1
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
2
|
Flores K, Almeida C, Arriaza K, Pena E, El Alam S. mTOR in the Development of Hypoxic Pulmonary Hypertension Associated with Cardiometabolic Risk Factors. Int J Mol Sci 2024; 25:11023. [PMID: 39456805 PMCID: PMC11508063 DOI: 10.3390/ijms252011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The pathophysiology of pulmonary hypertension is complex and multifactorial. It is a disease characterized by increased pulmonary vascular resistance at the level due to sustained vasoconstriction and remodeling of the pulmonary arteries, which triggers an increase in the mean pulmonary artery pressure and subsequent right ventricular hypertrophy, which in some cases can cause right heart failure. Hypoxic pulmonary hypertension (HPH) is currently classified into Group 3 of the five different groups of pulmonary hypertensions, which are determined according to the cause of the disease. HPH mainly develops as a product of lung diseases, among the most prevalent causes of obstructive sleep apnea (OSA), chronic obstructive pulmonary disease (COPD), or hypobaric hypoxia due to exposure to high altitudes. Additionally, cardiometabolic risk factors converge on molecular mechanisms involving overactivation of the mammalian target of rapamycin (mTOR), which correspond to a central axis in the development of HPH. The aim of this review is to summarize the role of mTOR in the development of HPH associated with metabolic risk factors and its therapeutic alternatives, which will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (K.F.); (C.A.); (E.P.); (S.E.A.)
| | | | | |
Collapse
|
3
|
Li B, Hu P, Liu K, Xu W, Wang J, Li Q, Chen B, Deng Y, Han C, Sun T, Liu X, Li M, Wang T, Liu J, Lin H, Rao K. MiRNA-100 ameliorates diabetes mellitus-induced erectile dysfunction by modulating autophagy, anti-inflammatory, and antifibrotic effects. Andrology 2024; 12:1280-1293. [PMID: 38227138 DOI: 10.1111/andr.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Diabetes mellitus-induced erectile dysfunction (DMED) has become a common disease in adult men that can seriously reduce the quality of life of patients, and new therapies are urgently needed. miRNA-100 has many targets and can induce autophagy and reduce fibrosis by inhibiting the mTOR pathway and the TGF-β pathway. However, no research has been conducted with miR-100 in the field of DMED, and the specific mechanism of action is still unclear. OBJECTIVES To ascertain the effects of miR-100 on corpus cavernosum tissue of DMED rats and vascular endothelial cells in a high glucose environment and to elucidate the relevant mechanisms in autophagy, fibrosis and inflammation to find a new approach for the DMED therapy. METHODS Thirty rats were divided into three groups: the control group, the DMED group, and the DMED + miR-100 group. Using intraperitoneal injections of streptozotocin, all rats except the control group were modeled with diabetes mellitus, which was verified using the apomorphine (APO) test. For rats in the DMED + miR-100 group, rno-miR-100-5p agomir (50 nmol/kg, every 2 days, 6 times in total) was injected via the tail vein. After 13 weeks, the erectile function of each rat was assessed using cavernous manometry, and the corpus cavernosum tissue was harvested for subsequent experiments. For cellular experiments, human coronary microartery endothelial cells (HCMEC) were divided into four groups: the control group, the high-glucose (HG, 40 mM) group, the HG + mimic group, and the HG + inhibitor group. The cells were cultured for 6 days and collected for subsequent experiments 2 days after transfection. RESULTS Diabetic modeling impaired the erectile function in rats, and miR-100 reversed this effect. By measuring autophagy-related proteins such as mTOR/Raptor/Beclin1/p62/LC3B, we found that miR-100 could suppress the expression of mTOR and induce autophagy. The analysis of the eNOS/NO/cGMP axis function indicated that impaired endothelial function was improved by miR-100. By evaluating the TGF-β1/CTGF/Smad2/3 and NF-κB/TNF-α pathways, we found that miR-100 could lower the level of inflammation and fibrosis, which contributed to the improvement of the erectile function. Cellular experiments can be used as supporting evidence for these findings. CONCLUSION MiR-100 can improve the erectile function by inhibiting mTOR and thus inducing autophagy, improving the endothelial function through the eNOS/NO/cGMP axis, and exerting antifibrotic and anti-inflammatory effects, which may provide new ideas and directions for the treatment of DMED.
Collapse
Affiliation(s)
- Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinqi Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Lin
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
López-Cepeda L, Castro JD, Aristizábal-Pachón AF, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, González J. Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery. Life (Basel) 2022; 12:1720. [PMID: 36362875 PMCID: PMC9696502 DOI: 10.3390/life12111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 04/04/2024] Open
Abstract
Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures.
Collapse
Affiliation(s)
- Leonardo López-Cepeda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Juan David Castro
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
5
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Samsami M. The key roles of non-coding RNAs in the pathophysiology of hypertension. Eur J Pharmacol 2022; 931:175220. [PMID: 35995213 DOI: 10.1016/j.ejphar.2022.175220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is a multifactorial condition in which several genetic and environmental elements contribute. Recent investigations have revealed contribution of non-coding region of the transcriptome in this trait. CDKN2B-AS1, AK098656, MEG3, H19, PAXIP1-AS1, TUG1, GAS5, CASC2 and CPS1-IT are among long non-coding RNAs participating in the pathophysiology of hypertension. Several miRNAs have also been found to be implicated in this disorder. miR-296, miR-637, miR-296, miR-637, hsa-miR-361-5p, miR-122-5p, miR-199a-3p, miR-208a-3p, miR-423-5p, miR-223-5p and miR-140-5p are among dysregulated miRNAs in this condition whose application as diagnostic biomarkers for hypertension has been evaluated. Finally, hsa-circ-0005870, hsa_circ_0037911 and hsa_circ_0014243 are examples of dysregulated circular RNAs in hypertensive patients. In the current review, we describe the role of these non-coding RNAs in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yang Y, Huang H, Li Y. Roles of exosomes and exosome-derived miRNAs in pulmonary fibrosis. Front Pharmacol 2022; 13:928933. [PMID: 36034858 PMCID: PMC9403513 DOI: 10.3389/fphar.2022.928933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive fibrosing interstitial lung disease of unknown etiology that leads rapidly to death. It is characterized by the replacement of healthy tissue through an altered extracellular matrix and damage to the alveolar structure. New pharmacological treatments and biomarkers are needed for pulmonary fibrosis to ensure better outcomes and earlier diagnosis of patients. Exosomes are nanoscale vesicles released by nearly all cell types that play a central role as mediators of cell-to-cell communication. Moreover, exosomes are emerging as a crucial factor in antigen presentation, immune response, immunomodulation, inflammation, and cellular phenotypic transformation and have also shown promising therapeutic potential in pulmonary fibrosis. This review summarizes current knowledge of exosomes that may promote pulmonary fibrosis and be utilized for diagnostics and prognostics. In addition, the utilization of exosomes and their cargo miRNAs as novel therapeutics and their potential mechanisms are also discussed. This review aims to elucidate the role of exosomes in the pathogenesis of pulmonary fibrosis and paves the way for developing novel therapeutics for pulmonary fibrosis. Further in-depth research and clinical trials on this topic are encouraged in the future.
Collapse
Affiliation(s)
- Yongfeng Yang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Huang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplantation Engineering and Immunology, Institute of Clinical Pathology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yi Li,
| |
Collapse
|
7
|
Hu L, Wang J, Lin D, Shen Y, Huang H, Cao Y, Li Y, Li K, Yu Y, Yu Y, Chu C, Qin L, Wang X, Zhang H, Fulton D, Chen F. Mesenchymal Stem Cell-Derived Nanovesicles as a Credible Agent for Therapy of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2022; 67:61-75. [PMID: 35507777 DOI: 10.1165/rcmb.2021-0415oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have been evaluated in many studies as promising therapeutic agents for pulmonary hypertension (PH). However, low yields and heterogeneity are a major barrier in the translational utility of EVs for clinical studies. To address these limitations, we fabricated MSCs derived nanovesicles (MSC-NVs) by serial extrusion through filters resulting in MSC-NVs with characteristics similar to conventional EVs but with much higher production yields. Herein, we examined the therapeutic efficacy of MSC-NVs in preclinical models of PH in vitro and in vivo. Intervention with MSC-NVs improved the core pathologies of monocrotaline (MCT) induced PH in rat. Intravenous administration of MSC-NVs resulted in significant uptake within hypertensive lungs, pulmonary artery lesions and especially in pulmonary artery smooth muscle cells (PASMCs). In vitro, MSC-NVs inhibited PDGF-induced proliferation, migration, and phenotype switch of PASMCs. miRNA sequencing analysis of the genetic cargo of MSC-NVs revealed that miR-125b-5p and miR-100-5p are highly abundant, suggesting they might account for the therapeutic effects of MSC-NVs in PH. Depletion of miR-125b-5p and miR-100-5p in MSCs almost completely abolished the beneficial effects of MSC-NVs in protecting PASMCs from PDGF stimulated changes in vitro, and also diminished the protective effects of MSC-NVs in MCT induced PH in vivo. These data highlight the efficacy and advantages of MSC-NVs over MSC-EVs as a promising therapeutic strategy against PH.
Collapse
Affiliation(s)
- Li Hu
- Nanjing Medical University, 12461, Nanjing, China
| | - Jie Wang
- Nanjing Medical University, 12461, Department of Forensic Medicine, Nanjing, China
| | - Donghai Lin
- Nanjing Medical University, 12461, Nanjing, China
| | - Yueyao Shen
- Nanjing Medical University, 12461, Nanjing, China
| | - Huijie Huang
- Nanjing Medical University, 12461, Department of Forensic Medicine, Nanjing, China
| | - Yue Cao
- Nanjing Medical University, 12461, Nanjing, China
| | - Yan Li
- Nanjing Medical University, 12461, Nanjing, China
| | - Kai Li
- Nanjing Medical University, 12461, Department of Forensic Medicine, Nanjing, China
| | - Yanfang Yu
- Nanjing Medical University, 12461, Department of Forensic Medicine, Nanjing, China
| | - Youjia Yu
- Nanjing Medical University, 12461, Department of Forensic Medicine, Nanjing, China
| | - Chunyan Chu
- Nanjing Medical University, 12461, Nanjing, China
| | - Lianju Qin
- Nanjing Medical University, 12461, Nanjing, China
| | - Xiaojian Wang
- Fu Wai Hospital, National Center for Cardiovascular disease, Peking Union Medical College and Chinese Academy Medical Science, State Key Laboratory of Cardiovascular Disease, Beijing, China
| | | | - David Fulton
- Medical College of Georgia at Augusta University, Vascular Biology Center, Augusta, Georgia, United States
| | - Feng Chen
- Nanjing Medical University, 12461, Nanjing, China;
| |
Collapse
|
8
|
Zang H, Zhang Q, Li X. Non-Coding RNA Networks in Pulmonary Hypertension. Front Genet 2021; 12:703860. [PMID: 34917122 PMCID: PMC8669616 DOI: 10.3389/fgene.2021.703860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are involved in various cellular processes. There are several ncRNA classes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The detailed roles of these molecules in pulmonary hypertension (PH) remain unclear. We systematically collected and reviewed reports describing the functions of ncRNAs (miRNAs, lncRNAs, and circRNAs) in PH through database retrieval and manual literature reading. The characteristics of identified articles, especially the experimental methods, were carefully reviewed. Furthermore, regulatory networks were constructed using ncRNAs and their interacting RNAs or genes. These data were extracted from studies on pulmonary arterial smooth muscle cells, pulmonary artery endothelial cells, and pulmonary artery fibroblasts. We included 14 lncRNAs, 1 circRNA, 74 miRNAs, and 110 mRNAs in the constructed networks. Using these networks, herein, we describe the current knowledge on the role of ncRNAs in PH. Moreover, these networks actively provide an improved understanding of the roles of ncRNAs in PH. The results of this study are crucial for the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Hongbin Zang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiongyu Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Li Y, Li Y, Li L, Yin M, Wang J, Li X. PKR deficiency alleviates pulmonary hypertension via inducing inflammasome adaptor ASC inactivation. Pulm Circ 2021; 11:20458940211046156. [PMID: 34540200 PMCID: PMC8447110 DOI: 10.1177/20458940211046156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension is a progressive fatal disease that currently has no specific
therapeutic approaches. In this study, dsRNA-dependent protein kinase (PKR) was considered
a candidate molecule in pulmonary hypertension. We demonstrated that PKR is activated in
the endothelium of experimental pulmonary hypertension models. Deletion of PKR or
treatment with the PKR activation inhibitor C16 inhibited the development of pulmonary
hypertension. To explore the mechanism of PKR in pulmonary hypertension, we detected its
downstream signaling and found that PKR knockout represses apoptosis-associated speck-like
protein containing CARD (ASC) activation to inhibit high mobility group box 1 (HMGB1) and
interleukin-1 beta release. To further explore whether ASC mediates the pro-pulmonary
hypertension role of PKR, we used ASC deletion mice and found that ASC deletion inhibits
the development of pulmonary hypertension and the release of HMGB1 and interleukin-1 beta.
Furthermore, we co-cultured pulmonary arterial endothelial cells (PAECs) and pulmonary
arterial smooth muscle cells (PASMCs) and found that endothelial PKR promotes PASMCs
proliferation through the release of HMGB1 and interleukin-1 beta. In conclusion, these
data indicate that endothelial PKR promotes the excessive proliferation of PASMCs by
inducing ASC activation to release HMGB1 and interleukin-1 beta, which lead to the
development of pulmonary hypertension. Our study will provide a novel insight that PKR is
a potential target in the future treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Yapei Li
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Li
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lijun Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Minghui Yin
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jiangang Wang
- Department of Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
10
|
mTOR Signaling in Pulmonary Vascular Disease: Pathogenic Role and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22042144. [PMID: 33670032 PMCID: PMC7926633 DOI: 10.3390/ijms22042144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease without a cure. The exact pathogenic mechanisms of PAH are complex and poorly understood, yet a number of abnormally expressed genes and regulatory pathways contribute to sustained vasoconstriction and vascular remodeling of the distal pulmonary arteries. Mammalian target of rapamycin (mTOR) is one of the major signaling pathways implicated in regulating cell proliferation, migration, differentiation, and protein synthesis. Here we will describe the canonical mTOR pathway, structural and functional differences between mTOR complexes 1 and 2, as well as the crosstalk with other important signaling cascades in the development of PAH. The pathogenic role of mTOR in pulmonary vascular remodeling and sustained vasoconstriction due to its contribution to proliferation, migration, phenotypic transition, and gene regulation in pulmonary artery smooth muscle and endothelial cells will be discussed. Despite the progress in our elucidation of the etiology and pathogenesis of PAH over the two last decades, there is a lack of effective therapeutic agents to treat PAH patients representing a significant unmet clinical need. In this review, we will explore the possibility and therapeutic potential to use inhibitors of mTOR signaling cascade to treat PAH.
Collapse
|
11
|
Li W, Zhang Z, Li X, Cai J, Li D, Du J, Zhang B, Xiang D, Li N, Li Y. CGRP derived from cardiac fibroblasts is an endogenous suppressor of cardiac fibrosis. Cardiovasc Res 2021; 116:1335-1348. [PMID: 31504241 DOI: 10.1093/cvr/cvz234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS Aberrant activation of cardiac fibroblasts leads to cardiac fibrosis, and evolving evidences suggest that endogenous bioactive substances derived from cardiac fibroblasts regulate cardiac fibroblasts activation in an autocrine/paracrine manner. Here we first presented evidence that cardiac fibroblasts can synthesize and secrete calcitonin gene-related peptide (CGRP), therefore, this study aimed to investigate the role of cardiac fibroblasts-derived CGRP in cardiac fibroblasts activation and its regulative mechanism. METHODS AND RESULTS The abundantly expression of CGRP in rat, mouse, and human myocardium allowed us to explore the cellular origin of CGRP, and found that the cardiac CGRP was mainly derived from cardiac fibroblasts. Activating TRPA1 with a specific agonist allyl isothiocyanate promoted the synthesis and secretion of CGRP, as well as intracellular Ca2+. These effects were reversed by TRPA1-specific antagonist HC030031 and Ca2+ chelator BAPTA-AM. TGF-β1 was applied to induce the activation of cardiac fibroblasts, and found that TGF-β1 can increase the mRNA expression and secretion levels of CGRP in cardiac fibroblasts. Either CGRP8-37 (CGRP receptor antagonist) or α-CGRP small interfering RNA (siRNA) aggravated TGF-β1-induced proliferation, differentiation, collagen production, and instigated inflammation in cardiac fibroblasts. Moreover, TGF-β1-induced NF-κB activation including IκBα phosphorylation and p65 nuclear translocation were also promoted by CGRP8-37 and α-CGRP siRNA. NF-κB inhibitor pyrrolidinedithiocarbamate ammonium (PDTC) reversed the effects of CGRP8-37 on NF-κB activation. The promotive effects of CGRP8-37 on TGF-β1-induced activation of cardiac fibroblasts were all reversed by PDTC. Monocrotaline (MCT) induces pulmonary arterial hypertension, progressively leading to right ventricular fibrosis. This model of cardiac fibrosis was developed here to test the potentially beneficial effects of TRPA1 activation in vivo. The non-toxic TRPA1 agonist Cinnamaldehyde (CA) inhibited MCT-induced elevation in right ventricle systolic pressure, RV/LV + S, and right ventricular collagen accumulation, as well as down-regulation of CGRP. CA increased the synthesis and secretion of CGRP, and inhibited TGF-β1-induced activation in cardiac fibroblasts. CONCLUSION Our data suggested an autocrine role for cardiac fibroblasts-derived CGRP in suppressing activation of cardiac fibroblasts through inhibiting NF-κB activation. Increasing autocrine CGRP by activating TRPA1 can ameliorate cardiac fibrosis. These findings support the notion that CGRP derived from cardiac fibroblasts is an endogenous suppressor of cardiac fibrosis.
Collapse
Affiliation(s)
- Wenqun Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan 410078, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan 410078, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan 410078, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Dai Li
- Department of Pharmacy, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410078, China
| | - Jie Du
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan 410078, China.,Department of Pharmacy, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410078, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Niansheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan 410078, China
| | - Yuanjian Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan 410078, China
| |
Collapse
|
12
|
Wang J, Hu L, Huang H, Yu Y, Wang J, Yu Y, Li K, Li Y, Tian T, Chen F. CAR (CARSKNKDC) Peptide Modified ReNcell-Derived Extracellular Vesicles as a Novel Therapeutic Agent for Targeted Pulmonary Hypertension Therapy. Hypertension 2020; 76:1147-1160. [DOI: 10.1161/hypertensionaha.120.15554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, mesenchymal stem cells (MSCs)–derived extracellular vesicles (EVs) are emerging as a potential therapeutic agent for pulmonary hypertension (PH). However, the full realization of MSCs-derived EVs therapy has been hampered by the absence of standardization in MSCs culture and the challenges of industrial scale-up. The study was to exploit an alternative replacement for MSCs using currently commercialized stem cell lines for effective targeted PH therapy. ReNcell VM—a human neural stem cell line—has been utilized here as a reliable and easily adoptable source of EVs. We first demonstrated that ReNcell-derived EVs (ReNcell-EVs) pretreatment effectively prevented Su/Hx (SU5416/hypoxia)-induced PH in mice. Then for targeted therapy, we conjugated ReNcell-EVs with CAR (CARSKNKDC) peptide (CAR-EVs)—a peptide identified to specifically target hypertensive pulmonary arteries, by bio-orthogonal chemistry. Intravenous administration of CAR-EVs selectively targeted hypertensive pulmonary artery lesions especially pulmonary artery smooth muscle cells. Moreover, compared with unmodified ReNcell-EVs, CAR-EVs treatment significantly improved therapeutic effect in reversing Su/Hx-induced PH in mice. Mechanistically, ReNcell-EVs inhibited hypoxia-induced proliferation, migration, and phenotype switch of pulmonary artery smooth muscle cells, at least in part, via the delivery of its endogenous highly expressed miRNAs, let-7b-5p, miR-92b-3p, and miR-100-5p. In addition, we also found that ReNcell-EVs inhibited hypoxia-induced cell apoptosis and endothelial-mesenchymal transition in human microvascular endothelial cells. Taken together, our results provide an alternative to MSCs-derived EVs–based PH therapy via using ReNcell as a reliable source of EVs. Particularly, our CAR-conjugated EVs may serve as a novel drug carrier that enhances the specificity and efficiency of drug delivery for effective PH-targeted therapy.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Li Hu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Huijie Huang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yanfang Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Jingshen Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Youjia Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Kai Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yan Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Feng Chen
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (F.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
13
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
14
|
Carregal-Romero S, Fadón L, Berra E, Ruíz-Cabello J. MicroRNA Nanotherapeutics for Lung Targeting. Insights into Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21093253. [PMID: 32375361 PMCID: PMC7246754 DOI: 10.3390/ijms21093253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
In this review, the potential future role of microRNA-based therapies and their specific application in lung diseases is reported with special attention to pulmonary hypertension. Current limitations of these therapies will be pointed out in order to address the challenges that they need to face to reach clinical applications. In this context, the encapsulation of microRNA-based therapies in nanovectors has shown improvements as compared to chemically modified microRNAs toward enhanced stability, efficacy, reduced side effects, and local administration. All these concepts will contextualize in this review the recent achievements and expectations reported for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Lucía Fadón
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
| | - Edurne Berra
- Center for Cooperative Research in Bioscience (CIC bioGUNE), Buiding 800, Science and Technology Park of Bizkaia, 48160 Derio, Spain;
| | - Jesús Ruíz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
15
|
Liu X, Zhong L, Li P, Zhao P. MicroRNA-100 Enhances Autophagy and Suppresses Migration and Invasion of Renal Cell Carcinoma Cells via Disruption of NOX4-Dependent mTOR Pathway. Clin Transl Sci 2020; 15:567-575. [PMID: 32356935 PMCID: PMC8841407 DOI: 10.1111/cts.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney malignancy and has a poor prognosis owing to its resistance to chemotherapy. Recently, microRNAs (miRNAs or miRs) have been shown to have a role in cancer metastasis and potential as prognostic biomarkers in cancer. In the present study, we aim to explore the potential role of miR‐100 in RCC by targeting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) through the mammalian target of rapamycin (mTOR) pathway. Initially, microarray‐based gene expression profiling of RCC was used to identify differentially expressed genes. Next, the expression of miR‐100 and NOX4 was examined in RCC tissues and cell lines. Then, the interaction between miR‐100 and NOX4 was identified using bioinformatics analysis and dual‐luciferase reporter assay. Gain‐of‐function or loss‐of‐function approaches were adopted to manipulate miR‐100 and NOX4 in order to explore the functional roles in RCC. The results revealed the presence of an upregulated NOX4 and a downregulated miR‐100 in both RCC tissues and cell lines. NOX4 was verified as a target of miR‐100 in cells. In addition, overexpression of miR‐100 or NOX4 silencing could increase autophagy while decreasing the expression of mTOR pathway‐related genes and migration and invasion. Conjointly, upregulated miR‐100 can potentially increase the autophagy and inhibit the invasion and migration of RCC cells by targeting NOX4 and inactivating the mTOR pathway, which contributes to an extensive understanding of RCC and may provide novel therapeutic options for this disease.
Collapse
Affiliation(s)
- Xiumin Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Peng Zhao
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Wang J, Tian XT, Peng Z, Li WQ, Cao YY, Li Y, Li XH. HMGB1/TLR4 promotes hypoxic pulmonary hypertension via suppressing BMPR2 signaling. Vascul Pharmacol 2019; 117:35-44. [DOI: 10.1016/j.vph.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022]
|
17
|
Nie X, Chen Y, Tan J, Dai Y, Mao W, Qin G, Ye S, Sun J, Yang Z, Chen J. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vascul Pharmacol 2019; 116:24-35. [DOI: 10.1016/j.vph.2017.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
|
18
|
Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, Liu R, Ni Z, Chen L, Yang L. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 2019; 206:87-100. [PMID: 30927715 DOI: 10.1016/j.biomaterials.2019.03.022] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is the most common disabling joint disease throughout the world and its therapeutic effect is still not satisfactory in clinic nowadays. Recent studies showed that the exosomes derived from several types of mesenchymal stem cells (MSCs) could maintain chondrocyte homeostasis and ameliorate the pathological severity of OA in animal models, indicating that MSCs-derived exosomes could be a novel promising strategy for treating OA. In this study, we investigated the role and underlying mechanisms of infrapatellar fat pad (IPFP) MSCs-derived exosomes (MSCIPFP-Exos) on OA in vitro and in vivo. Our data revealed that MSCIPFP could produce amounts of MSCIPFP-Exos, which exhibited the typical morphological features of exosomes. The MSCIPFP-Exos ameliorated the OA severity in vivo and inhibited cell apoptosis, enhanced matrix synthesis and reduced the expression of catabolic factor in vitro. Moreover, MSCIPFP-Exos could significantly enhance autophagy level in chondrocytes partially via mTOR inhibition. Exosomal RNA-seq showed that the level of miR-100-5p that could bind to the 3'-untranslated region (3'UTR) of mTOR was the highest among microRNAs. MSCIPFP-Exos decreased the luciferase activity of mTOR 3'UTR, while inhibition of miR-100-5p could reverse the MSCIPFP-Exos-decreased mTOR signaling pathway. Intra-articular injection of antagomir-miR-100-5p dramatically attenuated MSCIPFP-Exos-mediated protective effect on articular cartilage in vivo. In brief, MSCIPFP-derived exosomes protect articular cartilage from damage and ameliorate gait abnormality in OA mice by maintaining cartilage homeostasis, the mechanism of which may be related to miR100-5p-regulated inhibition of mTOR-autophagy pathway. As it is relatively feasible to obtain human IPFP from OA patients by arthroscopic operation in clinic, MSCIPFP-derived exosomes may be a potential therapy for OA in the future.
Collapse
Affiliation(s)
- Jiangyi Wu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liang Kuang
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wei-Nan Zeng
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hao Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shu Huang
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiamiao Li
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Renfeng Liu
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhenhong Ni
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lin Chen
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
19
|
Wang W, Liu Y, Guo J, He H, Mi X, Chen C, Xie J, Wang S, Wu P, Cao F, Bai L, Si Q, Xiang R, Luo Y. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis 2018; 7:97. [PMID: 30563983 PMCID: PMC6299090 DOI: 10.1038/s41389-018-0106-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
Tumor-associated macrophages (TAMs), the main part of immune cells in tumor microenvironment (TME), play a potent role in promoting tumorigenesis through mechanisms such as stimulating angiogenesis, enhancing tumor migration and suppressing antitumor immunity. MicroRNAs (miRNAs) are considered as crucial regulators in multiple biological processes. The relationship between miRNAs and macrophages function has been extensively reported, but the roles that miRNAs play in regulating TAMs phenotype remain unclear. In this study, we screened highly expressed microRNAs in TAMs, and first identified that miR-100 represented a TAMs-high expression pattern and maintained TAMs phenotype by targeting mTOR signaling pathway. Moreover, miR-100 expression level in TAMs was positively related to IL-1ra secretion, a traditional immune-suppressive cytokine, which was determined to promote tumor cells stemness via stimulating Hedgehog pathway. Mechanism study suggested that mTOR/Stat5a pathway was involved in IL-1ra transcriptional regulation process mediated by miR-100. More importantly, tumor metastasis and invasion capacity were significantly decreased in a 4T1 mouse breast cancer model injected intratumorally with miR-100 antagomir, and combination therapy with cisplatin showed much better benefit. In this study, we confirm that highly expressed miR-100 maintains the phenotype of TAMs and promotes tumor metastasis via enhancing IL-1ra secretion. Interfering miR-100 expression of TAMs in mouse breast cancer model could inhibit TAMs pro-tumor function and reduce tumor metastasis, which suggests that miR-100 could serve as a potential therapy target to remodel tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Yan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Huiwen He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Xue Mi
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Junling Xie
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Shengnan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Peng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Fengqi Cao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Lipeng Bai
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Rong Xiang
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China. .,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.
| |
Collapse
|
20
|
Miao C, Chang J, Zhang G. Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Mol Biol Rep 2018; 45:2883-2896. [DOI: 10.1007/s11033-018-4335-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
|
21
|
Reverse the down regulation of miR-92b-3p by hypoxia can suppress the proliferation of pulmonary artery smooth muscle cells by targeting USP28. Biochem Biophys Res Commun 2018; 503:3064-3077. [DOI: 10.1016/j.bbrc.2018.08.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022]
|
22
|
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40:457-470. [PMID: 28741069 DOI: 10.1007/s13402-017-0335-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (MSCs) have been shown to be involved in the formation and modulation of tumor stroma and in interacting with tumor cells, partly through their secretome. Exosomes are nano-sized intraluminal multi-vesicular bodies secreted by most types of cells and have been found to mediate intercellular communication through the transfer of genetic information via coding and non-coding RNAs to recipient cells. Since exosomes are considered as protective and enriched sources of shuttle microRNAs (miRNAs), we hypothesized that exosomal transfer of miRNAs from MSCs may affect tumor cell behavior, particularly angiogenesis. METHODS Exosomes derived from MSCs were isolated and characterized by scanning electron microscopy analyses, dynamic light scattering measurements, and Western blotting. Fold changes in miR-100 expression levels were calculated in exosomes and their corresponding donor cells by qRT-PCR. The effects of exosomal transfer of miR-100 from MSCs were assessed by qRT-PCR and Western blotting of the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. The quantification of secreted VEGF protein was determined by enzyme-linked immunosorbent assay. The putative paracrine effects of MSC-derived exosomes on tumor angiogenesis were explored by in vitro angiogenesis assays including endothelial cell proliferation, migration and tube formation assays. RESULTS We found that MSC-derived exosomes induce a significant and dose-dependent decrease in the expression and secretion of vascular endothelial growth factor (VEGF) through modulating the mTOR/HIF-1α signaling axis in breast cancer-derived cells. We also found that miR-100 is enriched in MSC-derived exosomes and that its transfer to breast cancer-derived cells is associated with the down-regulation of VEGF in a time-dependent manner. The putative role of exosomal miR-100 transfer in regulating VEGF expression was substantiated by the ability of anti-miR-100 to rescue the inhibitory effects of MSC-derived exosomes on the expression of VEGF in breast cancer-derived cells. In addition, we found that down-regulation of VEGF mediated by MSC-derived exosomes can affect the vascular behavior of endothelial cells in vitro. CONCLUSIONS Overall, our findings suggest that exosomal transfer of miR-100 may be a novel mechanism underlying the paracrine effects of MSC-derived exosomes and may provide a means by which these vesicles can modulate vascular responses within the microenvironment of breast cancer cells.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | | | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Nabavi N, Saidy NRN, Venalainen E, Haegert A, Parolia A, Xue H, Wang Y, Wu R, Dong X, Collins C, Crea F, Wang Y. miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Sci Rep 2017; 7:4079. [PMID: 28642484 PMCID: PMC5481412 DOI: 10.1038/s41598-017-03731-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Carcinoma of the prostate is the most common cancer in men. Treatment of aggressive prostate cancer involves a regiment of radical prostectomy, radiation therapy, chemotherapy and hormonal therapy. Despite significant improvements in the last decade, the treatment of prostate cancer remains unsatisfactory, because a significant fraction of prostate cancers develop resistance to multiple treatments and become incurable. This prompts an urgent need to investigate the molecular mechanisms underlying the evolution of therapy-induced resistance of prostate cancer either in the form of castration-resistant prostate cancer (CRPC) or transdifferentiated neuroendocrine prostate cancer (NEPC). By analyzing micro-RNA expression profiles in a set of patient-derived prostate cancer xenograft tumor lines, we identified miR-100-5p as one of the key molecular components in the initiation and evolution of androgen ablation therapy resistance in prostate cancer. In vitro results showed that miR-100-5p is required for hormone-independent survival and proliferation of prostate cancer cells post androgen ablation. In Silico target predictions revealed that miR-100-5p target genes are involved in key aspects of cancer progression, and are associated with clinical outcome. Our results suggest that mir-100-5p is a possible therapeutic target involved in prostate cancer progression and relapse post androgen ablation therapy.
Collapse
Affiliation(s)
- Noushin Nabavi
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nur Ridzwan Nur Saidy
- Honors Biotechnology Program, Department of Microbiology and Immunology, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Erik Venalainen
- Honors Biotechnology Program, Department of Microbiology and Immunology, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Anne Haegert
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Abhijit Parolia
- Honors Biotechnology Program, Department of Microbiology and Immunology, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Hui Xue
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Yuwei Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Rebecca Wu
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Xin Dong
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Colin Collins
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Francesco Crea
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Peng H, Xiao Y, Deng X, Luo J, Hong C, Qin X. The Warburg effect: A new story in pulmonary arterial hypertension. Clin Chim Acta 2016; 461:53-8. [DOI: 10.1016/j.cca.2016.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
|
25
|
Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27(Kip1) Signaling Pathway. Int J Mol Sci 2016; 17:ijms17060844. [PMID: 27258250 PMCID: PMC4926378 DOI: 10.3390/ijms17060844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022] Open
Abstract
It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27(Kip1). Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27(Kip1) reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27(Kip1) downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27(Kip1) axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension.
Collapse
|
26
|
miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression. Biochem Biophys Res Commun 2016; 473:342-348. [DOI: 10.1016/j.bbrc.2016.03.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 11/22/2022]
|