1
|
Gao Z, Peng J, Zhang Y, Chen Z, Song R, Song Z, Feng Q, Sun M, Zhu H, Lu X, Yang R, Huang C. Hippocampal SENP3 mediates chronic stress-induced depression-like behaviors by impairing the CREB-BDNF signaling. Neuropharmacology 2025; 262:110203. [PMID: 39486575 DOI: 10.1016/j.neuropharm.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Impaired signaling between cyclic adenosine monophosphate response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus is generally considered to be the cause of depression. The mechanisms underlying the impairment of CREB-BDNF signaling under stress conditions are largely unclear. Small ubiquitin-like modifier (SUMO) specific peptidase 3 (SENP3) is a molecule that can regulate SUMOylation of target proteins related to synaptic plasticity. Its dynamic changes have been reported to be associated with neuronal damage in various models of central nervous disorders such as cerebral ischemia and traumatic brain injury. However, its role in depression is completely unknown. This problem was addressed in the present study. Our results showed that chronic unpredictable stress (CUS) triggered a specific increase in SENP3 expression in the hippocampus of non-stressed mice. Overexpression of SENP3 in the hippocampus of non-stressed mice elicited depression-like behaviors in the tail suspension test, forced swimming test, and sucrose preference test, accompanied by impairment of the CREB-BDNF signaling cascade in the hippocampus. Conversely, genetic silencing of SENP3 in the hippocampus suppressed the development of depression-like behaviors. Furthermore, infusion of SENP3-shRNA into the hippocampus failed to suppress CUS-induced depression-like behaviors when mice received genetic silencing CREB or BDNF in the hippocampus or inhibition of the BDNF receptor by K252a. Taken together, these results suggest that abnormally elevated SENP3 in the hippocampus leads to the development of depression-like behavior by impairing the CREB-BDNF signaling cascade. SENP3 in the hippocampus could be a promising target for the development of new antidepressants.
Collapse
Affiliation(s)
- Zhiwei Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Yi Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Rongrong Song
- Department of Emergency and Critical Care Medicine, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Ze Song
- Department of Neurosurgery, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Qijie Feng
- Department of Orthopedics, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Micona Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001, Jiangsu Province, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
Smirnova K, Amstislavskaya T, Smirnova L. BMAL1-Potential Player of Aberrant Stress Response in Q31L Mice Model of Affective Disorders: Pilot Results. Int J Mol Sci 2024; 25:12468. [PMID: 39596543 PMCID: PMC11595136 DOI: 10.3390/ijms252212468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Dysregulation in the stress-response system as a result of genetical mutation can provoke the manifestation of affective disorders under stress conditions. Mutations in the human DISC1 gene is one of the main risk factors of affective disorders. It was known that DISC1 regulates a large number of proteins including BMAL1, which is involved in the regulation of glucocorticoid synthesis in the adrenal glands and the sensitivity of glucocorticoid receptor target genes. Male mice with a point mutation Q31L in the Disc1 gene were exposed to chronic unpredictable stress (CUS), after which the behavioral and physiological stress response assessed. To assess whether there were any changes in BMAL1 in key brain regions involved in the stress response, immunohistochemistry was applied. It was shown that the Q31L mice had an aberrant behavioral response, especially to the 2 weeks of CUS, which was expressed in unchanged motor activity, increased time of social interaction, and alterations in anxiety and fear-related behavior. Q31L males did not show an increase in blood corticosterone levels after CUS and a decrease in body weight. Immunohistochemical analysis in intact Q31L mice revealed a decrease in BMAL1 immunofluorescence in the CA1 hippocampal area and lateral habenula. Thus, the Q31L mutation of the Disc1 gene disrupts behavioral and physiological stress response and the BMAL1 dysregulation may underlie it, so this protein can act as a molecular target for the treatment of affective disorders.
Collapse
Affiliation(s)
- Kristina Smirnova
- Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia;
- Research Institute of Neuroscience and Medicine, Timakova 4, 630090 Novosibirsk, Russia;
| | - Tamara Amstislavskaya
- Research Institute of Neuroscience and Medicine, Timakova 4, 630090 Novosibirsk, Russia;
| | - Liudmila Smirnova
- Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia;
| |
Collapse
|
3
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Coutens B, Yrondi A, Rampon C, Guiard BP. Psychopharmacological properties and therapeutic profile of the antidepressant venlafaxine. Psychopharmacology (Berl) 2022; 239:2735-2752. [PMID: 35947166 DOI: 10.1007/s00213-022-06203-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Major depression (MD) is one of the most common psychiatric disorders worldwide. Currently, the first-line treatment for MD targets the serotonin system but these drugs, notably the selective serotonin reuptake inhibitors, usually need 4 to 6 weeks before the benefit is felt and a significant proportion of patients shows an unsatisfactory response. Numerous treatments have been developed to circumvent these issues as venlafaxine, a mixed serotonin-norepinephrine reuptake inhibitor that binds and blocks both the SERT and NET transporters. Despite this pharmacological profile, it is difficult to have a valuable insight into its ability to produce more robust efficacy than single-acting agents. In this review, we provide an in-depth characterization of the pharmacological properties of venlafaxine from in vitro data to preclinical and clinical efficacy in depressed patients and animal models of depression to propose an indirect comparison with the most common antidepressants. Preclinical studies show that the antidepressant effect of venlafaxine is often associated with an enhancement of serotonergic neurotransmission at low doses. High doses of venlafaxine, which elicit a concomitant increase in 5-HT and NE tone, is associated with changes in different forms of plasticity in discrete brain areas. In particular, the hippocampus appears to play a crucial role in venlafaxine-mediated antidepressant effects notably by regulating processes such as adult hippocampal neurogenesis or the excitatory/inhibitory balance. Overall, depending on the dose used, venlafaxine shows a high efficacy on depressive-like symptoms in relevant animal models but to the same extent as common antidepressants. However, these data are counterbalanced by a lower tolerance. In conclusion, venlafaxine appears to be one of the most effective treatments for treatment of major depression. Still, direct comparative studies are warranted to provide definitive conclusions about its superiority.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France
| | - Antoine Yrondi
- Département de psychiatrie, CHU Toulouse-Purpan, Toulouse NeuroImaging Center, ToNIC, Université de Toulouse, Inserm, 31059, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France.
| |
Collapse
|
5
|
Liu F, Dong YY, Lei G, Zhou Y, Liu P, Dang YH. HINT1 Is Involved in the Chronic Mild Stress Elicited Oxidative Stress and Apoptosis Through the PKC ε/ALDH-2/4HNE Pathway in Prefrontal Cortex of Rats. Front Behav Neurosci 2021; 15:690344. [PMID: 34177485 PMCID: PMC8219906 DOI: 10.3389/fnbeh.2021.690344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder (MDD) is a severe, highly heterogeneous, and life-threatening psychiatric disease which affects up to 21% of the population worldwide. A new hypothesis suggests that the mitochondrial dysfunction causing oxidative stress (OS) and dysregulation of apoptosis in brain might be one of the key pathophysiological factors in MDD. Histidine triad nucleotide binding protein 1 (HINT1), which was first supposed to be protein kinase C (PKC) inhibitor, has been gradually demonstrated to be involved in diverse neuropsychiatric diseases. It still remains elusive that how HINT1 involves in depression. The present study utilized a rat model exposed to chronic mild stress (CMS) to explore the involvement of HINT1 in depression. Face validity, construct validity and predictive validity of CMS model were comprehensive evaluated in this study. Behavioral tests including sucrose preference test, open field test, and elevated plus maze and forced swimming test revealed that stressed rats displayed elevated level of anxiety and depression compared with the controls. CMS rats showed a significant decrease of superoxide dismutase, and a marked increase malondialdehyde levels in prefrontal cortex (PFC). We also found the CMS rats had elevated expression of HINT1, decreased levels of phosphorylated-PKC ε and aldehyde dehydrogenase-two (ALDH-2), and accumulated 4-hydroxynonenal (4HNE) in PFC. Moreover, CMS increased the levels of cleaved caspase-3 and Bax, and decreased the level of Bcl-2 in PFC. The alterations in behavior and molecule were prevented by antidepressant venlafaxine. These results demonstrated that HINT1 was involved in the CMS elicited OS and apoptosis in PFC, probably through the PKC ε/ALDH-2/4HNE pathway. The results suggest that the suppression of HINT1 might have potential as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ying-Ying Dong
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuan Zhou
- Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
6
|
Wang JL, Wang Y, Gao TT, Liu L, Wang YJ, Guan W, Chen TT, Zhao J, Zhang Y, Jiang B. Venlafaxine protects against chronic stress-related behaviors in mice by activating the mTORC1 signaling cascade. J Affect Disord 2020; 276:525-536. [PMID: 32871684 DOI: 10.1016/j.jad.2020.07.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies have suggested the role of mammalian target of rapamycin complex 1 (mTORC1) in the pathophysiology of depression. Although venlafaxine was thought to be a serotonin and norepinephrine reuptake inhibitor (SNRI), its pharmacological mechanism remain elusive. In this study, the effects of venlafaxine on the mTORC1 system were studied in both chronic unpredictable mild stress (CUMS) and chronic social defeat stress (CSDS) models. METHOD First, we examined whether repeated venlafaxine treatment reversed the effects of CUMS and CSDS on the mTORC1 signaling cascade in both the hippocampus and medial prefrontal cortex (mPFC). Second, several selective pharmacological inhibitors of the mTORC1 system, including rapamycin, LY294002 and U0126, were used together to determine whether the protective effects of venlafaxine against the CUMS and CSDS models were prevented by mTORC1 system blockade. Finally, genetic knockdown of mTORC1 by mTORC1-shRNA was further adopted to test whether mTORC1 was necessary for the anti-stress effects of venlafaxine in mice. RESULT Our results showed that the decreasing effects of CUMS and CSDS on the mTORC1 signaling cascade in the hippocampus and mPFC were restored by venlafaxine, and the use of rapamycin, LY294002, U0126 and mTORC1-shRNA fully abolished the anti-stress actions of venlafaxine in mice. CONCLUSION The mTORC1 system is involved in the pharmacological mechanism of venlafaxine.
Collapse
Affiliation(s)
- Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong 226011, Jiangsu, China
| | - Yin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China.
| |
Collapse
|
7
|
Cavaliere F, Fornarelli A, Bertan F, Russo R, Marsal-Cots A, Morrone LA, Adornetto A, Corasaniti MT, Bano D, Bagetta G, Nicotera P. The tricyclic antidepressant clomipramine inhibits neuronal autophagic flux. Sci Rep 2019; 9:4881. [PMID: 30890728 PMCID: PMC6424961 DOI: 10.1038/s41598-019-40887-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
Antidepressants are commonly prescribed psychotropic substances for the symptomatic treatment of mood disorders. Their primary mechanism of action is the modulation of neurotransmission and the consequent accumulation of monoamines, such as serotonin and noradrenaline. However, antidepressants have additional molecular targets that, through multiple signaling cascades, may ultimately alter essential cellular processes. In this regard, it was previously demonstrated that clomipramine, a widely used FDA-approved tricyclic antidepressant, interferes with the autophagic flux and severely compromises the viability of tumorigenic cells upon cytotoxic stress. Consistent with this line of evidence, we report here that clomipramine undermines autophagosome formation and cargo degradation in primary dissociated neurons. A similar pattern was observed in the frontal cortex and liver of treated mice, as well as in the nematode Caenorhabditis elegans exposed to clomipramine. Together, our findings indicate that clomipramine may negatively regulate the autophagic flux in various tissues, with potential metabolic and functional implications for the homeostatic maintenance of differentiated cells.
Collapse
Affiliation(s)
- Federica Cavaliere
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | |
Collapse
|
8
|
Wang Q, Dong X, Li N, Wang Y, Guan X, Lin Y, Kang J, Zhang X, Zhang Y, Li X, Xu T. JSH-23 prevents depressive-like behaviors in mice subjected to chronic mild stress: Effects on inflammation and antioxidant defense in the hippocampus. Pharmacol Biochem Behav 2018; 169:59-66. [PMID: 29684396 DOI: 10.1016/j.pbb.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022]
Abstract
Nuclear factor-kappa B (NF-κB), which is reported to play an important role in the pathogenesis of depression, also has a central role in the genesis and progression of inflammation. Here, we have targeted the nuclear translocation of NF-κB using 4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine (JSH-23) to elucidate its role in depression. We investigated the antidepressant-like effects of JSH-23 in the chronic mild stress (CMS) mouse model, which is a valid, reasonably reliable, and useful model of depression. The antidepressant-like effects of JSH-23 were evaluated using the sucrose preference test (SPT) and the forced swimming test (FST). We also assessed inflammatory markers [interleukin (IL)-6 and tumor necrosis factor-α (TNF-α)] and components of antioxidant defense [superoxide dismutase (SOD) and nuclear factor erythroid-2-related factor 2 (Nrf 2)] in the hippocampus. Fluoxetine, a classical antidepressant, was used in this study as a positive control. Administration of JSH-23 significantly prevented the decreased sucrose preference in the SPT and prevented the increased immobility time in the FST caused by CMS, but had no effect on locomotor activity. Expression of NF-κB p65 protein in the hippocampus was decreased, and elevated levels of IL-6 and TNF-α were reduced, after JSH-23 administration. In addition to its anti-inflammatory effect, JSH-23 treatment increased the expression of SOD and Nrf 2 in the hippocampus, suggesting that it strengthens antioxidant defense. The current study demonstrated that inhibiting the NF-κB signaling cascade using JSH-23 prevented depressive-like behaviors by decreasing inflammation and improving antioxidant defense in the hippocampus. We concluded that NF-κB activation plays an important role in the pathophysiology of depression and that targeting NF-κB signaling may provide a novel and effective therapy for depression. Additional preclinical studies and clinical trials are, however, needed to further elucidate the effects of this therapeutic strategy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaomei Dong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nannan Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaofeng Guan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiwei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiguang Kang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xia Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuchen Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Tianchao Xu
- Department of Medical Psychiatry, General Hospital of Shenyang Military Command, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Disrupted in schizophrenia 1 (DISC1) inhibits glioblastoma development by regulating mitochondria dynamics. Oncotarget 2018; 7:85963-85974. [PMID: 27852062 PMCID: PMC5349889 DOI: 10.18632/oncotarget.13290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma(GBM) is one of the most common and aggressive malignant primary tumors of the central nervous system and mitochondria have been proposed to participate in GBM tumorigenesis. Previous studies have identified a potential role of Disrupted in Schizophrenia 1 (DISC1), a multi-compartmentalized protein, in mitochondria. But whether DISC1 could regulate GBM tumorigenesis via mitochondria is still unknown. We determined the expression level of DISC1 by both bioinformatics analysis and tissue analysis, and found that DISC1 was highly expressed in GBM. Knocking down of DISC1 by shRNA in GBM cells significantly inhibited cell proliferation both in vitro and in vivo. In addition, down-regulation of DISC1 decreased cell migration and invasion of GBM and self renewal capacity of glioblastoma stem-like cells. Furthermore, multiple independent rings or spheres could be observed in mitochondria in GBM depleted of DISC1, while normal filamentous morphology was observed in control cells, demonstrating that DISC1 affected the mitochondrial dynamic. Dynamin-related protein 1 (Drp1) was reported to contribute to mitochondrial dynamic regulation and influence glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Our data showed a significant decrease of Drp1 both in mRNA and protein level in GBM lack of DISC1, indicating that DISC1 maybe affect the mitochondrial dynamic by regulating Drp1. Taken together, our findings reveal that DISC1 affects glioblastoma cell development via mitochondria dynamics partly by down regulation of Drp1.
Collapse
|
10
|
Foyet HSH, Tchinda Deffo S, Koagne Yewo P, Antioch I, Zingue S, Asongalem EA, Kamtchouing P, Ciobica A. Ficus sycomorus extract reversed behavioral impairment and brain oxidative stress induced by unpredictable chronic mild stress in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:502. [PMID: 29179735 PMCID: PMC5704586 DOI: 10.1186/s12906-017-2012-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Stress, regardless of its nature is nowadays recognized as one of the major risk factors for neuropsychiatric diseases, such as mood and anxiety disorders. The brain compared with other organs is more vulnerable to oxidative damage mainly due to its high rate of oxygen consumption, abundant lipid content, and relative insufficiency of antioxidant enzymes. Thus, the identification of neural mechanisms underlying resistance and vulnerability to stress is of crucial importance in understanding the pathophysiology of neuropsychiatric disorders and in developing new treatments, since the existing ones are for several reasons subject to increasing limitations. This study was aimed to assess the effects of hydromethanolic extract of Ficus sycomorus stem bark on depression, anxiety and memory impairment induced by unpredictable chronic mild stress (UCMS) in rats. METHODS These effects were studied using anxiety-related behavior, depression-related behavior, anhedonia-like behavior and the Y maze task. Sucrose test was performed twice (before and after UCMS) to assess anhedonia in rats. Liquid chromatography-mass spectrometry analysis of the extract were performed. The antioxidant activities of the extract were assessed using total glutathione (GSH) content and malondialdehyde (MDA) level (lipid peroxidation) in the rat temporal lobe homogenates. RESULTS The extract of F. sycomorus in a dose of 100 mg/kg significantly increased the sucrose consumption and the swimming time which had been reduced by the unpredictable chronic mild stress (p < 0.001). The extract also significantly reduced (p < 0.01) the latency time in the novelty-suppressed feeding test. In the elevated plus-maze, the extract (100 and 200 mg/kg) significantly reduced (p < 0.01) the time and the number of entries into the closed arms. The treatment with the extracts also significantly increased alternation in the Y-maze (p < 0.01 for 100 mg/kg). The extract significantly increased the total GSH content and reduced MDA level in rat temporal lobe. For the LC-MS analysis, the major compound in the extract was a flavonoid with formula C22H28O14. CONCLUSIONS F. sycomorus reversed the harmful effects of UCMS on mood and behaviors in rats and it possesses an antidepressant property that is at least in part mediated through the oxidative pathway.
Collapse
Affiliation(s)
| | - Serge Tchinda Deffo
- Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, Cameroon, P.O. Box: 55, Maroua, Cameroon
| | - Pascaline Koagne Yewo
- Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, Cameroon, P.O. Box: 55, Maroua, Cameroon
| | - Iulia Antioch
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, 11 Carol I Blvd, 700506 Iasi, Romania
| | - Stéphane Zingue
- Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, Cameroon, P.O. Box: 55, Maroua, Cameroon
| | - Emmanuel Acha Asongalem
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Cameroon, P.O. Box 63, Buea, Cameroon
| | - Pierre Kamtchouing
- Department of Animal Biology and physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, 11 Carol I Blvd, 700506 Iasi, Romania
| |
Collapse
|
11
|
Borsini A, Alboni S, Horowitz MA, Tojo LM, Cannazza G, Su KP, Pariante CM, Zunszain PA. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav Immun 2017; 65:230-238. [PMID: 28529072 PMCID: PMC5540223 DOI: 10.1016/j.bbi.2017.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Both increased inflammation and reduced neurogenesis have been associated with the pathophysiology of major depression. We have previously described how interleukin-1 (IL-1) β, a pro-inflammatory cytokine increased in depressed patients, decreases neurogenesis in human hippocampal progenitor cells. Here, using the same human in vitro model, we show how omega-3 (ω-3) polyunsaturated fatty acids and conventional antidepressants reverse this reduction in neurogenesis, while differentially affecting the kynurenine pathway. We allowed neural cells to proliferate for 3days and further differentiate for 7days in the presence of IL-1β (10ng/ml) and either the selective serotonin reuptake inhibitor sertraline (1µM), the serotonin and norepinephrine reuptake inhibitor venlafaxine (1µM), or the ω-3 fatty acids eicosapentaenoic acid (EPA, 10µM) or docosahexaenoic acid (DHA, 10µM). Co-incubation with each of these compounds reversed the IL-1β-induced reduction in neurogenesis (DCX- and MAP2-positive neurons), indicative of a protective effect. Moreover, EPA and DHA also reversed the IL-1β-induced increase in kynurenine, as well as mRNA levels of indolamine-2,3-dioxygenase (IDO); while DHA and sertraline reverted the IL-1β-induced increase in quinolinic acid and mRNA levels of kynurenine 3-monooxygenase (KMO). Our results show common effects of monoaminergic antidepressants and ω-3 fatty acids on the reduction of neurogenesis caused by IL-1β, but acting through both common and different kynurenine pathway-related mechanisms. Further characterization of their individual properties will be of benefit towards improving a future personalized medicine approach.
Collapse
Affiliation(s)
- Alessandra Borsini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mark A. Horowitz
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Luis M. Tojo
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, College of Medicine, China Medical University, Taichung, Taiwan
| | - Carmine M. Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK,South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, UK
| | - Patricia A. Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK,Corresponding author.
| |
Collapse
|
12
|
Sun L, Fang L, Lian B, Xia JJ, Zhou CJ, Wang L, Mao Q, Wang XF, Gong X, Liang ZH, Bai SJ, Liao L, Wu Y, Xie P. Biochemical effects of venlafaxine on astrocytes as revealed by 1H NMR-based metabolic profiling. MOLECULAR BIOSYSTEMS 2017; 13:338-349. [PMID: 28045162 DOI: 10.1039/c6mb00651e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a serotonin–norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects.
Collapse
|
13
|
Yang A, Daya T, Carlton K, Yan JH, Schmid S. Differential effect of clomipramine on habituation and prepulse inhibition in dominant versus subordinate rats. Eur Neuropsychopharmacol 2016; 26:591-601. [PMID: 26754403 DOI: 10.1016/j.euroneuro.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/24/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023]
Abstract
Many patients with depression have comorbidities associated with an impairment of sensorimotor gating, such as e.g. schizophrenia, Parkinson Disease, or Alzheimer disease. Anti-depressants like clomipramine that modulate serotonergic or norepinephrinergic neurotransmission have been shown to impact sensorimotor gating, it is therefore important to study potential effects of clomipramine in order to rule out an exacerbation of sensorimotor gating impairment. Prior studies in animals and humans have been inconclusive. Since serotonin and norepinephrine levels are closely related to anxiety and stress levels and therefore to the social status of an animal, we tested the hypothesis that acute and chronic effects of clomipramine on sensorimotor gating are different in dominant versus subordinate rats, which might be responsible for conflicting results in past animal studies. We used habituation and prepulse inhibition (PPI) of the acoustic startle response as operational measures of sensorimotor gating. After establishing the dominant animal in pair-housed male rats, we injected clomipramine for two weeks and measured acute effects on baseline startle, habituation and PPI after the first injection and chronic effects at the end of the two weeks. Chronic treatment with clomipramine significantly increased habituation in subordinate rats, but had no effect on habituation in dominant animals. Furthermore, PPI was slightly enhanced in subordinate rats upon chronic treatment while no changes occurred in dominant animals. We conclude that the social status of an animal, and therefore the basic anxiety/stress level determines whether or not clomipramine has a beneficial effect on sensorimotor gating and discuss possible underlying mechanisms.
Collapse
Affiliation(s)
- Alvin Yang
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Tahira Daya
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Karen Carlton
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jin Hui Yan
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
14
|
Ma JQ, Luo RZ, Jiang HX, Liu CM. Quercitrin offers protection against brain injury in mice by inhibiting oxidative stress and inflammation. Food Funct 2016; 7:549-56. [DOI: 10.1039/c5fo00913h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quercitrin is one of the primary flavonoid compounds present in vegetables and fruits.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry and Pharmaceutical Engineering
- Sichuan University of Science and Engineering
- 643000 Zigong City
- PR China
| | - Rong-Zhen Luo
- School of Chemistry and Pharmaceutical Engineering
- Sichuan University of Science and Engineering
- 643000 Zigong City
- PR China
| | - Hai-Xia Jiang
- School of Chemistry and Pharmaceutical Engineering
- Sichuan University of Science and Engineering
- 643000 Zigong City
- PR China
| | - Chan-Min Liu
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| |
Collapse
|
15
|
Lundegaard PR, Anastasaki C, Grant NJ, Sillito RR, Zich J, Zeng Z, Paranthaman K, Larsen AP, Armstrong JD, Porteous DJ, Patton EE. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish. ACTA ACUST UNITED AC 2015; 22:1335-46. [PMID: 26388333 PMCID: PMC4623357 DOI: 10.1016/j.chembiol.2015.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022]
Abstract
Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance the repositioning of MEK inhibitors as behavior stabilizers in the context of increased cAMP.
Collapse
Affiliation(s)
- Pia R Lundegaard
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Corina Anastasaki
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola J Grant
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rowland R Sillito
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK
| | - Judith Zich
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karthika Paranthaman
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Anders Peter Larsen
- Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Douglas Armstrong
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK; School of Informatics, Institute for Adaptive and Neural Computation, Informatics Forum, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - E Elizabeth Patton
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|