
- Worldwide
Medicinal Chemistry, Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, United Kingdom
| | | | | |
Collapse
|