1
|
Zhao Z, Zang X, Niu K, Song W, Wang X, Mügge A, Aweimer A, Hamdani N, Zhou X, Zhao Y, Akin I, El-Battrawy I. Impacts of gene variants on drug effects-the foundation of genotype-guided pharmacologic therapy for long QT syndrome and short QT syndrome. EBioMedicine 2024; 103:105108. [PMID: 38653189 PMCID: PMC11041837 DOI: 10.1016/j.ebiom.2024.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
The clinical significance of optimal pharmacotherapy for inherited arrhythmias such as short QT syndrome (SQTS) and long QT syndrome (LQTS) has been increasingly recognised. The advancement of gene technology has opened up new possibilities for identifying genetic variations and investigating the pathophysiological roles and mechanisms of genetic arrhythmias. Numerous variants in various genes have been proven to be causative in genetic arrhythmias. Studies have demonstrated that the effectiveness of certain drugs is specific to the patient or genotype, indicating the important role of gene-variants in drug response. This review aims to summarize the reported data on the impact of different gene-variants on drug response in SQTS and LQTS, as well as discuss the potential mechanisms by which gene-variants alter drug response. These findings may provide valuable information for future studies on the influence of gene variants on drug efficacy and the development of genotype-guided or precision treatment for these diseases.
Collapse
Affiliation(s)
- Zhihan Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaobiao Zang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Kerun Niu
- Department of Orthopaedic, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Weifeng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xianqing Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Andreas Mügge
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
| | - Assem Aweimer
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghui Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Frosio A, Micaglio E, Polsinelli I, Calamaio S, Melgari D, Prevostini R, Ghiroldi A, Binda A, Carrera P, Villa M, Mastrocinque F, Presi S, Salerno R, Boccellino A, Anastasia L, Ciconte G, Ricagno S, Pappone C, Rivolta I. Unravelling Novel SCN5A Mutations Linked to Brugada Syndrome: Functional, Structural, and Genetic Insights. Int J Mol Sci 2023; 24:15089. [PMID: 37894777 PMCID: PMC10606416 DOI: 10.3390/ijms242015089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Anthony Frosio
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Emanuele Micaglio
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
| | - Ivan Polsinelli
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Serena Calamaio
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Dario Melgari
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Rachele Prevostini
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Andrea Ghiroldi
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy;
| | - Paola Carrera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, Unit of Genomics for Diagnosis of Human Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.C.); (S.P.)
| | - Marco Villa
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
| | - Flavio Mastrocinque
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
| | - Silvia Presi
- Laboratory of Clinical Molecular Genetics and Cytogenetics, Unit of Genomics for Diagnosis of Human Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.C.); (S.P.)
| | - Raffaele Salerno
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Antonio Boccellino
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Giuseppe Ciconte
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy;
| | - Ilaria Rivolta
- Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (A.F.); (E.M.); (I.P.); (S.C.); (D.M.); (R.P.); (A.G.); (M.V.); (L.A.); (G.C.); (S.R.); (C.P.)
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy;
| |
Collapse
|
3
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Calderon-Rivera A, Loya-Lopez S, Gomez K, Khanna R. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 2022; 16:198-215. [PMID: 36017978 PMCID: PMC9423853 DOI: 10.1080/19336950.2022.2103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Voltage-gated sodium and calcium channels (VGSCs and VGCCs) play an important role in the modulation of physiologically relevant processes in excitable cells that range from action potential generation to neurotransmission. Once their expression and/or function is altered in disease, specific pharmacological approaches become necessary to mitigate the negative consequences of such dysregulation. Several classes of small molecules have been developed with demonstrated effectiveness on VGSCs and VGCCs; however, off-target effects have also been described, limiting their use and spurring efforts to find more specific and safer molecules to target these channels. There are a great number of plants and herbal preparations that have been empirically used for the treatment of diseases in which VGSCs and VGCCs are involved. Some of these natural products have progressed to clinical trials, while others are under investigation for their action mechanisms on signaling pathways, including channels. In this review, we synthesize information from ~30 compounds derived from natural sources like plants and fungi and delineate their effects on VGSCs and VGCCs in human disease, particularly pain. [Figure: see text].
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA,CONTACT Rajesh Khanna
| |
Collapse
|
5
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
6
|
Nakajima T, Dharmawan T, Kawabata-Iwakawa R, Tamura S, Hasegawa H, Kobari T, Ota M, Tange S, Nishiyama M, Kaneko Y, Kurabayashi M. Reduced current density, partially rescued by mexiletine, and depolarizing shift in activation of SCN5A W374G channels as a cause of severe form of Brugada syndrome. Ann Noninvasive Electrocardiol 2021; 26:e12828. [PMID: 33463855 PMCID: PMC8164156 DOI: 10.1111/anec.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND SCN5A-related Brugada syndrome (BrS) can be caused by multiple mechanisms including trafficking defects and altered channel gating properties. Most SCN5A mutations at pore region cause trafficking defects, and some of them can be rescued by mexiletine (MEX). OBJECTIVE We recently encountered symptomatic siblings with BrS and sought to identify a responsible mutation and reveal its biophysical defects. METHODS Target panel sequencing was performed. Wild-type (WT) or identified mutant SCN5A was transfected into tsA201 cells. After incubation of transfected cells with or without 0.1 mM MEX for 24-36 hr, whole-cell sodium currents (INa ) were recorded using patch-clamp techniques. RESULTS The proband was 29-year-old male who experienced cardiopulmonary arrest. Later, his 36-year-old sister, who had been suffering from recurrent episodes of syncope since 12 years, was diagnosed with BrS. An SCN5A W374G mutation, located at pore region of domain 1 (D1 pore), was identified in both. The peak density of W374G-INa was markedly reduced (WT: 521 ± 38 pA/pF, W374G: 60 ± 10 pA/pF, p < .01), and steady-state activation (SSA) was shifted to depolarizing potentials compared with WT-INa (V1/2 -WT: -39.1 ± 0.8 mV, W374G: -30.9 ± 1.1 mV, p < .01). Incubation of W374G-transfected cells with MEX (W374G-MEX) increased INa density, but it was still reduced compared with WT-INa (W374G-MEX: 174 ± 19 pA/pF, p < .01 versus W374G, p < .01 versus WT). The SSA of W374G-MEX-INa was comparable to W374G-INa (V1/2 -W374G-MEX: -31.6 ± 0.7 mV, P = NS). CONCLUSIONS Reduced current density, possibly due to a trafficking defect, and depolarizing shift in activation of SCN5A W374G are underlying biophysical defects in this severe form of BrS. Trafficking defects of SCN5A mutations at D1 pore may be commonly rescued by MEX.
Collapse
Affiliation(s)
- Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tommy Dharmawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masaki Ota
- Department of Cardiovascular Medicine, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Shoichi Tange
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | | | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
7
|
Huang A, Chi Y, Liu J, Wang M, Qin J, Ou L, Chen W, Zhao Z, Zhan R, Xu H. Profiling and Pharmacokinetic Studies of Alkaloids in Rats After Oral Administration of Zanthoxylum nitidum Decoction by UPLC-Q-TOF-MS/MS and HPLC-MS/MS. Molecules 2019; 24:molecules24030585. [PMID: 30736390 PMCID: PMC6384758 DOI: 10.3390/molecules24030585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
Zanthoxylum nitidum (Roxb.) DC (Rutaceae), called as “liangmianzhen” in China, is well known for its anti-inflammation and analgesic effect. Alkaloids are its main active constituents. However, little has been known about the absorption of main alkaloids in vivo. In this study, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was employed for identification of absorbed alkaloids in rats after oral administration of Z. nitidum decoction. By analyzing the fragmentation patterns, a total of nineteen alkaloids were exactly or tentatively identified in rat plasma after treatment, of which magnoflorine, α-allocryptopine, and skimmianine are dominant. Moreover, a high performance liquid chromatography coupled mass spectrometry method was developed for simultaneous quantification of magnoflorine, α-allocryptopine, and skimmianine, and successfully applied to pharmacokinetic study in rats after oral administration of Z. nitidum decoction. The research would contribute to comprehensive understanding of the material basis and function mechanism of Z. nitidum decoction.
Collapse
Affiliation(s)
- Aihua Huang
- Key Laboratory of Ministry of Education, Research Center of Chinese Herbal Resources and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yuguang Chi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jiawei Liu
- Key Laboratory of Ministry of Education, Research Center of Chinese Herbal Resources and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Mincun Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jialiang Qin
- Key Laboratory of Ministry of Education, Research Center of Chinese Herbal Resources and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Lijuan Ou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Weiwen Chen
- Key Laboratory of Ministry of Education, Research Center of Chinese Herbal Resources and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ruoting Zhan
- Key Laboratory of Ministry of Education, Research Center of Chinese Herbal Resources and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hui Xu
- Key Laboratory of Ministry of Education, Research Center of Chinese Herbal Resources and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
8
|
Familial episodic limb pain in kindreds with novel Nav1.9 mutations. PLoS One 2018; 13:e0208516. [PMID: 30557356 PMCID: PMC6296736 DOI: 10.1371/journal.pone.0208516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
We previously performed genetic analysis in six unrelated families with infantile limb pain episodes, characterized by cold-induced deterioration and mitigation in adolescence, and reported two new mutations p.R222H/S in SCN11A responsible for these episodes. As no term described this syndrome (familial episodic pain: FEP) in Japanese, we named it as”小児四肢疼痛発作症”. In the current study, we recruited an additional 42 new unrelated Japanese FEP families, between March 2016 and March 2018, and identified a total of 11 mutations in SCN11A: p.R222H in seven families, and p.R225C, p.F814C, p.F1146S, or p.V1184A, in independent families. A founder mutation, SCN11A p.R222H was confirmed to be frequently observed in patients with FEP in the Tohoku region of Japan. We also identified two novel missense variants of SCN11A, p.F814C and p.F1146S. To evaluate the effects of these latter two mutations, we generated knock-in mouse models harboring p.F802C (F802C) and p.F1125S (F1125S), orthologues of the human p.F814C and p.F1146S, respectively. We then performed electrophysiological investigations using dorsal root ganglion neurons dissected from the 6–8 week-old mice. Dissected neurons of F802C and F1125S mice showed increased resting membrane potentials and firing frequency of the action potentials (APs) by high input–current stimulus compared with WT mice. Furthermore, the firing probability of evoked APs increased in low stimulus input in F1125S mice, whereas several AP parameters and current threshold did not differ significantly between either of the mutations and WT mice. These results suggest a higher level of excitability in the F802C or F1125S mice than in WT, and indicate that these novel mutations are gain of function mutations. It can be expected that a considerable number of potential patients with FEP may be the result of gain of function SCN11A mutations.
Collapse
|
9
|
Chen X, Zhu C, Zhou H, Zhang Y, Cai Z, Wu H, Ren X, Gao L, Zhang J, Li Y. Key Role of the Membrane Trafficking of Nav1.5 Channel Protein in Antidepressant-Induced Brugada Syndrome. Front Physiol 2018; 9:1230. [PMID: 30233406 PMCID: PMC6134322 DOI: 10.3389/fphys.2018.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022] Open
Abstract
Anti-depressant treatment has been found to be associated with the development of Brugada syndrome (BrS) through poorly defined mechanisms. Herein, this study aimed to explore the molecular basis for amitriptyline-induced BrS. The effects of long-term treatments of amitriptyline on Nav1.5 were investigated using neonatal rat ventricular myocytes. The electrophysiological properties, expression and distribution of Nav1.5 were studied using the patch clamp, Western blot and confocal laser microscopy assays. Interactions between Nav1.5 and its interacting proteins, including ankyrin-G and dystrophin, were evaluated by co-immunoprecipitation. A larger decrease in the peak INa occurred after long-term treatments to amitriptyline (56.64%) than after acute exposure to amitriptyline (28%). Slow recovery from inactivation of Nav1.5 was observed after acute or long-term treatments to amitriptyline. The expression of Nav1.5 on the cell membrane showed a larger decrease by long-term treatments to amitriptyline than by acute exposure to amitriptyline. After long-term treatments to amitriptyline, we observed reduced Nav1.5 proteins on the cell membrane and the disrupted co-localization of Nav1.5 and ankyrin-G or dystrophin. Co-immunoprecipitation experiments further testified that the combination of Nav1.5 and ankyrin-G or dystrophin was severely weakened after long-term treatments to amitriptyline, implying the failed interaction between Nav1.5 and ankyrin-G or dystrophin. Our data suggest that the long-term effect of amitriptyline serves as an important contribution to BrS induced by amitriptyline. The mechanisms of BrS induced by amitriptyline were related to Nav1.5 trafficking and could be explained by the disrupted interaction of ankyrin-G, dystrophin and Nav1.5.
Collapse
Affiliation(s)
- Xi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chao Zhu
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yu Zhang
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhongqi Cai
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Honglin Wu
- Department of Cardiology, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Xiaomeng Ren
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lei Gao
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiancheng Zhang
- Department of Cardiology, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Yang Li
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
10
|
Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 13:316-25. [PMID: 27403141 PMCID: PMC4921544 DOI: 10.11909/j.issn.1671-5411.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record Ito and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of Ito and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of Ito in M layers and partly inhibit the channel openings of Ito in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of transmural inhibition of Ito and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.
Collapse
|