1
|
Shamsabadi S, Nazer Y, Ghasemi J, Mahzoon E, Baradaran Rahimi V, Ajiboye BO, Askari VR. Promising influences of zingerone against natural and chemical toxins: A comprehensive and mechanistic review. Toxicon 2023; 233:107247. [PMID: 37562703 DOI: 10.1016/j.toxicon.2023.107247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Zingerone is a flavor phytochemical present in ginger, a flowering plant belonging to the Zingiberaceae family used as a condiment and herbal remedy. It possesses anti-inflammatory, antioxidant, and anti-apoptotic properties and also exhibits protective effects against radiation, chemicals, biological toxins, and oxidative stress. The current comprehensive literature review was performed in order to assess the therapeutical and protective properties of zingerone against various chemical and natural toxins by considering the mechanisms of action. Extensive searches were performed on Scopus, Web of Science, PubMed, and Google Scholar databases. Zingerone lessens oxidative stress, inflammation, apoptosis, and oxidative DNA damage by increasing the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPX). It prevents alginate production, which increases the cell's susceptibility to macrophages, serum, and antibiotics and dramatically lowers the generation of proinflammatory cytokines brought on by lipopolysaccharide (LPS). Cytokine production, MAPK, and NF-κB activation are all inhibited dose-dependently by zingerone. Zingerone also reduces 8-OHdG over-expression in the liver tissue and the expression of NADPH oxidase 4 (NOX4), inflammatory cytokines (e.g., IFN-γ, IL-17, IL-6, COX-2, TNF-α, and iNOS mRNA level), decreases macrophage inflammatory protein cytokines and eliminates free radicals. It also suppresses matrix metalloproteinase-2 (MMP-2) and MMP-9 during tumor progression, showing its anti-angiogenic activity. Strong radioprotective properties of zingerone are demonstrated against radiation-induced toxicity. The authors hope this review gives researchers some insight into conducting novel clinical and preclinical studies on pharmaceutical applications and the efficiency of zingerone in cancer treatment, and drug adverse effects.
Collapse
Affiliation(s)
| | - Yazdan Nazer
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ghasemi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Mahzoon
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Basiru O Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria; Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Shervin Prince S, Stanely Mainzen Prince P, Berlin Grace V. Valencene post-treatment exhibits cardioprotection via inhibiting cardiac hypertrophy, oxidative stress, nuclear factor- κB inflammatory pathway, and myocardial infarct size in isoproterenol-induced myocardial infarcted rats; A molecular study. Eur J Pharmacol 2022; 927:174975. [DOI: 10.1016/j.ejphar.2022.174975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
|
3
|
Zingerone Inhibits the Neutrophil Extracellular Trap Formation and Protects against Sepsis via Nrf2-Mediated ROS Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3990607. [PMID: 35126812 PMCID: PMC8816574 DOI: 10.1155/2022/3990607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022]
Abstract
Neutrophils release chromatin and antimicrobial proteins to trap and kill microbes, which is termed as neutrophil extracellular trap (NET) formation. NETs play a pivotal role in host defense against infection. However, emerging evidence indicated that NETs also contribute to an exaggerated inflammatory response and organic injuries in sepsis. Zingerone, a natural compound extracted from Zingiber officinale, exerts antioxidant, anti-inflammatory, and antioncogenic properties. In this study, we found that treatment with zingerone reduced organ injury and improved the outcome in a cecal ligation puncture- (CLP-) induced polymicrobial sepsis model. Administration of zingerone also alleviates reactive oxygen species (ROS) accumulation and systematic inflammation in septic mice and inhibits neutrophil extracellular traps (NETs) formation in vivo and in vitro. Furthermore, inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2) with its specific antagonist significantly counteracted the suppressive effects of zingerone on ROS and NETs and retarded the protective role of zingerone against sepsis-associated organ injury. In addition, exposure to zingerone does not affect phagocytic activity of neutrophils in vitro and bacterial dissemination in vivo. Above all, our results indicate that zingerone treatment obviously attenuates NET formation and inflammatory response via Nrf2-mediated ROS inhibition, thus providing a novel therapeutic strategy against sepsis-induced injury.
Collapse
|
4
|
Yovas A, Ponnian SMP. β-Caryophyllene inhibits Fas- receptor and caspase-mediated apoptosis signaling pathway and endothelial dysfunction in experimental myocardial infarction. J Biochem Mol Toxicol 2021; 35:e22907. [PMID: 34816538 DOI: 10.1002/jbt.22907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/31/2021] [Accepted: 08/20/2021] [Indexed: 11/05/2022]
Abstract
We planned to appraise the effects of β-caryophyllene on Fas- receptor and caspase-mediated apoptosis signaling pathway and endothelial dysfunction in rats infarcted with isoproterenol. Rats were induced myocardial infarction by using isoproterenol (100 mg/kg body weight [b.w]). Serum creatine kinase-MB, serum cardiac troponin-T, heart weight, heart rate, and heart lipid peroxidation were greatly (p < 0.05) augmented, while heart enzymatic antioxidants and plasma nonenzymatic antioxidants were greatly (p < 0.05) lessened in isoproterenol-treated rats. Reverse transcription-polymerase chain reaction study revealed augmented expressions of Fas-receptor and caspases 8, 9, and 3 genes in myocardial infarcted rats. Furthermore, iNOS protein expression was amplified and eNOS protein was lessened in the myocardial infarcted heart. Three weeks pre- and cotreatment with β-caryophyllene (20 mg/kg b.w) greatly (p < 0.05) protected isoproterenol-treated rats against these altered structural, biochemical, molecular, and immunohistochemical parameters, by its anti-cardiac hypertrophic, anti-tachycardial, antioxidant, anti-apoptotic, and anti-endothelial dysfunction effects. In conclusion, these findings projected the use of β-caryophyllene for the therapy of human myocardial infarction after clinical trials.
Collapse
Affiliation(s)
- Anita Yovas
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | | |
Collapse
|
5
|
Paulino ET, Rodrigues AKBF, Machado MLDP, de Oliveira KRV, Bernardino AC, Quintans-Júnior LJ, Oliveira AP, Ribeiro ÊAN. Alpha-terpineol prevents myocardial damage against isoproterenol-MI induced in Wistar-Kyoto rats: New possible to promote cardiovascular integrity. Life Sci 2021; 290:120087. [PMID: 34740575 DOI: 10.1016/j.lfs.2021.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Alpha-terpineol (TPN) is one of the major components of the resin obtained from Protium heptaphyllum. This plant has been utilized as medicine by Brazilian indigenous tribes to treat cardiovascular diseases. Scientific reports have shown that the TPN possesses vasorelaxant and antihypertensive effects. This study was conducted to assess the cardioprotective action of TPN against isoproterenol (ISO)-induced cardiotoxicity. Wistar rats were randomly divided into six groups. Rats were orally administered with TPN (25, 50, and 75 mg/kg, respectively) for 15 days, and ISO was administered (85 mg/kg, subcutaneously) on the 14th and 15th days. At the end of the experiment, the hemodynamic, baroreflex test, ECG, biochemical, histological, and morphometric changes were monitored from control and experimental groups, i.e., on the 15th day. ISO-induced myocardial infarcted rats showed an increase in mortality rates, cardiac marker enzymes, tachycardia, hypertrophy, myocardium necrosis, edema, hemorrhagic areas, infiltration of inflammatory cells like lymphocytes, and increased myocardial infarct size. However, pretreatment with TPN significantly inhibited these effects of ISO. The histopathological findings obtained for the myocardium further confirmed the biochemical results. Thus, the present study provides evidence for the efficacy of TPN against ISO-induced myocardial infarction in rats.
Collapse
Affiliation(s)
- Emanuel Tenório Paulino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil.
| | | | - Maria Luiza Dal Pont Machado
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Alessando César Bernardino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Aldeídia Pereira Oliveira
- Medicinal Plants Research Center, Institute of Biology and Health Science, Federal University of Piauí, Brazil
| | | |
Collapse
|
6
|
Paulino ET, Barros Ferreira AK, da Silva JCG, Ferreira Costa CD, Smaniotto S, de Araújo-Júnior JX, Silva Júnior EF, Bortoluzzi JH, Nogueira Ribeiro ÊA. Cardioprotective effects induced by hydroalcoholic extract of leaves of Alpinia zerumbet on myocardial infarction in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112037. [PMID: 31247239 DOI: 10.1016/j.jep.2019.112037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The leaves of Alpinia zerumbet is used in folk medicine in Brazil to treat hypertension. However, the cardioprotective effect of this plant has not been studied yet. AIM OF THIS STUDY To evaluate the cardioprotective effects of the hydroalcoholic extract of the leaves of Alpinia zerumbet (AZE) against isoproterenol (ISO)-induced myocardial infarction in rats. MATERIAL AND METHODS Rats were pretreated orally with AZE (300 mg/kg) for 30 days prior to ISO-induced myocardial infarction. The rats were sacrificed and hearts were collected and homogenized for biochemical analysis. At the end of the experiment, cardiac marker enzyme levels, histological and morphometric parameters, and hemodynamic measurements were assessed. Phytochemical compounds were verified by gas chromatography-mass spectrometry (GC-MS). RESULTS Rats administered with ISO showed a significant increase in cardiac marker enzymes, i.e., in creatine kinase-NAC (CK-NAC) and CK-MB. Triphenyltetrazolium chloride (TTC) staining exhibited an increase in infarct areas. In the animals treated with ISO induced a significant increase in heart rate. Pretreatment with AZE significantly inhibited these effects of ISO. Moreover, biochemical findings were supported by histopathological observations. The GC-MS analyses of AZE identified volatile oils, kavalactones, and phytosterols. CONCLUSIONS Haemodynamic, biochemical alteration and histopathological results suggest a cardioprotective protective effect of oral administration of AZE in isoproterenol induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Salete Smaniotto
- Federal University of Alagoas, Institute of Biology and Health Science, Maceió, AL, Brazil
| | - João Xavier de Araújo-Júnior
- Federal University of Alagoas, Institute of Pharmaceutical Sciences, Maceió, AL, Brazil; Federal University of Alagoas, Chemical and Biotechnology Institute, Maceió, AL, Brazil
| | | | | | | |
Collapse
|
7
|
Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Eser G. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22562-22574. [PMID: 31165450 DOI: 10.1007/s11356-019-05505-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Zingerone (ZO), one of the active components of ginger (Zingiber officinale), is a phenolic alkanone with antioxidant, antiapoptotic, and anti-inflammatory properties. Cisplatin (CP) is a widely used chemotherapeutic drug for solid tumors, but its therapeutic use is limited due to dose-dependent nephrotoxicity. In the present study, we investigated the ameliorative effect of ZO against CP-induced nephrotoxicity. Intraperitoneal administration of single-dose CP (7 mg/kg body weight) on the first day enhanced kidney lipid peroxidation and reduced antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH). CP increased serum urea and creatinine levels and disrupted histological integrity while causing a decrease aquaporin 1 (AQP1) level in the kidney tissues. CP induced inflammatory responses by elevating the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-33 (IL-33) and nuclear factor kappa B (NF-κB), and activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, it also caused oxidative DNA damage and activation of apoptotic pathway by increasing of 8-hydroxy-2'-deoxyguanosine (8-OHdG), p53, cysteine aspartate-specific protease-3 (caspase-3), and Bcl-2-associated x protein (bax) while decreasing B cell lymphoma-2 (Bcl-2). However, treatment with ZO at a dose of 25 and 50 mg/kg b.wt. for 7 days significantly decreased oxidative stress, apoptosis, inflammation, and histopathological alterations while increased AQP1 levels in the kidney tissue. The results of the current study suggested that ZO as an effective natural product attenuates CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Gizem Eser
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Liu C, Wu QQ, Cai ZL, Xie SY, Duan MX, Xie QW, Yuan Y, Deng W, Tang QZ. Zingerone attenuates aortic banding-induced cardiac remodelling via activating the eNOS/Nrf2 pathway. J Cell Mol Med 2019; 23:6466-6478. [PMID: 31293067 PMCID: PMC6714175 DOI: 10.1111/jcmm.14540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Cardiac remodelling refers to a series of changes in the size, shape, wall thickness and tissue structure of the ventricle because of myocardial injury or increased pressure load. Studies have shown that cardiac remodelling plays a significant role in the development of heart failure. Zingerone, a monomer component extracted from ginger, has been proven to possess various properties including antioxidant, anti-inflammatory, anticancer and antidiabetic properties. As oxidative stress and inflammation contribute to acute and chronic myocardial injury, we explored the role of zingerone in cardiac remodelling. Mice were subjected to aortic banding (AB) or sham surgery and then received intragastric administration of zingerone or saline for 25 days. In vitro, neonatal rat cardiomyocytes (NRCMs) were treated with zingerone (50 and 250 μmol/L) when challenged with phenylephrine (PE). We observed that zingerone effectively suppressed cardiac hypertrophy, fibrosis, oxidative stress and inflammation. Mechanistically, Zingerone enhanced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) activation via increasing the phosphorylation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Additionally, we used Nrf2-knockout (KO) and eNOS-KO mice and found that Nrf2 or eNOS deficiency counteracts these cardioprotective effects of zingerone in vivo. Together, we concluded that zingerone may be a potent treatment for cardiac remodelling that suppresses oxidative stress via the eNOS/Nrf2 pathway.
Collapse
Affiliation(s)
- Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhu-Lan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ming-Xia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing-Wen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
9
|
Stanely Mainzen Prince P, Hemalatha KL. A molecular mechanism on the antiapoptotic effects of zingerone in isoproterenol induced myocardial infarcted rats. Eur J Pharmacol 2018; 821:105-111. [DOI: 10.1016/j.ejphar.2017.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/27/2023]
|
10
|
Sabarimuthu SQ, Ponnian SMP, John B. Diosmin prevents left ventricular hypertrophy, adenosine triphosphatases dysfunction and electrolyte imbalance in experimentally induced myocardial infarcted rats. Eur J Pharmacol 2017; 814:124-129. [DOI: 10.1016/j.ejphar.2017.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
|
11
|
Anti-inflammatory and anti-thrombotic effects of zingerone in a rat model of myocardial infarction. Eur J Pharmacol 2016; 791:595-602. [DOI: 10.1016/j.ejphar.2016.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022]
|
12
|
Hemalatha KL, Mainzen Prince PS. Preventive effects of zingerone on cardiac mitochondrial oxidative stress, calcium ion overload and adenosine triphosphate depletion in isoproterenol induced myocardial infarcted rats. RSC Adv 2016. [DOI: 10.1039/c6ra23330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cardiac mitochondrial oxidative stress, calcium ion (Ca2+) overload and adenosine triphosphate (ATP) depletion play an important role in the pathogenesis of myocardial infarction.
Collapse
|
13
|
Stanely Mainzen Prince P, Dhanasekar K, Rajakumar S. Vanillic acid prevents altered ion pumps, ions, inhibits Fas-receptor and caspase mediated apoptosis-signaling pathway and cardiomyocyte death in myocardial infarcted rats. Chem Biol Interact 2015; 232:68-76. [DOI: 10.1016/j.cbi.2015.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 11/16/2022]
|