1
|
Ciancetta A, Malfacini D, Gozzi M, Marzola E, Camilotto R, Calò G, Guerrini R. A Multi-Angle Approach to Predict Peptide-GPCR Complexes: The N/OFQ-NOP System as a Successful AlphaFold Application Case Study. J Chem Inf Model 2024; 64:8034-8051. [PMID: 39137328 DOI: 10.1021/acs.jcim.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
With nearly 700 structures solved and a growing number of customized structure prediction algorithms being developed at a fast pace, G protein-coupled receptors (GPCRs) are an optimal test case for validating new approaches for the prediction of receptor active state and ligand bioactive conformation complexes. In this study, we leveraged the availability of hundreds of peptide GPCRs in the active state and both classical homology and artificial intelligence (AI) based protein modeling combined with docking and AI-based peptide structure prediction approaches to predict the nociceptin/orphanin FQ-NOP receptor active state complex (N/OFQ-NOPa). The In Silico generated hypotheses were validated via the design, synthesis, and pharmacological characterization of novel linear N/OFQ(1-13)-NH2 analogues, leading to the discovery of a novel antagonist (3B; pKB = 6.63) bearing a single ring-constrained residue in place of the Gly2-Gly3 motif of the N/OFQ message sequence (FGGF). While the experimental validation was ongoing, the availability of the Cryo-EM structure of the predicted complex enabled us to unambiguously validate the generated hypotheses. To the best of our knowledge, this is the first example of a peptide-GPCR complex predicted with atomistic accuracy (full complex Cα RMSD < 1.0 Å) and of the N/OFQ message moiety being successfully modified with a rigid scaffold.
Collapse
Affiliation(s)
- Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Matteo Gozzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Riccardo Camilotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Illuminati D, Trapella C, Zanirato V, Guerrini R, Albanese V, Sturaro C, Stragapede S, Malfacini D, Compagnin G, Catani M, Fantinati A. (L)-Monomethyl Tyrosine (Mmt): New Synthetic Strategy via Bulky 'Forced-Traceless' Regioselective Pd-Catalyzed C(sp 2)-H Activation. Pharmaceuticals (Basel) 2023; 16:1592. [PMID: 38004457 PMCID: PMC10675785 DOI: 10.3390/ph16111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The enormous influence in terms of bioactivity, affinity, and selectivity represented by the replacement of (L)-2,6-dimethyl tyrosine (Dmt) instead of Phenylalanine (Phe) into Nociceptin/orphanin (N/OFQ) neuropeptide analogues has been well documented in the literature. More recently, the non-natural amino acid (L)-2-methyl tyrosine (Mmt), with steric hindrance included between Tyr and Dmt, has been studied because of the modulation of steric effects in opioid peptide chains. Here, we report a new synthetic strategy to obtain Mmt based on the well-known Pd-catalyzed ortho-C(sp2)-H activation approach, because there is a paucity of other synthetic routes in the literature to achieve it. The aim of this work was to force only the mono-ortho-methylation process over the double ortho-methylation one. In this regard, we are pleased to report that the introduction of the dibenzylamine moiety on a Tyr aromatic nucleus is a convenient and traceless solution to achieve such a goal. Interestingly, our method provided the aimed Mmt either as N-Boc or N-Fmoc derivatives ready to be inserted into peptide chains through solid-phase peptide synthesis (SPPS). Importantly, the introduction of Mmt in place of Phe1 in the sequence of N/OFQ(1-13)-NH2 was very well tolerated in terms of pharmacological profile and bioactivity.
Collapse
Affiliation(s)
- Davide Illuminati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, 41125 Modena, Italy;
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy; (C.T.); (V.Z.); (R.G.); (G.C.); (M.C.)
| | - Vinicio Zanirato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy; (C.T.); (V.Z.); (R.G.); (G.C.); (M.C.)
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy; (C.T.); (V.Z.); (R.G.); (G.C.); (M.C.)
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Sturaro
- U.O. Neurological Clinic, University Hospital of Ferrara, Via Aldo Moro, 8, 44124 Ferrara, Italy; (C.S.)
| | - Simona Stragapede
- U.O. Neurological Clinic, University Hospital of Ferrara, Via Aldo Moro, 8, 44124 Ferrara, Italy; (C.S.)
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via 8 Febbraio, 2, 35131 Padova, Italy;
| | - Greta Compagnin
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy; (C.T.); (V.Z.); (R.G.); (G.C.); (M.C.)
| | - Martina Catani
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy; (C.T.); (V.Z.); (R.G.); (G.C.); (M.C.)
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
3
|
Ding H, Kiguchi N, Dobbins M, Romero-Sandoval EA, Kishioka S, Ko MC. Nociceptin Receptor-Related Agonists as Safe and Non-addictive Analgesics. Drugs 2023; 83:771-793. [PMID: 37209211 PMCID: PMC10948013 DOI: 10.1007/s40265-023-01878-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
As clinical use of currently available opioid analgesics is often impeded by dose-limiting adverse effects, such as abuse liability and respiratory depression, new approaches have been pursued to develop safe, effective, and non-addictive pain medications. After the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor more than 25 years ago, NOP receptor-related agonists have emerged as a promising target for developing novel and effective opioids that modulate the analgesic and addictive properties of mu-opioid peptide (MOP) receptor agonists. In this review, we highlight the effects of the NOP receptor-related agonists compared with those of MOP receptor agonists in experimental rodent and more translational non-human primate (NHP) models and the development status of key NOP receptor-related agonists as potential safe and non-addictive analgesics. Several lines of evidence demonstrated that peptidic and non-peptidic NOP receptor agonists produce potent analgesic effects by intrathecal delivery in NHPs. Moreover, mixed NOP/MOP receptor partial agonists (e.g., BU08028, BU10038, and AT-121) display potent analgesic effects when administered intrathecally or systemically, without eliciting adverse effects, such as respiratory depression, itch behavior, and signs of abuse liability. More importantly, cebranopadol, a mixed NOP/opioid receptor agonist with full efficacy at NOP and MOP receptors, produces robust analgesic efficacy with reduced adverse effects, conferring promising outcomes in clinical studies. A balanced coactivation of NOP and MOP receptors is a strategy that warrants further exploration and refinement for the development of novel analgesics with a safer and effective profile.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - MaryBeth Dobbins
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - E Alfonso Romero-Sandoval
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, 640-8392, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
4
|
Kiguchi N, Ding H, Kishioka S, Ko MC. Nociceptin/Orphanin FQ Peptide Receptor-Related Ligands as Novel Analgesics. Curr Top Med Chem 2021; 20:2878-2888. [PMID: 32384033 DOI: 10.2174/1568026620666200508082615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Despite similar distribution patterns and intracellular events observed in the nociceptin/ orphanin FQ peptide (NOP) receptor and other opioid receptors, NOP receptor activation displays unique pharmacological profiles. Several researchers have identified a variety of peptide and nonpeptide ligands to determine the functional roles of NOP receptor activation and observed that NOP receptor- related ligands exhibit pain modality-dependent pain processing. Importantly, NOP receptor activation results in anti-nociception and anti-hypersensitivity at the spinal and supraspinal levels regardless of the experimental settings in non-human primates (NHPs). Given that the NOP receptor agonists synergistically enhance mu-opioid peptide (MOP) receptor agonist-induced anti-nociception, it has been hypothesized that dual NOP and MOP receptor agonists may display promising functional properties as analgesics. Accumulating evidence indicates that the mixed NOP/opioid receptor agonists demonstrate favorable functional profiles. In NHP studies, bifunctional NOP/MOP partial agonists (e.g., AT-121, BU08028, and BU10038) exerted potent anti-nociception via NOP and MOP receptor activation; however, dose-limiting adverse effects associated with the MOP receptor activation, including respiratory depression, itch sensation, physical dependence, and abuse liability, were not observed. Moreover, a mixed NOP/opioid receptor agonist, cebranopadol, presented promising outcomes in clinical trials as a novel analgesic. Collectively, the dual agonistic actions on NOP and MOP receptors, with appropriate binding affinities and efficacies, may be a viable strategy to develop innovative and safe analgesics.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| |
Collapse
|
5
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
6
|
Dumitrascuta M, Bermudez M, Trovato O, De Neve J, Ballet S, Wolber G, Spetea M. Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking. Molecules 2021; 26:3267. [PMID: 34071603 PMCID: PMC8198056 DOI: 10.3390/molecules26113267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023] Open
Abstract
Opioids are the most effective analgesics, with most clinically available opioids being agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, including reward and opioid misuse leading to the current public health crisis. The imperative need for safer, non-addictive pain therapies drives the search for novel leads and new treatment strategies. In this study, the recently discovered MOR/nociceptin (NOP) receptor peptide hybrid KGNOP1 (H-Dmt-D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) was evaluated following subcutaneous administration in mouse models of acute (formalin test) and chronic inflammatory pain (Complete Freund's adjuvant-induced paw hyperalgesia), liabilities of spontaneous locomotion, conditioned place preference, and the withdrawal syndrome. KGNOP1 demonstrated dose-dependent antinociceptive effects in the formalin test, and efficacy in attenuating thermal hyperalgesia with prolonged duration of action. Antinociceptive effects of KGNOP1 were reversed by naltrexone and SB-612111, indicating the involvement of both MOR and NOP receptor agonism. In comparison with morphine, KGNOP1 was more potent and effective in mouse models of inflammatory pain. Unlike morphine, KGNOP1 displayed reduced detrimental liabilities, as no locomotor impairment nor rewarding and withdrawal effects were observed. Docking of KGNOP1 to the MOR and NOP receptors and subsequent 3D interaction pattern analyses provided valuable insights into its binding mode. The mixed MOR/NOP receptor peptide KGNOP1 holds promise in the effort to develop new analgesics for the treatment of various pain states with fewer MOR-mediated side effects, particularly abuse and dependence liabilities.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (M.B.); (G.W.)
| | - Olga Trovato
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (J.D.N.); (S.B.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (J.D.N.); (S.B.)
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (M.B.); (G.W.)
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| |
Collapse
|
7
|
Use of a Novel Peptide Welding Technology Platform for the Development of B- and T-Cell Epitope-Based Vaccines. Vaccines (Basel) 2021; 9:vaccines9050526. [PMID: 34069535 PMCID: PMC8160815 DOI: 10.3390/vaccines9050526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide vaccines incorporating B- and T-cell epitopes have shown promise in the context of various cancers and infections. These vaccines are relatively simple to manufacture, but more immunogenic formulations are considered a priority. We developed tetrabranched derivatives for this purpose based on a novel peptide welding technology (PWT). PWTs provide molecular scaffolds for the efficient synthesis of ultrapure peptide dendrimers, which allow the delivery of multiple ligands within a single macromolecular structure. Peptide vaccines incorporating T-cell epitopes derived from melanoma and B-cell epitopes derived from human immunodeficiency virus, synthesized using this approach, elicited primary immune responses in vitro and in vivo. Subcutaneous administration of the B-cell epitope-based vaccines also elicited more potent humoral responses than subcutaneous administration of the corresponding peptides alone. Highly immunogenic peptide epitope-based vaccines can therefore be generated quickly and easily using a novel PWT.
Collapse
|
8
|
Pacifico S, Albanese V, Illuminati D, Marzola E, Fabbri M, Ferrari F, Holanda VAD, Sturaro C, Malfacini D, Ruzza C, Trapella C, Preti D, Lo Cascio E, Arcovito A, Della Longa S, Marangoni M, Fattori D, Nassini R, Calò G, Guerrini R. Novel Mixed NOP/Opioid Receptor Peptide Agonists. J Med Chem 2021; 64:6656-6669. [PMID: 33998786 PMCID: PMC8279409 DOI: 10.1021/acs.jmedchem.0c02062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The nociceptin/orphanin FQ (N/OFQ)/N/OFQ receptor (NOP) system
controls different biological functions including pain and cough reflex.
Mixed NOP/opioid receptor agonists elicit similar effects to strong
opioids but with reduced side effects. In this work, 31 peptides with
the general sequence [Tyr/Dmt1,Xaa5]N/OFQ(1-13)-NH2 were synthesized and pharmacologically characterized for
their action at human recombinant NOP/opioid receptors. The best results
in terms of NOP versus mu opioid receptor potency were obtained by
substituting both Tyr1 and Thr5 at the N-terminal
portion of N/OFQ(1-13)-NH2 with the noncanonical amino
acid Dmt. [Dmt1,5]N/OFQ(1-13)-NH2 has been identified
as the most potent dual NOP/mu receptor peptide agonist so far described.
Experimental data have been complemented by in silico studies to shed light on the molecular mechanisms by which the peptide
binds the active form of the mu receptor. Finally, the compound exerted
antitussive effects in an in vivo model of cough.
Collapse
Affiliation(s)
- Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Valentina Albanese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Davide Illuminati
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Martina Fabbri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Federica Ferrari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Victor A D Holanda
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, Padova 35131, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, via Fossato di Mortara 70, Ferrara 44121, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, via Fossato di Mortara 70, Ferrara 44121, Italy
| | - Delia Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma 00168, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, Roma 00168, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Pza S. Tommasi 1, L'Aquila 67100, Italy
| | - Martina Marangoni
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | - Davide Fattori
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, Padova 35131, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, via Fossato di Mortara 70, Ferrara 44121, Italy
| |
Collapse
|
9
|
Costanzini A, Ruzza C, Neto JA, Sturaro C, Malfacini D, Sternini C, De Giorgio R, Calò G. Pharmacological characterization of naloxegol: In vitro and in vivo studies. Eur J Pharmacol 2021; 903:174132. [PMID: 33933466 DOI: 10.1016/j.ejphar.2021.174132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
Opioid-induced constipation is the most prevalent adverse effect of opioid drugs. Peripherally acting mu opioid receptor antagonists (PAMORAs), including naloxegol, are indicated for the treatment of opioid-induced constipation. The aim of this study was the in vitro and in vivo pharmacological characterization of naloxegol in comparison with naloxone. In vitro experiments were performed to measure calcium mobilization in cells coexpressing opioid receptors and chimeric G proteins and mu receptor interaction with G protein and β-arrestin 2 using bioluminescence resonance energy transfer. In vivo experiments were performed in mice to measure pain threshold using the tail withdrawal assay and colonic transit using the bead expulsion assay. In vitro, naloxegol behaved as a selective and competitive mu receptor antagonist similarly to naloxone, being 3-10-fold less potent. In vivo, naloxone was effective in blocking fentanyl actions when given subcutaneously (sc), but not per os (po). In contrast, naloxegol elicited very similar effects with sc or po administration counteracting in a dose dependent manner the constipating effects of fentanyl without interfering with the fentanyl mediated analgesia. Thus, a useful PAMORA action could be obtained with naloxegol both after po and sc administration.
Collapse
Affiliation(s)
- Anna Costanzini
- Department Translational Medicine, St. Anna University Hospital, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy; LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, Ferrara, Italy.
| | - Joaquim Azevedo Neto
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Catia Sternini
- Digestive Disease Division, Departments of Medicine and Neurobiology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Roberto De Giorgio
- Department Translational Medicine, St. Anna University Hospital, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| |
Collapse
|
10
|
Wtorek K, Janecka A. Potential of Nociceptin/Orphanin FQ Peptide Analogs for Drug Development. Chem Biodivers 2021; 18:e2000871. [PMID: 33351271 DOI: 10.1002/cbdv.202000871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022]
Abstract
Nociceptin receptor (NOP) belongs to the family of opioid receptors but was discovered and characterized much later than the so called classical opioid receptors, μ, δ and κ (or MOP, DOP and KOP, resp.). Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of this receptor and it controls numerous important functions in the central nervous system and in the periphery, so its analogs may be developed as innovative drugs for the treatment of a variety of conditions and pathological states. Availability of potent and selective ligands with high affinity to NOP receptor is essential to fully understand the role of NOP-N/OFQ system in the body, which in turn may lead to designing novel therapeutics. Here, we have focused on reviewing the structure of potent peptide-based agonists, antagonists, biased analogs and bivalent ligands that target NOP receptor.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, PL-92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, PL-92-215 Lodz, Poland
| |
Collapse
|
11
|
Kiguchi N, Kishioka S, Ko MC. [Therapeutic potentials of safe opioid analgesics targeting nociceptin/orphanin FQ peptide receptor]. Nihon Yakurigaku Zasshi 2021; 156:139-144. [PMID: 33952840 DOI: 10.1254/fpj.20106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
After the identification of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) and its cognate receptor, the unique functional profiles of the N/OFQ-NOP receptor system have been uncovered. NOP receptors are distributed in the key regions that regulate pain and reward processing in the central nervous system. In non-human primates (NHPs), activation of the NOP receptor causes antinociception and anti-hypersensitivity via spinal and supraspinal effects. Moreover, activation of the NOP receptor attenuates dopaminergic transmission and potentiates mu-opioid peptide (MOP) receptor-mediated analgesia. Here, we highlight the functional profiles of bifunctional NOP and MOP receptor agonists based on their promising effects for the treatment of pain and drug abuse. Bifunctional NOP/MOP receptor "partial" agonists, such as AT-121, BU08028, and BU10038, exert potent analgesic effects without MOP receptor-related side effects such as abuse liability, respiratory depression, physical dependence, and itching in NHPs. These novel NOP/MOP receptor agonists reduce rewarding and the reinforcing effects of abused drugs. Furthermore, a mixed NOP/opioid receptor "full" agonist, cebranopadol, is undergoing several clinical trials, and the therapeutic advantage of the coactivation of NOP and MOP receptors has also been confirmed in humans. Therefore, this class of drugs that coactivate NOP and MOP receptors proposes a wide therapeutic range with fewer side effects, indicating a greater potential for the development of novel safer opioid analgesics.
Collapse
Affiliation(s)
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine
| |
Collapse
|
12
|
Multifunctional Opioid-Derived Hybrids in Neuropathic Pain: Preclinical Evidence, Ideas and Challenges. Molecules 2020; 25:molecules25235520. [PMID: 33255641 PMCID: PMC7728063 DOI: 10.3390/molecules25235520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
When the first- and second-line therapeutics used to treat neuropathic pain (NP) fail to induce efficient analgesia—which is estimated to relate to more than half of the patients—opioid drugs are prescribed. Still, the pathological changes following the nerve tissue injury, i.a. pronociceptive neuropeptide systems activation, oppose the analgesic effects of opiates, enforcing the use of relatively high therapeutic doses in order to obtain satisfying pain relief. In parallel, the repeated use of opioid agonists is associated with burdensome adverse effects due to compensatory mechanisms that arise thereafter. Rational design of hybrid drugs, in which opioid ligands are combined with other pharmacophores that block the antiopioid action of pronociceptive systems, delivers the opportunity to ameliorate the NP-oriented opioid treatment via addressing neuropathological mechanisms shared both by NP and repeated exposition to opioids. Therewith, the new dually acting drugs, tailored for the specificity of NP, can gain in efficacy under nerve injury conditions and have an improved safety profile as compared to selective opioid agonists. The current review presents the latest ideas on opioid-comprising hybrid drugs designed to treat painful neuropathy, with focus on their biological action, as well as limitations and challenges related to this therapeutic approach.
Collapse
|
13
|
Pacifico S, Ferrari F, Albanese V, Marzola E, Neto JA, Ruzza C, Calò G, Preti D, Guerrini R. Biased Agonism at Nociceptin/Orphanin FQ Receptors: A Structure Activity Study on N/OFQ(1-13)-NH 2. J Med Chem 2020; 63:10782-10795. [PMID: 32901477 PMCID: PMC8011926 DOI: 10.1021/acs.jmedchem.9b02057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 01/06/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) controls different biological functions via selective stimulation of the N/OFQ peptide (NOP) receptor. The pleiotropic actions of N/OFQ may limit the development of NOP ligands as innovative drugs in different therapeutic areas. The pharmacological concept of functional selectivity (aka biased agonism) might be useful for amplifying beneficial actions and/or counteracting side effects. Thus, molecules with large bias factors toward G protein or β arrestin are required for investigating the translational value of NOP biased modulation. Herein, the biased behavior of a heterogeneous library of NOP-targeting peptide derivatives was evaluated in vitro with the aim to provide possible insights into the structural determinants that govern the selective activation of G protein versus β-arrestin. Our results demonstrate that lipidation of N/OFQ(1-13)-NH2 is a useful strategy for obtaining G protein biased agonists for the NOP receptor.
Collapse
Affiliation(s)
- Salvatore Pacifico
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Federica Ferrari
- Department
of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Valentina Albanese
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Erika Marzola
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Joaquim Azevedo Neto
- Department
of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Chiara Ruzza
- Department
of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
- LTTA
Laboratory for Advanced Therapies, Technopole
of Ferrara, Via Fossato
di Mortara 70, 44121 Ferrara, Italy
| | - Girolamo Calò
- Department
of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Delia Preti
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Remo Guerrini
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- LTTA
Laboratory for Advanced Therapies, Technopole
of Ferrara, Via Fossato
di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res 2020; 100:191-202. [PMID: 32255240 DOI: 10.1002/jnr.24624] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA
| |
Collapse
|
15
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
16
|
Pacifico S, Albanese V, Illuminati D, Fantinati A, Marzola E, Ferrari F, Neto JA, Sturaro C, Ruzza C, Calò G, Preti D, Guerrini R. Tetrabranched Hetero-Conjugated Peptides as Bifunctional Agonists of the NOP and Mu Opioid Receptors. Bioconjug Chem 2019; 30:2444-2451. [DOI: 10.1021/acs.bioconjchem.9b00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Valentina Albanese
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Davide Illuminati
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Anna Fantinati
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Erika Marzola
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Joaquim Azevedo Neto
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Chiara Sturaro
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| |
Collapse
|
17
|
BU10038 as a safe opioid analgesic with fewer side-effects after systemic and intrathecal administration in primates. Br J Anaesth 2019; 122:e146-e156. [PMID: 30916003 DOI: 10.1016/j.bja.2018.10.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The marked increase in mis-use of prescription opioids has greatly affected our society. One potential solution is to develop improved analgesics which have agonist action at both mu opioid peptide (MOP) and nociceptin/orphanin FQ peptide (NOP) receptors. BU10038 is a recently identified bifunctional MOP/NOP partial agonist. The aim of this study was to determine the functional profile of systemic or spinal delivery of BU10038 in primates after acute and chronic administration. METHODS A series of behavioural and physiological assays have been established specifically to reflect the therapeutic (analgesia) and side-effects (abuse potential, respiratory depression, itch, physical dependence, and tolerance) of opioid analgesics in rhesus monkeys. RESULTS After systemic administration, BU10038 (0.001-0.01 mg kg-1) dose-dependently produced long-lasting antinociceptive and antihypersensitive effects. Unlike the MOP agonist oxycodone, BU10038 lacked reinforcing effects (i.e. little or no abuse liability), and BU10038 did not compromise the physiological functions of primates including respiration, cardiovascular activities, and body temperature at antinociceptive doses and a 10-30-fold higher dose (0.01-0.1 mg kg-1). After intrathecal administration, BU10038 (3 μg) exerted morphine-comparable antinociception and antihypersensitivity without itch scratching responses. Unlike morphine, BU10038 did not cause the development of physical dependence and tolerance after repeated and chronic administration. CONCLUSIONS These in vivo findings demonstrate the translational potential of bifunctional MOP/NOP receptor agonists such as BU10038 as a safe, non-addictive analgesic with fewer side-effects in primates. This study strongly supports that bifunctional MOP/NOP agonists may provide improved analgesics and an alternative solution for the ongoing prescription opioid crisis.
Collapse
|
18
|
Abstract
The nociceptin/orphanin FQ peptide (NOP) receptor-related ligands have been demonstrated in preclinical studies for several therapeutic applications. This article highlights (1) how nonhuman primates (NHP) were used to facilitate the development and application of positron emission tomography tracers in humans; (2) effects of an endogenous NOP ligand, nociceptin/orphanin FQ, and its interaction with mu opioid peptide (MOP) receptor agonists; and (3) promising functional profiles of NOP-related agonists in NHP as analgesics and treatment for substance use disorders. NHP models offer the most phylogenetically appropriate evaluation of opioid and non-opioid receptor functions and drug effects. Based on preclinical and clinical data of ligands with mixed NOP/MOP receptor agonist activity, several factors including their intrinsic efficacies for activating NOP versus MOP receptors and different study endpoints in NHP could contribute to different pharmacological profiles. Ample evidence from NHP studies indicates that bifunctional NOP/MOP receptor agonists have opened an exciting avenue for developing safe, effective medications with fewer side effects for treating pain and drug addiction. In particular, bifunctional NOP/MOP partial agonists hold a great potential as (1) effective spinal analgesics without itch side effects; (2) safe, nonaddictive analgesics without opioid side effects such as respiratory depression; and (3) effective medications for substance use disorders.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
19
|
Calo G, Lambert DG. Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br J Anaesth 2018; 121:1105-1114. [PMID: 30336855 PMCID: PMC6208290 DOI: 10.1016/j.bja.2018.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
Opioids are characterised as classical (mu, delta, and kappa) along with the non-classical nociceptin/orphanin FQ (N/OFQ) receptor or NOP. Targeting NOP has therapeutic indications in control of the cardiovascular and respiratory systems and micturition, and a profile as an antidepressant. For all of these indications, there are translational human data. Opioids such as morphine and fentanyl (activating the mu receptor) are the mainstay of pain treatment in the perioperative period, despite a challenging side-effect profile. Opioids in general have poor efficacy in neuropathic pain. Moreover, longer term use is associated with tolerance. There is good evidence interactions between opioid receptors, and receptor co-activation can reduce side-effects without compromising analgesia; this is particularly true for mu and NOP co-activation. Recent pharmaceutical development has produced a mixed opioid/NOP agonist, cebranopadol. This new chemical entity is effective in animal models of nociceptive and neuropathic pain with greater efficacy in the latter. In animal models, there is little evidence for respiratory depression, and tolerance (compared with morphine) only develops after long treatment periods. There is now early phase clinical development in diabetic neuropathy, cancer pain, and low back pain where cebranopadol displays significant efficacy. In 1996, N/OFQ was formally identified with an innovative analgesic profile. Approximately 20 yr later, cebranopadol as a clinical ligand is advancing through the human trials process.
Collapse
Affiliation(s)
- G Calo
- Section of Pharmacology, Department of Medical Sciences, National Institute of Neurosciences, University of Ferrara, Ferrara, Italy.
| | - D G Lambert
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
20
|
|
21
|
Walentiny DM, Wiebelhaus JM, Beardsley PM. Nociceptin/orphanin FQ receptors modulate the discriminative stimulus effects of oxycodone in C57BL/6 mice. Drug Alcohol Depend 2018; 187:335-342. [PMID: 29705547 DOI: 10.1016/j.drugalcdep.2018.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Nociceptin/orphanin FQ (NOP) receptor ligands have shown efficacy as putative analgesics and can modulate the abuse-related effects of opioids, suggesting therapeutic applications. The discriminative stimulus effects of a drug are related to their subjective effects, a predictor of abuse potential. To determine whether activation of NOP receptors could alter the subjective effects of an abused opioid analgesic, a novel oxycodone discrimination was established in mice, characterized with positive and negative controls, and its expression evaluated with a NOP receptor agonist. METHODS Adult male C57BL/6 mice were trained to discriminate 1.3 mg/kg oxycodone from vehicle in a two-lever operant procedure. The discrimination was characterized with naloxone challenge, and generalization tests with the μ-opioid receptor agonists, heroin and morphine, and the κ-opioid receptor selective agonist, U50488. Subsequently, effects of the NOP agonist Ro64-6198 were evaluated with and without oxycodone. RESULTS Oxycodone generalization occurred in a dose-dependent manner and was reversed by naloxone pretreatment. Heroin and morphine, but not U50488, substituted for oxycodone. Co-treatment of 1 mg/kg Ro64-6198 with the oxycodone training dose reduced % oxycodone lever responding (%OLR) and restored response rates to vehicle control levels. J-113397, a NOP antagonist, reversed these effects. Co-administration of 1 mg/kg Ro64-6198 with a range of oxycodone doses resulted in rightward dose-effect curve shifts in %OLR and response rates compared to oxycodone alone. CONCLUSIONS These results provide additional evidence that NOP receptor activation can modulate the subjective effects of opioid analgesics and represent the first characterization of oxycodone's discriminative stimulus effects in mice.
Collapse
Affiliation(s)
- D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, United States.
| | - Jason M Wiebelhaus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, United States
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, United States; Institute for Drug and Alcohol Studies and Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980613, Richmond, VA, 23298-0613, United States
| |
Collapse
|
22
|
Abstract
The nociceptin/orphanin FQ (N/OFQ)-N/OFQ peptide (NOP) receptor system is widely distributed at both the peripheral and central level where it modulates important biological functions with increasing therapeutic implications. This chapter wants to provide a comprehensive and updated overview focused on the available structure-activity relationship studies on NOP receptor peptide ligands developed through different rational approaches. Punctual modifications and cyclizations of the N/OFQ sequence have been properly combined furnishing potent NOP selective ligands with different pharmacological activities (full and partial agonists, pure antagonists) and enhanced metabolic stability in vivo. The screening of peptide libraries provided a second family of NOP ligands that have been successfully optimized. Moreover, recent findings suggest the possibility to apply different multimerization strategies for the realization of multi-target NOP/opioid receptor ligands or tetrabranched N/OFQ derivatives with extraordinarily prolonged duration of action in vivo. The diverse approaches led to the identification of important pharmacological tools along with drug candidates currently in clinical development such as Rec 0438 (aka UFP-112) for the treatment of overactive bladder and SER 100 (aka ZP120) for the clinical management of systolic hypertension.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Caló
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neurosciences, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
23
|
Calo' G, Rizzi A, Ruzza C, Ferrari F, Pacifico S, Gavioli EC, Salvadori S, Guerrini R. Peptide welding technology - A simple strategy for generating innovative ligands for G protein coupled receptors. Peptides 2018; 99:195-204. [PMID: 29031796 DOI: 10.1016/j.peptides.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Based on their high selectivity of action and low toxicity, naturally occurring peptides have great potential in terms of drug development. However, the pharmacokinetic properties of peptides, in particular their half life, are poor. Among different strategies developed for reducing susceptibility to peptidases, and thus increasing the duration of action of peptides, the generation of branched peptides has been described. However, the synthesis and purification of branched peptides are extremely complicated thus limiting their druggability. Here we present a novel and facile synthesis of tetrabranched peptides acting as GPCR ligands and their in vitro and vivo pharmacological characterization. Tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ), N/OFQ related peptides, opioid peptides, tachykinins, and neuropeptide S were generated with the strategy named peptide welding technology (PWT) and characterized by high yield and purity of the desired final product. In general, PWT derivatives displayed a pharmacological profile similar to that of the natural sequence in terms of affinity, pharmacological activity, potency, and selectivity of action in vitro. More importantly, in vivo studies demonstrated that PWT peptides are characterized by increased potency associated with long lasting duration of action. In conclusion, PWT derivatives of biologically active peptides can be viewed as innovative pharmacological tools for investigating those conditions and states in which selective and prolonged receptor stimulation promotes beneficial effects.
Collapse
Affiliation(s)
- Girolamo Calo'
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy.
| | - Anna Rizzi
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Chiara Ruzza
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Federica Ferrari
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| |
Collapse
|