1
|
Hao S, Guthrie B, Kim SK, Balanda S, Kubicek J, Murtaza B, Khan NA, Khakbaz P, Su J, Goddard WA. Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments. Commun Chem 2024; 7:236. [PMID: 39424933 PMCID: PMC11489721 DOI: 10.1038/s42004-024-01324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the Gα protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Brian Guthrie
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sergej Balanda
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Jan Kubicek
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Babar Murtaza
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Naim A Khan
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Pouyan Khakbaz
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Hoare SR. Receptor binding kinetics equations: Derivation using the Laplace transform method. J Pharmacol Toxicol Methods 2018; 89:26-38. [DOI: 10.1016/j.vascn.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 01/29/2023]
|
3
|
Abstract
Previously, drugs were developed focusing on target affinity and selectivity. However, it is becoming evident that the drug-target residence time, related to the off-rate, is an important parameter for successful drug development. The residence time influences both the on-rate and overall effectiveness of drugs. Furthermore, ligand binding is now appreciated to be a multistep process because metastable and/or intermediate binding sites in the extracellular region have been identified. In this review, we summarize experimental ligand-binding data for G-protein-coupled receptors (GPCRs), and their binding pathways, analyzed by molecular dynamics (MD). The kinetics of drug binding to GPCRs are complex and depend on several factors, including charge distribution on the receptor surface, ligand-receptor interactions in the binding channel and the binding site, or solvation.
Collapse
Affiliation(s)
- Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany.
| | | | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Pradeepkumar P, Govindaraj D, Jeyaraj M, Munusamy MA, Rajan M. Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomed Pharmacother 2017; 87:461-470. [DOI: 10.1016/j.biopha.2016.12.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 12/31/2016] [Indexed: 11/15/2022] Open
|