1
|
Ohta D, Fuwa A, Yamaroku Y, Isobe K, Nakamoto M, Okazawa A, Ogawa T, Ebine K, Ueda T, Mercier P, Schaller H. Characterization of Subcellular Dynamics of Sterol Methyltransferases Clarifies Defective Cell Division in smt2 smt3, a C-24 Ethyl Sterol-Deficient Mutant of Arabidopsis. Biomolecules 2024; 14:868. [PMID: 39062582 PMCID: PMC11275053 DOI: 10.3390/biom14070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of fluorescent protein-fused sterol biosynthetic enzymes, such as SMT2-GFP, and found these enzymes in the endoplasmic reticulum during interphase and identified their movement to the division plane during cytokinesis. The mobilization of endoplasmic reticulum-localized SMT2-GFP was independent of the polarized transport of cytokinetic vesicles to the division plane. In smt2 smt3, SMT2-GFP moved to the abnormal division plane, and unclear cell plate ends were surrounded by hazy structures from SMT2-GFP fluorescent signals and unincorporated cellulose debris. Unusual cortical microtubule organization and impaired cytoskeletal function accompanied the failure to determine the cortical division site and division plane formation. These results indicated that both endoplasmic reticulum membrane remodeling and cytokinetic vesicle transport during cytokinesis were impaired, resulting in the defects of cell wall generation. The cell wall integrity was compromised in the daughter cells, preventing the correct determination of the subsequent cell division site. We discuss the possible roles of C-24 ethyl sterols in the interaction between the cytoskeletal network and the plasma membrane.
Collapse
Affiliation(s)
- Daisaku Ohta
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Ayaka Fuwa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Yuka Yamaroku
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuki Isobe
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Atsushi Okazawa
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Takumi Ogawa
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuo Ebine
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan; (K.E.); (T.U.)
- The Graduate Institute for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Ueda
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan; (K.E.); (T.U.)
- The Graduate Institute for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Pierre Mercier
- Institute de Biologie Moléculaire des Plantes, CNRS, 12, Rue du Général Zimmer, F-67084 Strasbourg, France; (P.M.); (H.S.)
| | - Hubert Schaller
- Institute de Biologie Moléculaire des Plantes, CNRS, 12, Rue du Général Zimmer, F-67084 Strasbourg, France; (P.M.); (H.S.)
| |
Collapse
|
2
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Bao X, Zhang Y, Zhang H, Xia L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front Oncol 2022; 12:926975. [PMID: 35756648 PMCID: PMC9213880 DOI: 10.3389/fonc.2022.926975] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
β-Sitosterol (SIT), a white powdery organic substance with a molecular formula of C29H50O, is one of the most abundant naturally occurring phytosterols in plants. With a chemical composition similar to that of cholesterol, SIT is applied in various fields such as medicine, agriculture, and chemical industries, owing to its unique biological and physicochemical properties. Modern pharmacological studies have elucidated good anti-tumor therapeutic effect activity of SIT, which mainly manifests as pro-apoptotic, anti-proliferative, anti-metastatic, anti-invasive, and chemosensitizing on tumor cells. In addition, SIT exerts an anti-tumor effect on multiple malignant tumors such as breast, gastric, lung, kidney, pancreatic, prostate, and other cancers. Further, SIT derivatives with structural modifications are promising anti-tumor drugs with significant anti-tumor effects. This review article focuses on recent studies relevant to the anti-tumor effects of SIT and summarizes its anti-tumor mechanism to provide a reference for the clinical treatment of malignant tumors and the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Ashwagandha-polyphenols-functionalized gold nanoparticles facilitate apoptosis by perturbing microtubule assembly dynamics in breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Takayasu BS, Martins IR, Garnique AM, Miyamoto S, Machado-Santelli GM, Uemi M, Onuki J. Biological effects of an oxyphytosterol generated by β-Sitosterol ozonization. Arch Biochem Biophys 2020; 696:108654. [DOI: 10.1016/j.abb.2020.108654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
|
6
|
Verma P, Nagireddy PKR, Prassanawar SS, Nirmala JG, Gupta A, Kantevari S, Lopus M. 9-PAN promotes tubulin- and ROS-mediated cell death in human triple-negative breast cancer cells. J Pharm Pharmacol 2020; 72:1585-1594. [PMID: 32959391 DOI: 10.1111/jphp.13349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the antiproliferative effect of a rationally designed, novel noscapine analogue, 9-((perfluorophenyl)methylene) aminonoscapine, '9-PAN') on MDA-MB-231 breast cancer cell line, and to elucidate the underlying mechanism of action. METHODS The rationally designed Schiff base-containing compound, 9-PAN, was characterized using IR, NMR and mass spectra analysis. The effect of the compound on cell viability was studied using an MTT assay. Cell cycle and cell death analyses were performed using flow cytometry. Binding interactions of 9-PAN with tubulin were studied using spectrofluorometry. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were investigated using the probes, DCFDA and rhodamine-123, respectively. Immunofluorescence imaging was used to visualize cellular microtubules. KEY FINDINGS 9-PAN inhibited cell proliferation (IC50 of 20 ± 0.3 µm) and colony formation (IC50 , 6.2 ± 0.3 µm) by arresting the cells at G2 /M phase of the cell cycle. It bound to tubulin in a concentration-dependent manner without considerably altering the tertiary conformation of the protein or the polymer mass of the microtubules in vitro. The noscapinoid substantially damaged cellular microtubule network and induced cell death, facilitated by elevated levels of ROS. CONCLUSIONS 9-PAN exerts its antiproliferative effect by targeting tubulin and elevating ROS level in the cells.
Collapse
Affiliation(s)
- Prachi Verma
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | | | - Shweta Shyam Prassanawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jesuthankaraj Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Ankita Gupta
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
7
|
Maleki R, Khoshoei A, Ghasemy E, Rashidi A. Molecular insight into the smart functionalized TMC-Fullerene nanocarrier in the pH-responsive adsorption and release of anti-cancer drugs. J Mol Graph Model 2020; 100:107660. [PMID: 32659627 DOI: 10.1016/j.jmgm.2020.107660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022]
Abstract
The Doxorubicin (DOX) and Paclitaxel (PAX) are widely used for cancer-therapy. Herein, in the efforts devoted to developing smart drug carriers, the loading and releasing of the DOX and PAX on the pH sensitive functionalized Fullerene carrier was investigated by molecular dynamics (MD) simulations. The effects of chitosan polymer as a functionalizing agent of the Fullerene carrier was also studied. In addition, the Fullerene carrier was functionalized with carboxyl groups in order to improve the loading and releasing properties of the DOX and PAX. The results showed the DOX is well adsorbed on Fullerene which was functionalized with carboxyl group and it was released controllably in cancerous tissues. According to the results of the electrostatic and Van der Waals interactions, it was found that the functionalized Fullerene can be a proper carrier for DOX in comparison with PAX. Adding the trimethyl chitosan (TMC) polymer to the carrier could improve the Van der Waals attractions of the PAX and Fullerene which indicates that by passing the time at acidic pH, the Van der Waals energy reaches zero that leads to promote the release of the PAX in cancerous tissues. The carboxyl group which was employed as a functionalizing agent could also increase the number of hydrogen bonds for the PAX and DOX at acidic and neutral pH, respectively. Moreover, a significant rise in the number of hydrogen bonds between the PAX and Fullerene at neutral pH was achieved by adding the TMC to the carrier. A more decrease of gyration radius was obtained for the DOX at acidic pH which confirms that the DOX with TMC-Fullerene is a more stable carrier. So, this smart nanomedicine system is introduced as an promising composition for smart cancer therapy.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Azadeh Khoshoei
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| |
Collapse
|
8
|
Zhao M, Lan Y, Cui L, Monono E, Rao J, Chen B. Physical properties and cookie-making performance of oleogels prepared with crude and refined soybean oil: a comparative study. Food Funct 2020; 11:2498-2508. [PMID: 32134421 DOI: 10.1039/c9fo02180a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of this research was to fabricate crude soybean oil oleogels (CSO) using β-sitosterol (BS) and/or monoacylglycerol (MAG) and compare their role with that of refined soybean oil oleogels (RSO) in cookie making. Both crude and refined soybean oil oleogels were formed with BS or MAG, or the combination of both (1 : 1) at a fixed concentration of 10 wt%. The thermal behavior of the oleogels was measured using differential scanning calorimetry (DSC). The crystal structure and morphology of the oleogels were characterized using X-ray diffraction (XRD) and polarized light microscopy (PLM). The hardness of the oleogel and commercial vegetable shortening was compared using a texture analyzer. The characteristics of cookies made with the oleogels were compared with those of cookies made with commercial vegetable shortening. Overall, the incorporation of BS and/or MAG into crude and refined soybean oil can produce oleogels with solid-like properties. Refined soybean oil formed stronger and firmer oleogels as compared to crude soybean oil. RSO structured by BS presented branched fiber-like, elongated plate-like, and needle-like crystals while the same oil gelled by MAG contained spherulite crystals. RSO made with the combination of BS and MAG displayed crystal morphologies from both BS and MAG. The same crystal morphologies were observed in CSO with lower quantities. Comparing the quality of cookies made with the oleogels and commercial vegetable shortening, equal or better performance of both RSO and CSO in terms of weight, thickness, width, spread ratio, and hardness of cookies than that of commercial vegetable shortening was observed. By combining the results of the physical characterization and cookie making performance, it can be concluded that both crude and refined soybean oleogels could resemble commercial shortening, which offers the possibility of using oleogels to replace shortening in the baking industry.
Collapse
Affiliation(s)
- Muxin Zhao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Rostami S. Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105303. [PMID: 31901633 DOI: 10.1016/j.cmpb.2019.105303] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin is one of the common drugs used for cancer therapy. Molecular dynamics were applied to investigate the loading of Doxorubicin with thermosensitive N-isopropyl acrylamide Carbon nanotube carrier. METHODS The results showed that the smaller polymer chain length has more decrease of gyration radius. A decrease of gyration radius resulted in more concentrated aggregation with stronger bonds. Therefore, the shorter the polymer chain lengths, the more stable polymer interaction and better Doxorubicin delivery. Smaller polymers also form more hydrogen bonds with the drug leading to stronger and more stable carriers. RESULTS A lower amount of wall shear stress was found near the inner wall of the artery, distal to the plaque region (stenosis), and in both percentages of stenosis the maximum wall shear stress will accrue in the middle of the stenosis; however it is much more in the higher rate of stenosis. CONCLUSIONS The results indicated that N-isopropyl acrylamide - Carbon nanotube is suitable for the delivery of Doxorubicin, and five mer N-isopropyl acrylamide is the optimum carrier for Doxorubicin loading.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | | | - Mirollah Hosseini
- Department of Mechanical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Sara Rostami
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Cheriyamundath S, Mahaddalkar T, Reddy Nagireddy PK, Sridhar B, Kantevari S, Lopus M. Insights into the structure and tubulin-targeted anticancer potential of N-(3-bromobenzyl) noscapine. Pharmacol Rep 2018; 71:48-53. [PMID: 30465924 DOI: 10.1016/j.pharep.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Noscapine is a non-narcotic, antitussive alkaloid isolated from plants of Papaveraceae family. This benzylisoquinoline alkaloid and its synthetic derivatives, called noscapinoids, are being evaluated for their anticancer potential. METHODS The structure of a novel analogue, N-(3-bromobenzyl) noscapine (N-BBN) was elucidated by X-ray crystallography. Effect of N-BBN on cancer cell proliferation and cellular microtubules were studied by sulphorhodamine B assay and immunofluorescence, respectively. Binding interactions of the alkaloid with tubulin was studied using spectrofluorimetry. RESULTS N-BBN, synthesized by introducing modification at site B ('N' in isoquinoline unit) and a bromo group at the 9th position of the parent compound noscapine, was found to be superior to many of the past-generation noscapinoids in inhibiting cancer cell viability and it showed a strong inhibition of the clonogenic potential of an aggressively metastatic breast tumour cell line, MDA-MB-231. The compound perturbed the tertiary structure of purified tubulin as indicated by an anilinonaphthalene sulfonic acid-binding assay. However, substantiating the common feature of noscapinoids, it did not alter microtubule polymer mass considerably. In cells, the drug-treatment showed a peculiar type of disruption of normal microtubule architecture. CONCLUSION N-BBN may be considered for further investigations as a potent antiproliferative agent.
Collapse
Affiliation(s)
- Sanith Cheriyamundath
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India
| | - Tejashree Mahaddalkar
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India
| | - Praveen Kumar Reddy Nagireddy
- Organic Chemistry Division-II (C P C Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Balasubramanian Sridhar
- X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (C P C Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India.
| |
Collapse
|
11
|
Aqueous extract of Triphala inhibits cancer cell proliferation through perturbation of microtubule assembly dynamics. Biomed Pharmacother 2018; 98:76-81. [DOI: 10.1016/j.biopha.2017.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
|
12
|
Mahaddalkar T, Mehta S, Cheriyamundath S, Muthurajan H, Lopus M. Tryptone-stabilized gold nanoparticles target tubulin and inhibit cell viability by inducing an unusual form of cell cycle arrest. Exp Cell Res 2017; 360:163-170. [DOI: 10.1016/j.yexcr.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
|
13
|
Cheriyamundath S, Choudhary S, Lopus M. Safranal Inhibits HeLa Cell Viability by Perturbing the Reassembly Potential of Microtubules. Phytother Res 2017; 32:170-173. [DOI: 10.1002/ptr.5938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sanith Cheriyamundath
- Experimental Cancer Therapeutics and Chemical Biology; UM-DAE Centre for Excellence in Basic Sciences; Kalina, Santacruz East Mumbai India
| | - Sinjan Choudhary
- Experimental Cancer Therapeutics and Chemical Biology; UM-DAE Centre for Excellence in Basic Sciences; Kalina, Santacruz East Mumbai India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology; UM-DAE Centre for Excellence in Basic Sciences; Kalina, Santacruz East Mumbai India
| |
Collapse
|
14
|
Olazarán FE, García-Pérez CA, Bandyopadhyay D, Balderas-Rentería I, Reyes-Figueroa AD, Henschke L, Rivera G. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors. J Mol Model 2017; 23:85. [PMID: 28214932 DOI: 10.1007/s00894-017-3256-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Collapse
Affiliation(s)
- Fabian E Olazarán
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Carlos A García-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA
| | - Isaias Balderas-Rentería
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Angel D Reyes-Figueroa
- Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, 66600, México
| | - Lars Henschke
- Department of Biology, University of Konstanz, Universitätsstraβe 10, 78457, Konstanz, Germany
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710.
| |
Collapse
|
15
|
Yadava U, Yadav VK, Yadav RK. Novel anti-tubulin agents from plant and marine origins: insight from a molecular modeling and dynamics study. RSC Adv 2017. [DOI: 10.1039/c7ra00370f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The screening of a variety of botanical species and marine organisms provided satisfactory novel tubulin binding agents (TBAs).
Collapse
Affiliation(s)
- Umesh Yadava
- Department of Physics
- Deen Dayal Upadhyaya Gorakhpur University
- Gorakhpur 273009
- India
| | - Vivek Kumar Yadav
- Institute for Computational Molecular Science
- Temple University
- Philadelphia
- USA
| | | |
Collapse
|
16
|
Pradhan M, Suri C, Choudhary S, Naik PK, Lopus M. Elucidation of the anticancer potential and tubulin isotype-specific interactions of β-sitosterol. J Biomol Struct Dyn 2016; 36:195-208. [DOI: 10.1080/07391102.2016.1271749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Madhura Pradhan
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Charu Suri
- Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Sinjan Choudhary
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Pradeep Kumar Naik
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur 768019, Odisha, India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
17
|
Touihri-Barakati I, Kallech-Ziri O, Boulila A, Khwaldia K, Marrakchi N, Hanchi B, Hosni K, Luis J. Targetting αvβ3 and α5β1 integrins with Ecballium elaterium (L.) A. Rich. seed oil. Biomed Pharmacother 2016; 84:1223-1232. [PMID: 27810778 DOI: 10.1016/j.biopha.2016.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023] Open
Abstract
In the present study, the effect of Ecbalium elaterium seed oil on adhesion, migration and proliferation of human brain cancer cell line (U87) was determined. Treatment of U87 cell line with the seed oil resulted in strong inhibition of their adhesion to fibrinogen (Fg), fibronectin (Fn). It also reduced their migration and proliferation in a dose-dependent manner without being cytotoxic. Concomitantly, by using Matrigel™ assays, the oil significantly inhibited angiogenesis. The anti- tumor effect of the oil is specifically mediated by αvβ3 and α5β1 integrins. The presence of integrin antagonists in seed oil from E. elaterium could be used for the development of anticancer drugs with targeted "multi-modal" therapies combining anti-adhesif, antiproliferative, antimetastasic and anti-angiogenic, approaches.
Collapse
Affiliation(s)
- Imen Touihri-Barakati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie.
| | - Olfa Kallech-Ziri
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - Abdennacer Boulila
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - Naziha Marrakchi
- Faculté de Médecine de Tunis, La Rabta 1007 Tunis, Tunisie; Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, 13, Place Pasteur, 1002 Tunis Belvédère, Tunisie
| | - Belgacem Hanchi
- Faculté des Sciences de Tunis, Campus Universitaire, Tunis El Manar, 1000 Tunis, Tunisie
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - José Luis
- Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie (CRO2), Faculté de Pharmacie, 13385 Marseille, France
| |
Collapse
|
18
|
Mahaddalkar T, Manchukonda N, Choudhary S, Cheriyamundath S, Mohanpuria N, Kantevari S, Lopus M. Subtle Alterations in Microtubule Assembly Dynamics by Br-TMB-Noscapine Strongly Suppress Triple-Negative Breast Cancer Cell Viability Without Mitotic Arrest. ChemistrySelect 2016. [DOI: 10.1002/slct.201600959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tejashree Mahaddalkar
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Naresh Manchukonda
- Organic Chemistry Division-II (CPC Division); CSIR-Indian Institute of Chemical Technology; Hyderabad, Telangana India
| | - Sinjan Choudhary
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Sanith Cheriyamundath
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Neha Mohanpuria
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (CPC Division); CSIR-Indian Institute of Chemical Technology; Hyderabad, Telangana India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| |
Collapse
|
19
|
Mahaddalkar T, Naik PK, Choudhary S, Manchukonda N, Kantevari S, Lopus M. Structural investigations into the binding mode of a novel noscapine analogue, 9-(4-vinylphenyl) noscapine, with tubulin by biochemical analyses and molecular dynamic simulations. J Biomol Struct Dyn 2016; 35:2475-2484. [DOI: 10.1080/07391102.2016.1222969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tejashree Mahaddalkar
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Pradeep Kumar Naik
- Department of Biotechnology, Guru Ghasidas Central University, Bilaspur, Chattisgarh 495009, India
| | - Sinjan Choudhary
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Naresh Manchukonda
- Organic Chemistry Division-II (CPC Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (CPC Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
20
|
Minu M, Singh D, Mahaddalkar T, Lopus M, Winter P, Ayoub AT, Missiaen K, Tilli TM, Pasdar M, Tuszynski J. Chemical synthesis, pharmacological evaluation and in silico analysis of new 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives as potential anti-mitotic agents. Bioorg Med Chem Lett 2016; 26:3855-61. [PMID: 27449957 DOI: 10.1016/j.bmcl.2016.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/08/2016] [Indexed: 02/04/2023]
Abstract
We have synthesized new, biologically active mono- and di-substituted 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives bearing electron withdrawing groups and electron donating groups. These derivative structures were characterized by their spectral and analytical data. The newly synthesized hexahydropyrazole analogues were evaluated for their in vitro anticancer activity against breast and lung cancer cell lines using a cytotoxicity bioassay. To understand their mechanism of action, tubulin binding assays were performed which pointed to their binding to microtubules in a mode similar to but not identical to colchicine, as evidenced by their KD value evaluation. Computational docking studies also suggested binding near the colchicine binding site on tubulin. These results were further confirmed by colchicine-binding assays on the most active compounds, which indicated that they bound to tubulin near but not at the colchicine site. The moderate cytotoxic effects of these compounds may be due to the presence of electron donating groups on the para-position of the phenyl ring, along with the hexahydropyrazole core nucleus. The observed anti-cancer activity based on inhibition of microtubule formation may be helpful in designing more potent compounds with a hexahydropyrazole moiety.
Collapse
Affiliation(s)
- Maninder Minu
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra 282110, India.
| | - Deepti Singh
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra 282110, India
| | - Tejashree Mahaddalkar
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai 400098, India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai 400098, India
| | - Philip Winter
- Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Ahmed T Ayoub
- Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Kristal Missiaen
- Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Tatiana Martins Tilli
- Laboratório de Modelagem de Sistemas Biológicos, National Institute of Science and Technology for Innovation in Neglected Diseases (INCT/IDN, CNPq), Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Manijeh Pasdar
- Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Jack Tuszynski
- Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|