1
|
Ruiz-Rodríguez VM, Torres-González CA, Salas-Canedo KM, Pecina-Maza NQ, Martínez-Leija ME, Portales-Pérez DP, Estrada-Sánchez AM. Dynamical changes in the expression of GABAergic and purinergic components occur during the polarization of THP-1 monocytes to proinflammatory macrophages. Biochem Biophys Rep 2023; 36:101558. [PMID: 37881409 PMCID: PMC10594599 DOI: 10.1016/j.bbrep.2023.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
The monocytes are key components of innate immunity, as they can differentiate into phagocytic cells or macrophages with proinflammatory or anti-inflammatory phenotypes. The gamma-aminobutyric acid (GABA) and adenosine triphosphate (ATP), two known neurotransmitters, are two environmental signals that contribute to the differentiation of monocytes into macrophages and their subsequent polarization into proinflammatory M1 and anti-inflammatory M2 macrophages. Although monocytes and macrophages express proteins related to GABA and ATP-mediated response (GABAergic and purinergic systems, respectively), it is unknown whether changes in their expression occur during monocyte activation or their differentiation and polarization into macrophages. Therefore, we evaluated the expression levels of GABAergic and purinergic signaling components in the THP-1 monocyte cell line and their changes during monocyte activation, differentiation, and polarization to M1 proinflammatory macrophages. Our results showed that activated monocytes are characterized by increased expression of two GABAergic components, the GABA transporter 2 (GAT-2) and the glutamic acid decarboxylase (GAD)-67, an enzyme involved in GABA synthesis. Also, monocytes showed a pronounced expression of the purinergic receptors P2X4 and P2X7. Interestingly, during differentiation, monocytes increased the expression of the β2 subunit of GABA A-type receptor (GABA-AR), while the purinergic receptors P2X1 and P2X1del were reduced. In contrast, proinflammatory M1 macrophages showed a reduced expression in the α4 subunit of GABA-AR and GAD67, while P2X4 and P2X7 were overexpressed. These results indicate that dynamical changes in the GABAergic and purinergic components occur during the transition from monocytes to macrophages. Since GABA and ATP are two neurotransmitters, our results suggest that monocytes and macrophages respond to neurotransmitter-induced stimulation and may represent a path of interaction between the nervous and immune systems during peripheral inflammation and neuroinflammation development.
Collapse
Affiliation(s)
- Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, San Luis Potosí, México
| | - Carlos Alberto Torres-González
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, San Luis Potosí, México
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, México
| | - Karina Monserrat Salas-Canedo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, San Luis Potosí, México
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, México
| | - Nicole Quibey Pecina-Maza
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, San Luis Potosí, México
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, México
| | - Miguel Ernesto Martínez-Leija
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, México
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, México
| | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
2
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
3
|
Bain CR, Myles PS, Taylor R, Trahair H, Lee YP, Croft L, Peyton PJ, Painter T, Chan MTV, Wallace S, Corcoran T, Shaw AD, Paul E, Ziemann M, Bozaoglu K. Methylomic and transcriptomic characterization of postoperative systemic inflammatory dysregulation. Transl Res 2022; 247:79-98. [PMID: 35470009 DOI: 10.1016/j.trsl.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
In this study, we define and validate a state of postoperative systemic inflammatory dysregulation (PSID) based on postoperative phenotypic extremes of plasma C-reactive protein concentration following major abdominal surgery. PSID manifested clinically with significantly higher rates of sepsis, complications, longer hospital stays and poorer short, and long-term outcomes. We hypothesized that PSID will be associated with, and potentially predicted by, altered patterns of genome-wide peripheral blood mononuclear cell differential DNA methylation and gene expression. We identified altered DNA methylation and differential gene expression in specific immune and metabolic pathways during PSID. Our findings suggest that dysregulation results in, or from, dramatic changes in differential DNA methylation and highlights potential targets for early detection and treatment. The combination of altered DNA methylation and gene expression suggests that dysregulation is mediated at multiple levels within specific gene sets and hence, nonspecific anti-inflammatory treatments such as corticosteroids alone are unlikely to represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Chris R Bain
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.
| | - Paul S Myles
- Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rachael Taylor
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hugh Trahair
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yin Peng Lee
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Larry Croft
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Philip J Peyton
- Department of Anesthesia, The Austin Hospital and Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Painter
- Department of Anesthesia, Royal Adelaide Hospital, Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese Universtiy of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sophie Wallace
- Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Tomás Corcoran
- Department of Anesthesia and Pain Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Andrew D Shaw
- Department of Anesthesiology and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina; Department of Intensive Care and Resuscitation, Cleveland Clinic, Cleveland, Ohio
| | - Eldho Paul
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Mark Ziemann
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia; Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Kiymet Bozaoglu
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Abstract
Thromboinflammation involves complex interactions between actors of inflammation and immunity and components of the hemostatic system, which are elicited upon infection or tissue injury. In this context, the interplay between platelets and innate immune cells has been intensively investigated. The ATP-gated P2X1 ion channel, expressed on both platelets and neutrophils is of particular interest. On platelets, this ion channel contributes to platelet activation and thrombosis, especially under high shear stress conditions of small arteries, whereas on neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells. In vitro studies indicate that it may also be implicated in platelet-dependent immune responses during bacterial infection. More recently, in a mouse model of intestinal epithelial barrier disruption causing systemic inflammation, it has been reported that neutrophil P2X1 ion channel could play a protective role against exaggerated inflammation-associated thrombosis. This review will focus on this unique role of the ATP-gated P2X1 ion channel in thromboinflammation, highlighting possible implications and pointing to the need for further investigation of the role of P2X1 ion channels in the interplay between platelets and neutrophils during thrombus formation under various sterile or infectious inflammatory settings and in distinct vascular beds.
Collapse
Affiliation(s)
- Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Odile Wéra
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Vargas-Martínez EM, Gómez-Coronado KS, Espinosa-Luna R, Valdez-Morales EE, Barrios-García T, Barajas-Espinosa A, Ochoa-Cortes F, Montaño LM, Barajas-López C, Guerrero-Alba R. Functional expression of P2X1, P2X4 and P2X7 purinergic receptors in human monocyte-derived macrophages. Eur J Pharmacol 2020; 888:173460. [PMID: 32805257 DOI: 10.1016/j.ejphar.2020.173460] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
This study sought to examine the co-expression of the following purinergic receptor subunits: P2X1, P2X1del, P2X4, and P2X7 and characterize the P2X response in human monocyte-derived macrophages (MDMs). Single-cell RT-PCR shows the presence of P2X1, P2X1del, P2X4, and P2X7 mRNA in 40%, 5%, 20%, and 90% of human MDMs, respectively. Of the studied human MDMs, 25% co-expressed P2X1 and P2X7 mRNA; 5% co-expressed P2X4 and P2X7; and 15% co-expressed P2X1, P2X4, and P2X7 mRNA. In whole-cell patch clamp recordings of human MDMs, rapid application of ATP (0.01 mM) evoked fast current activation and two different desensitization kinetics: 1. a rapid desensitizing current antagonized by PPADS (1 μM), reminiscent of the P2X1 receptor's current; 2. a slow desensitizing current, insensitive to PPADS but potentiated by ivermectin (3 μM), similar to the P2X4 receptor's current. Application of 5 mM ATP induced three current modalities: 1. slow current activation with no desensitization, similar to the P2X7 receptor current, present in 69% of human macrophages and antagonized by A-804598 (0.1 μM); 2. fast current activation and fast desensitization, present in 15% of human MDMs; 3. fast activation current followed by biphasic desensitization, observed in 15% of human MDMs. Both rapid and biphasic desensitization kinetics resemble those observed for the recombinant human P2X1 receptor expressed in oocytes. These data demonstrate, for the first time, the co-expression of P2X1, P2X4, and P2X7 transcripts and confirm the presence of functional P2X1, P2X4, and P2X7 receptors in human macrophages.
Collapse
Affiliation(s)
- Eydie M Vargas-Martínez
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Karen S Gómez-Coronado
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Eduardo E Valdez-Morales
- Catedras CONACYT, Departamento de Medicina, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Alma Barajas-Espinosa
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Fernando Ochoa-Cortes
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
6
|
Freeman TL, Swartz TH. Purinergic Receptors: Elucidating the Role of these Immune Mediators in HIV-1 Fusion. Viruses 2020; 12:E290. [PMID: 32155980 PMCID: PMC7150916 DOI: 10.3390/v12030290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Purinergic receptors are inflammatory mediators activated by extracellular nucleotides released by dying or injured cells. Several studies have described an important role for these receptors in HIV-1 entry, particularly regarding their activity on HIV-1 viral membrane fusion. Several reports identify purinergic receptor antagonists that inhibit HIV-1 membrane fusion; these drugs are suspected to act through antagonizing Env-chemokine receptor interactions. They also appear to abrogate activity of downstream mediators that potentiate activation of the NLRP3 inflammasome pathway. Here we review the literature on purinergic receptors, the drugs that inhibit their function, and the evidence implicating these receptors in HIV-1 entry.
Collapse
Affiliation(s)
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
7
|
The ATP-gated P2X 1 ion channel contributes to the severity of antibody-mediated Transfusion-Related Acute Lung Injury in mice. Sci Rep 2019; 9:5159. [PMID: 30914724 PMCID: PMC6435740 DOI: 10.1038/s41598-019-41742-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
The biological responses that control the development of Transfusion-Related Acute Lung Injury (TRALI), a serious post-transfusion respiratory syndrome, still need to be clarified. Since extracellular nucleotides and their P2 receptors participate in inflammatory processes as well as in cellular responses to stress, we investigated the role of the ATP-gated P2X1 cation channel in antibody-mediated TRALI. The effects of NF449, a selective P2X1 receptor (P2RX1) antagonist, were analyzed in a mouse two-hit model of TRALI. Mice were primed with lipopolysaccharide (LPS) and 24 h later challenged by administrating an anti-MHC I antibody. The selective P2RX1 antagonist NF449 was administrated before the administration of LPS and/or the anti-MHC I antibody. When given before antibody administration, NF449 improved survival while maximal protection was achieved when NF449 was also administrated before the sensitization step. Under this later condition, protein contents in bronchoalveolar lavages were dramatically reduced. Cell depletion experiments indicated that monocytes/macrophages, but not neutrophils, contribute to this effect. In addition, the reduced lung periarteriolar interstitial edemas in NF449-treated mice suggested that P2RX1 from arteriolar smooth muscle cells could represent a target of NF449. Accordingly, inhibition of TRPC6, another cation channel expressed by smooth muscle cells, also reduced TRALI-associated pulmonary interstitial and alveolar edemas. These data strongly suggest that cation channels like P2RX1 or TRPC6 participate to TRALI pathological responses.
Collapse
|
8
|
Méndez-Barredo LH, Rodríguez-Meléndez JG, Gómez-Coronado KS, Guerrero-Alba R, Valdez-Morales EE, Espinosa-Luna R, Barajas-Espinosa A, Barajas-López C. Physiological Concentrations of Zinc Have Dual Effects on P2X Myenteric Receptors of Guinea Pig. Cell Mol Neurobiol 2018; 38:1439-1449. [PMID: 30109516 DOI: 10.1007/s10571-018-0612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
We, hereby, characterize the pharmacological effects of physiological concentrations of Zinc on native myenteric P2X receptors from guinea-pig small intestine and on P2X2 isoforms present in most myenteric neurons. This is the first study describing opposite effects of Zinc on these P2X receptors. It was not possible to determine whether both effects were concentration dependent, yet the inhibitory effect was mediated by competitive antagonism and was concentration dependent. The potentiating effect appears to be mediated by allosteric changes induced by Zinc on P2X myenteric channels, which is more frequently observed in myenteric neurons with low zinc concentrations. In P2X2-1 and P2X2-2 variants, the inhibitory effect is more common than in P2X myenteric channels. However, in the variants, the potentiatory effect is of equal magnitude as the inhibitory effect. Inhibitory and potentiatory effects are likely mediated by different binding sites that appear to be present on both P2X2 variants. In conclusion, in myenteric native P2X receptors, Zinc has quantitatively different pharmacological effects compared to those observed on homomeric channels: P2X2-1 and P2X2-2. Potentiatory and inhibitory Zinc effects upon these receptors are mediated by two different binding sites. All our data suggest that myenteric P2X receptors have a more complex pharmacology than those of the recombinant P2X2 receptors, which is likely related to other subunits known to be expressed in myenteric neurons. Because these dual effects occur at Zinc physiological concentrations, we suggest that they could be involved in physiological and pathological processes.
Collapse
Affiliation(s)
- Liliana H Méndez-Barredo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Jessica G Rodríguez-Meléndez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Karen S Gómez-Coronado
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Eduardo E Valdez-Morales
- Cátedra CONACyT, Departamento de Cirugía, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico
| | - Alma Barajas-Espinosa
- Cátedra CONACyT, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|