1
|
Elieh-Ali-Komi D, Yarmohammadi F, Nezamabadi M, Khirehgesh MR, Kiani M, Rashidi K, Mohammadi-Noori E, Salehi N, Dehpour AR, Kiani A. Mitigating effects of agmatine on myocardial infarction in rats subjected to isoproterenol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03545-2. [PMID: 39446151 DOI: 10.1007/s00210-024-03545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Isoproterenol (ISO) usage is limited by its potential for cardiotoxicity. We sought to investigate the potential of agmatine in mitigating ISO-induced cardiotoxicity. Agmatine (100 mg/kg/day) was intraperitoneally administered to Wistar rats for 7 days in the presence or absence of cardiotoxicity induced by subcutaneous injection of ISO (85 mg/kg) on the sixth and seventh days. ECG parameters, lactate dehydrogenase (LDH), malondialdehyde (MDA), and creatinine phosphokinase (CPK) were investigated. Changes in cardiac tissue were also investigated using H&E staining. The heart weight/body weight ratio increased in ISO-treated rats. In the agmatine + ISO group, the increased heart rate observed in ISO-treated rats was reversed (317.2 ± 10.5 vs 452.2 ± 10.61, P < 0.001). Agmatine ameliorated the change in PR, RR, and ST intervals and the QRS complex, which was reduced by ISO. Treatment with saline, ISO, and agmatine had no significant effect on papillary muscle stimulation (P > 0.05). The administration of agmatine to ISO-receiving group could mitigate several parameters when compared to ISO-receiving group including increasing papillary muscle contraction (0.83 vs 0.71 N/M2 respectively, P < 0.01), decreasing LDH levels (660 ng/ml vs 1080 ng/ml, respectively, P < 0.05), decreasing CPK levels (377 U/l vs 642 U/l, respectively, P < 0.05) and decreasing MDA levels (20.32 µM/l vs 46.83 µM/l, P < 0.001). Coadministration of agmatine and ISO is capable of ameliorating ISO cardiotoxicity by antioxidant effects and controlling the hemostasis of calcium in myocytes.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Nezamabadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khodabakhsh Rashidi
- Oils & Fats Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nahid Salehi
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Liu Y, Wu H, Zhou G, Zhang D, Yang Q, Li Y, Yang X, Sun J. Role of M6a Methylation in Myocardial Ischemia-Reperfusion Injury and Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:918-928. [PMID: 39026038 DOI: 10.1007/s12012-024-09898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, with acute myocardial infarction and anticancer drug-induced cardiotoxicity being the significant factors. The most effective treatment for acute myocardial infarction is rapid restoration of coronary blood flow by thrombolytic therapy or percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury (MI/RI) after reperfusion therapy is common in acute myocardial infarction, thus affecting the prognosis of patients with acute myocardial infarction. There is no effective treatment for MI/RI. Anthracyclines such as Doxorubicin (DOX) have limited clinical use due to their cardiotoxicity, and the mechanism of DOX-induced cardiac injury is complex and not yet fully understood. N6-methyladenosine (m6A) plays a crucial role in many biological processes. Emerging evidence suggests that m6A methylation plays a critical regulatory role in MI/RI and DOX-induced cardiotoxicity (DIC), suggesting that m6A may serve as a novel biomarker and therapeutic target for MI/RI and DIC. M6A methylation may mediate the pathophysiological processes of MI/RI and DIC by regulating cellular autophagy, apoptosis, oxidative stress, and inflammatory response. In this paper, we first focus on the relationship between m6A methylation and MI/RI, then further elucidate that m6A methylation may mediate the pathophysiological process of MI/RI through the regulation of cellular autophagy, apoptosis, oxidative stress, and inflammatory response. Finally, briefly outline the roles played by m6A in DIC, which will provide a new methodology and direction for the research and treatment of MI/RI and DIC.
Collapse
Affiliation(s)
- Yanfang Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Hui Wu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China.
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Gang Zhou
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Dong Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Qingzhuo Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi Li
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Xiaoting Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jianfeng Sun
- Department of Vascular Surgery, The First College of Medical Science, Yichang Central People's Hospital, China Three Gorges University, Hubei, 443000, China
| |
Collapse
|
3
|
Shackebaei D, Hesari M, Gorgani S, Vafaeipour Z, Salaramoli S, Yarmohammadi F. The Role of mTOR in the Doxorubicin-Induced Cardiotoxicity: A Systematic Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01475-7. [PMID: 39102090 DOI: 10.1007/s12013-024-01475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug known to induce metabolic changes in the heart, leading to potential heart toxicity. These changes impact various cellular functions and pathways such as disrupting the mechanistic target of rapamycin (mTOR) signaling pathway. The study aimed to investigate the effect of DOX on the mTOR pathway through an in vivo systematic review. Databases were searched on September 11, 2023. We finally included 30 in vivo studies that examined the mTOR expression in cardiac tissue samples. The present study has shown that the PI3K/AKT/mTOR, the AMPK/mTOR, the p53/mTOR signaling, the mTOR/TFEB pathway, the p38 MAPK/mTOR, the sestrins/mTOR, and the KLF15/eNOS/mTORC1 signaling pathways play a crucial role in the development of DOX-induced cardiotoxicity. Inhibition or dysregulation of these pathways can lead to increased oxidative stress, apoptosis, and other adverse effects on the heart. Strategies that target and modulate the mTOR pathways, such as the use of mTOR inhibitors like rapamycin, have the potential to enhance the anticancer effects of DOX while also mitigating its cardiotoxic side effects.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Vafaeipour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Salaramoli
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
5
|
Yarmohammadi F, Hesari M, Shackebaei D. The Role of mTOR in Doxorubicin-Altered Cardiac Metabolism: A Promising Therapeutic Target of Natural Compounds. Cardiovasc Toxicol 2024; 24:146-157. [PMID: 38108960 DOI: 10.1007/s12012-023-09820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Doxorubicin (DOX) is commonly used for the treatment of various types of cancer, however can cause serious side effects, including cardiotoxicity. The mechanisms involved in DOX-induced cardiac damage are complex and not yet fully understood. One mechanism is the disruption of cardiac metabolism, which can impair cardiac function. The mammalian target of rapamycin (mTOR) is a key regulator of cardiac energy metabolism, and dysregulation of mTOR signaling has been implicated in DOX-induced cardiac dysfunction. Natural compounds (NCs) have been shown to improve cardiac function in vivo and in vitro models of DOX-induced cardiotoxicity. This review article explores the protective effects of NCs against DOX-induced cardiac injury, with a focus on their regulation of mTOR signaling pathways. Generally, the modulation of mTOR signaling by NCs represents a promising strategy for decreasing the cardiotoxic effects of DOX.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Peritore AF, Franco GA, Molinari F, Arangia A, Interdonato L, Marino Y, Cuzzocrea S, Gugliandolo E, Britti D, Crupi R. Effect of Pesticide Vinclozolin Toxicity Exposure on Cardiac Oxidative Stress and Myocardial Damage. TOXICS 2023; 11:473. [PMID: 37368573 DOI: 10.3390/toxics11060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023]
Abstract
(1) Background: Vinclozolin is a popular fungicide used in fruit, ornamental plants, and vegetable crops. It has recently been seen that prolonged exposure to VZN can cause human or animal health damage to various organs, but little is known to date about its cardiovascular effects. In this study, we addressed the chronic effects of VZN on the myocardium and the enzymes involved in the cardiovascular function. (2) Methods: The animals were divided into four groups: group 1 served as the control, group 2 received 1 mg/kg of VZN by gavage, group 3 received 30 mg/kg of VZN by gavage, and group 4 received 100 mg/kg of VZN by gavage, for 30 days. (3) Results: Results showed that 100 mg/kg VZN markedly increased the plasma concentration of cardiac markers (CK-MB, cTnT, ANP, BNP). Moreover, compared to the control group, VZN treatment decreased the activity of SOD, CAT, and GPx, and downregulated the mRNA expression levels of Nrf2. Furthermore, collagen deposition was amplified owing to 100 mg/kg VZN cardiotoxicity. This harmful effect was confirmed by a histological study using hematoxylin and eosin (H&E) and Masson's trichrome staining. (4) Conclusion: Overall, our results proved the cardiotoxicity caused by chronic exposure to VZN.
Collapse
Affiliation(s)
| | | | - Francesco Molinari
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Alessia Arangia
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Livia Interdonato
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, "Magna Græcia University" of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa, 88100 Catanzaro, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| |
Collapse
|
7
|
Hussain S, Ashafaq M, Alshahrani S, Siddiqui R, Alam MI, Mohammed M, Almoshari Y, Alqahtani SS. Cardioprotective Effects of Nano-Piperine Against Cypermethrin Toxicity Through Oxidative Stress, Histopathological and Immunohistochemical Studies in Male Wistar Rats. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231154029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background: Cypermethrin (Cyp) is a synthetic derivative of pyrethroids, implicated in various organ toxicity. This study investigated the potential cardio-protective activity of nano-piperine (NP) against Cyp toxicity in adult Wister male rats. Methods: All animals in groups II, III, IV, and V were subjected to Cyp (50 mg/kg) for 15 days. After 1 h of receiving the Cyp dose, 3 doses of NP (125, 250, and 500 µg/kg/day) were administered to groups III, IV, and V, respectively, for 10 days. In Group VI, a dose of 500 µg/kg NP alone was given orally daily for 10 days. Result: The toxic effects were evaluated by an increase in serum cardiac injury biomarkers (lactate dehydrogenase, cardiac troponin I, creatine kinase-myoglobin binding, tissue lipid peroxidation, a decrease in antioxidative activity, such as glutathione, superoxide dismutase [SOD] and catalase, and upregulation of interleukins [interleukin 1β, interleukin 6]). Immunohistochemistry studies of proteins (nuclear factor-κB [NF-kB], apoptotic protease activating factor-1 [Apaf-1], 4-hydroxynonenal [4-HNE] and Bax) showed enhanced expression, and histopathological examination revealed myolysis, loss of striation and hemorrhages indicating heart toxicity in the animals. Administration of NP significantly ameliorated all the changes caused by Cyp, such as a decrease in the levels of serum cardiac injury markers, an increase of antioxidative parameters, decrease in expression of inflammatory cytokines and NF-kB, Apaf-1, 4-HNE, and Bax, as shown by immunohistochemistry studies. Furthermore, all the histopathological changes were reduced to near the values of the control. Conclusion: Collectively our findings indicated that NP could be a potent nutraceutical exhibiting cardioprotective effects against Cyp-induced cardiotoxicity in rats.
Collapse
|
8
|
Kaymak E, Öztürk E, Akİn AT, Karabulut D, Yakan B. Thymoquinone alleviates doxorubicin induced acute kidney injury by decreasing endoplasmic reticulum stress, inflammation and apoptosis. Biotech Histochem 2022; 97:622-634. [PMID: 35989671 DOI: 10.1080/10520295.2022.2111465] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Doxorubicin (DOX) is used as an anticancer drug despite its many side effects. Thymoquinone (THQ) is a plant-derived substance that exhibits antioxidant and anti-inflammatory properties. We investigated the protective effects of THQ on DOX induced nephrotoxicity in rats. Rats were divided into five groups of eight: group 1, untreated control; group 2, olive oil group given olive oil intraperitoneally (i.p.) for 14 days; group 3, THQ group given 10 mg/kg THQ i.p. for 14 days; group 4, DOX group given a single dose of 15 mg/kg DOX i.p. on day 7 of experiment; group 5, DOX + THQ given 10 mg/kg THQ i.p. for 14 days and 15 mg/kg DOX i.p. on day 7. Kidney tissues were evaluated for histopathology. Caspase-3, IL-17, GRP78 and TNF-α immunostaining was used to determine the expression levels of these proteins among the groups. The TUNEL method was used to determine the apoptotic index. Total antioxidant status (TAS), total oxidant status (TOS), and TNF-α and TGF-β1 levels in kidney tissue were measured using ELISA assay. Histopathologic damage, caspase-3, IL-17, GRP78 and TNF-α immunoreactivity, TUNEL positive cells, TOS, TNF-α and TGF-β1 levels were increased in group 4 compared to group 1. The TAS of group 4 decreased compared to group 1. We found decreased caspase-3, IL-17, GRP78 and TNF-α expressions and TUNEL positive cells in group 5 compared to group 4. In rats given DOX, THQ reduced kidney damage by suppressing endoplasmic reticulum stress, inflammation and apoptosis pathways.
Collapse
|
9
|
Li S, Liu H, Lin Z, Li Z, Chen Y, Chen B, Huang L, Lin X, Yao H. Isoorientin attenuates doxorubicin-induced cardiac injury via the activation of MAPK, Akt, and Caspase-dependent signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154105. [PMID: 35490492 DOI: 10.1016/j.phymed.2022.154105] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chemotherapy drugs especially anthracyclines are widely used in the treatment of hematological malignancies and solid tumors. However, their clinical application is limited by dose-dependent and irreversible heart injury, which increases the risk of congestive heart failure and heart-related mortality. PURPOSE This study aims to investigate the effect and mechanism of the natural flavonoid isoorientin (ISO) combined with doxorubicin (DOX) on the proliferation of tumor cells and improve the survival rate of DOX-injured cardiomyocytes. STUDY DESIGN/METHODS Cardiomyocyte H9c2 and a variety of tumor cells were used to evaluate the protective effect of ISO on DOX-induced myocardial injury and enhance the anticancer effects of DOX. DOX chemotherapy-injured mice were used to evaluate the cardioprotective effect of ISO. RESULTS The antiproliferation of DOX on Hela, HepG2, HT-29, and A549 cells could be increased synergistically when cotreated with ISO in vitro. ISO could also improve the survival rate of DOX-injured cardiomyocytes by reducing reactive oxygen species, maintaining mitochondrial function, and inhibiting apoptosis. In mice receiving DOX, a protective effect on myocardial tissue, which was reflected by improved survival state of mice receiving chemotherapy, was observed. The ECG, myocardial zymogram data, HE staining, and TEM observation of myocardial tissue sections showed that ISO had a dose-dependent protective effect on the mouse hearts injured by DOX. Network pharmacology and cardiomyocyte proteomics were used to seek for related target proteins to reveal the protective mechanism of ISO on mouse models, and some potential targets (including caspase-3, EGFR, MAPK1, ESR1, CDC42, STAT1, JAK2, LCK, and CDK2) were generated. Western blotting was further used to verify that ISO upregulated Nrf2 and TGF-β3 by downregulating the phosphorylation levels of JNK and p38 proteins on the MAPK pathway and the Akt and Stat3 expression levels. The downregulation of cleaved caspase-3 and upregulation of Bcl-xl by ISO further confirmed its inhibition on caspase-dependent cardiomyocyte apoptosis. CONCLUSION ISO could be a potential synergistic anticancer agent with a favorable property of reducing the cardiotoxicity for DOX, and the effect mechanism could refer to the inhibition of ISO on MAPK and caspase-dependent apoptosis pathways.
Collapse
Affiliation(s)
- Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Huilin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhijun Li
- Center of Chemistry Experiment, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
10
|
Shekari M, Gortany NK, Khalilzadeh M, Abdollahi A, Ghafari H, Dehpour AR, Ghazi-Khansari M. Cardioprotective effects of sodium thiosulfate against doxorubicin-induced cardiotoxicity in male rats. BMC Pharmacol Toxicol 2022; 23:32. [PMID: 35614478 PMCID: PMC9131624 DOI: 10.1186/s40360-022-00569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an effective antitumor agent, but its clinical usage is limited due to adverse cardiotoxic effects. Several compounds have been studied to reduce DOX cardiotoxicity to improve its therapeutic index. This study was aimed to investigate the protective effects of sodium thiosulfate (STS) pre-treatment against DOX-induced cardiomyopathy in rats. METHODS Male Wistar rats were randomized into 4 groups: control (saline), DOX (2.5 mg/kg, 3 times per week, intraperitoneal [i.p.]), STS (300 mg/kg, 3 times per week, i.p), and DOX + STS (30 min prior to DOX injection, 3 times per week, i.p.) over a period of 2 weeks. The body weight, electrocardiography, histopathology, papillary muscle contractility, and oxidative stress biomarkers in heart tissues were assessed. RESULTS The results indicated that STS significantly improved the body weight (P < 0.01), decreased QRS complex and QT interval on ECG (P < 0.05 and P < 0.001, respectively), as well as declined the papillary muscle excitation, and increased its contraction (P < 0.01) compared to DOX-treated rats. STS strongly suppressed oxidative stress induced by DOX through the significant improvement of the cardiac tissue antioxidant capacity by increasing glutathione, superoxide dismutase (P < 0.001), and decreasing the level of lipid peroxidation (P < 0.01). CONCLUSION Taken together, the results of this study demonstrated that STS showed potent cardioprotective effects against DOX-induced cardiotoxicity by suppressing oxidative stress.
Collapse
Affiliation(s)
- Maryam Shekari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Khalilian Gortany
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of medicine, IKHC, Teheran University of Medical Sciences, Tehran, Iran
| | - Homanaz Ghafari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Chen T, Huang Z, Chen W, Ding R, Li N, Cui H, Wu F, Liang C, Cong X. Potential cardioprotective influence of bupropion against CCl4-triggered cirrhotic cardiomyopathy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
12
|
Moustafa I, Saka S, Viljoen M, Oosthuizen F. Vitamin E and levocarnitine as prophylaxis against doxorubicin-induced cardio toxicity in the adult cancer patient: A review. J Oncol Pharm Pract 2022; 28:1388-1399. [PMID: 35139690 DOI: 10.1177/10781552221078284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Doxorubicin, a component of the anthracycline group, is a highly effective in the treatment of hematologic and solid malignancies. Because of the cardiotoxic adverse effects, use is limited. Antioxidants may negate this anthracycline-induced cardiotoxicity, although the literature is not conclusive with regards to the cardioprotective benefits of antioxidants. This review assessed and mapped evidence of the efficacy of vitamin E and levocarnitine against doxorubicin-induced cardiotoxicity in adult cancer patients. DATA SOURCES This review was based on the Arksey and O'Malley methodology. Potentially relevant literature in English published between January 1960 and April 2021 was identified through a database search. Oxford Quality Scoring System and AMSTR2 were used to assess the quality of trials and systematic reviews respectively, as well as the risks of potential bias. DATA SUMMARY Nineteen of the 10 268 (0.2%) articles from the initial search were included in the final analysis (12 clinical trials and 7 systematic reviews). Vitamin E was included in seven prospective clinical trials. Levocarnitine was included in five clinical trials as an individual agent and a single trial as a combination treatment. No trials could be found investigating the combination of vitamin E and levocarnitine in humans. CONCLUSIONS This review found that levocarnitine trials showed some cardioprotective effects but the results from vitamin E trials were controversial and inconclusive. Most of the trials reviewed had some shortcomings. Further investigations are therefore needed to determine the efficacy of vitamin E and levocarnitine in preventing doxorubicin-induced cardiotoxicity in adult cancer patients.
Collapse
Affiliation(s)
- Iman Moustafa
- School of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa.,48180King Abdulaziz Hospital, Ministry of the National Guard - Health Affairs, AlHasa, Saudi Arabia
| | - Sule Saka
- School of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa.,Faculty of Pharmacy, 292081Olabisi Onabanjo University, Sagamu Campus, Nigeria
| | - Michelle Viljoen
- School of Pharmacy, 71859University of the Western Cape, Bellville, South Africa
| | - Frasia Oosthuizen
- School of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Sheibani M, Azizi Y, Shayan M, Nezamoleslami S, Eslami F, Farjoo MH, Dehpour AR. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc Toxicol 2022; 22:292-310. [DOI: 10.1007/s12012-022-09721-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
|
14
|
Abstract
Ferroptosis, an iron-dependent form of programmed cell death, is characterized by iron overload, increased reactive oxygen species (ROS) generation, and depletion of glutathione (GSH) and lipid peroxidation. Lipophilic antioxidants and iron chelators can prevent ferroptosis. GSH-dependent glutathione peroxidase 4 (GPX4) prevents lipid ROS accumulation. Ferroptosis is thought to be initiated through GPX4 inactivation. Moreover, mitochondrial iron overload derived from the degradation of ferritin is involved in increasing ROS generation. Ferroptosis has been suggested to explain the mechanism of action of organ toxicity induced by several drugs and chemicals. Inhibition of ferroptosis may provide novel therapeutic opportunities for treatment and even prevention of such organ toxicities.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, 27117University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, 27117Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Tabrizi FB, Yarmohammadi F, Hayes AW, Karimi G. The modulation of SIRT1 and SIRT3 by natural compounds as a therapeutic target in doxorubicin-induced cardiotoxicity: A review. J Biochem Mol Toxicol 2021; 36:e22946. [PMID: 34747550 DOI: 10.1002/jbt.22946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Doxorubicin (DOX) is a potent antitumor agent with a broad spectrum of activity; however, irreversible cardiotoxicity resulting from DOX treatment is a major issue that limits its therapeutic use. Sirtuins (SIRTs) play an essential role in several physiological and pathological processes including oxidative stress, apoptosis, and inflammation. It has been reported that SIRT1 and SIRT3 can act as a protective molecular against DOX-induced myocardial injury through targeting numerous signaling pathways. Several natural compounds (NCs), such as resveratrol, sesamin, and berberine, with antioxidative, anti-inflammation, and antiapoptotic effects were evaluated for their potential to suppress the cardiotoxicity induced by DOX via targeting SIRT1 and SIRT3. Numerous NCs exerted their therapeutic effects on DOX-mediated cardiac damage via targeting different signaling pathways, including SIRT1/LKB1/AMPK, SIRT1/PGC-1α, SIRT1/NLRP3, and SIRT3/FoxO. SIRT3 also ameliorates cardiotoxicity by enhancing mitochondrial fusion.
Collapse
Affiliation(s)
- Fatemeh B Tabrizi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Yarmohammadi F, Karbasforooshan H, Hayes AW, Karimi G. Inflammation suppression in doxorubicin-induced cardiotoxicity: natural compounds as therapeutic options. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2003-2011. [PMID: 34350498 DOI: 10.1007/s00210-021-02132-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent; however, the accompanying cardiotoxicity is a significant complication of the usefulness of treatment with DOX. Multiple mechanisms have been suggested for this often fatal side effect, one of which is inflammation. Several pathways with different targets have been reported to result in DOX-induced heart inflammation. Some natural occurring compounds (NCs) have been reported to interact with the DOX-induced cardiotoxicity through targeting one or more of several pathways, including the Nrf2/NF-kB, TLR-4/NF-kB, MAPK/NF-kB, and NLRP3 inflammasome pathways. This article reviews several of these pathways and the potential protective effect of some NCs against the cardiac inflammation induced by DOX.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedyieh Karbasforooshan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
ERDEM GÜZEL E. Pleurotus Eryngii Ekstraktının Sprague-Dawley Sıçanlarında Adriamisin Kaynaklı Kardiyotoksisite Üzerindeki Etkilerinin İncelenmesi. DICLE MEDICAL JOURNAL 2021. [DOI: 10.5798/dicletip.944395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Idazoxan and Efaroxan Potentiate the Endurance Performances and the Antioxidant Activity of Ephedrine in Rats. ACTA ACUST UNITED AC 2021; 57:medicina57030194. [PMID: 33668888 PMCID: PMC7996498 DOI: 10.3390/medicina57030194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Background and objectives: The connections between the imidazoline system and multiple other neurotransmitter systems in the brain (adrenergic, dopaminergic, serotoninergic, glutamatergic, opioid) indicate the complexity of the mechanisms underlying motor activity and behavior. The aim of the present research was to investigate the effects of the combination of ephedrine (EPD) and imidazoline antagonists idazoxan (IDZ) and efaroxan (EFR) on the endurance performance in the treadmill test in rats. Materials and Methods: We used Wistar rats distributed as follows: Group 1 (Control) receiving distilled water 0.3 mL/100 g body weight; Group 2 (EPD) receiving 20 mg/kg ephedrine; Group 3 (EPD + IDZ) receiving 20 mg/kg ephedrine + 3 mg/kg idazoxan; Group 4 (EPD + EFR) receiving 20 mg/kg ephedrine + 1 mg/kg efaroxan. An additional group (C) of animals receiving 0.3 mL/100 g body weight distilled water (but not subjected to effort) was used. Endurance capacity was evaluated using a treadmill running PanLAB assay. The evaluation of the substances’ influence on oxidative stress was performed by spectrophotometric determination of superoxide dismutase (SOD) and glutathione peroxidase (GPX) activity. Results: Treatment with EPD-IDZ and EPD-EFR were correlated with a longer distance traveled on the belt and with a decrease in the necessary electric shocks to motivate the animal to continue running in the forced locomotion test. Additionally, an increase in the activity of antioxidant enzymes was found. Conclusions: Idazoxan and efaroxan potentiated the physical effort-related effects of ephedrine with regard to endurance capacity and antioxidant activity in rats.
Collapse
|
19
|
Yarmohammadi F, Rezaee R, Haye AW, Karimi G. Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review. Pharmacol Res 2020; 164:105383. [PMID: 33348022 DOI: 10.1016/j.phrs.2020.105383] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Haye
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytother Res 2020; 35:1163-1175. [PMID: 32985744 DOI: 10.1002/ptr.6882] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Cardiotoxicity is the main concern for long-term use of the doxorubicin (DOX). Reactive oxygen species (ROS) generation leads to oxidative stress that significantly contributes to the cardiac damage induced by DOX. The nuclear factor erythroid 2-related factor (Nrf2) acts as a protective player against DOX-induced myocardial oxidative stress. Several natural compounds (NCs) with anti-oxidative effects, were examined to suppress DOX cardiotoxicity such as asiatic acid, α-linolenic acid, apigenin, baicalein, β-lapachone, curdione, dioscin, ferulic acid, Ganoderma lucidum polysaccharides, genistein, ginsenoside Rg3, indole-3-carbinol, naringenin-7-O-glucoside, neferine, p-coumaric acid, pristimerin, punicalagin, quercetin, sulforaphane, and tanshinone IIA. The present article, reviews NCs that showed protective effects against DOX-induced cardiac injury through induction of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Mahmoodazdeh A, Shafiee SM, Sisakht M, Khoshdel Z, Takhshid MA. Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1197-1206. [PMID: 32963742 PMCID: PMC7491506 DOI: 10.22038/ijbms.2020.45134.10514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/13/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. MATERIALS AND METHODS Rat embryonic DRG neurons were isolated and cultured. The effect of various concentrations of DOX (0.0 to 100 µM) in the absence or presence of AM (3.125 -100 nM) on cell death, apoptosis, oxidative stress, expression of tumor necrosis-α (TNF-α), interleukin1- β (IL-1β), inducible nitric oxide synthase (iNOS), matrix metalloproteinase (MMP) 3 and 13, and SRY-related protein 9 (SOX9) were examined. RESULTS Based on MTT assay data, DOX decreased the viability of DRG neurons in a dose and time-dependent manner (IC50=6.88 µm) while dose-dependently, AM protected DRG neurons against DOX-induced cell death. Furthermore, results of annexin V apoptosis assay revealed the protective effects of AM (25 nm) against DOX (6.88 µM)-induced apoptosis and necrosis of DRG neurons. Also, AM significantly ameliorated DOX-induced oxidative stress in DRG neurons. Real-time PCR results showed a significant increase in the expression of TNF-α, IL-1β, iNOS, MMP 3, and MMP 13, and a decrease in the expression of SOX9 following treatment with DOX. Treatment with AM (25 nM) significantly reversed the effects of DOX on the above-mentioned genes expression. CONCLUSION Our findings suggest that AM can be considered a novel ameliorating drug against DOX-induced neurotoxicity.
Collapse
Affiliation(s)
- Amir Mahmoodazdeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Karabulut D, Ozturk E, Kaymak E, Akin AT, Yakan B. Thymoquinone attenuates doxorubicin-cardiotoxicity in rats. J Biochem Mol Toxicol 2020; 35:e22618. [PMID: 32860490 DOI: 10.1002/jbt.22618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/04/2023]
Abstract
Contrary to the fact that doxorubicin is a powerful chemotherapeutic agent for the treatment of neoplastic diseases, cardiotoxicity is too important to be ignored. Thymoquinone serves as a powerful free radical scavenger. In the study, the effects of thymoquinone against doxorubicin-cardiotoxicity will be evaluated. Forty rats were divided into five groups. Group I: control group (n = 8); group II: olive oil group (n = 8); group III: thymoquinone group (n = 8); given 10 mg/kg thymoquinone intraperitoneally per day throughout the experiment; group IV: doxorubicin group (n = 8); injected with a single dose of 15 mg/kg ip doxorubicin on the 7th day of the experiment; group V: doxorubicin + thymoquinone group (n = 8); administered with 10 mg/kg thymoquinone per day during the experiment and 15 mg/kg doxorubicin ip on the 7th day. The experiment was planned for 14 days. Immunohistochemically, heat shock protein (HSP) 70 and HSP90, glucose-regulated protein 78 (GRP78), caspase-3 were stained. We made terminal deoxynucleotidyl transferase dUTP nick end labeling for apoptotic evaluation. Total oxidant status (TOS) levels and total antioxidant status (TAS) were measured in the heart tissue. Atrial natriuretic peptide (ANP) and pro-B type natriuretic peptide (proBNP) were evaluated. In the study, HSP70, HSP90, GRP78, and caspase-3 levels increased in group IV. TOS and TAS levels were significant compared to group I. Doxorubicin significantly increased ANP and NT-proBNP levels. Thymoquinone revealed significant differences in these values. Thymoquinone can be an important cardioprotective agent against doxorubicin-cardiotoxicity.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of the Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emel Ozturk
- Department of the Histology and Embryology, Harran University, Sanlıurfa, Turkey
| | - Emin Kaymak
- Department of the Histology and Embryology, Bozok University, Yozgat, Turkey
| | - Ali Tuğrul Akin
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of the Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
23
|
Chen J, Zhang S, Pan G, Lin L, Liu D, Liu Z, Mei S, Zhang L, Hu Z, Chen J, Luo H, Wang Y, Xin Y, You Z. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci 2020; 249:117498. [PMID: 32142765 DOI: 10.1016/j.lfs.2020.117498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
AIMS Doxorubicin (DOX) is an effective anthracycline anticancer drug. However, the clinical usage of it is limited due to its severe cardiotoxicity side effects. Metformin (Met) is a kind of first-line antihyperglycemic drug which has a potential protective effect on the heart,it is often used for oral treatment of type 2 diabetes. In this study, we explored whether Met could attenuate cardiotoxicity induced by DOX. MATERIALS AND METHODS For the sake of exploring the Met protective effect and mechanism, we established the DOX-induced cardiotoxicity models both in H9C2 cells incubated with 5 μM DOX in vitro and Sprague-Dawley rats treated with 20 mg/kg cumulative dose of DOX. KEY FINDINGS Met is able to inhibit growth inhibition and apoptosis of H9C2 cells induced by DOX. The heart indexes of rats were examined to evaluate the Met cardiotoxicity protection. Met improved the abnormal indexes, serum markers of cardiac heart injury, echocardiography, electrocardiogram, cardiac pathology, cardiomyocyte apoptosis, and oxidative stress markers induced by DOX. Furthermore, in vivo and in vitro studies demonstrated that Met protected against DOX-induced increasing cleaved caspase-3 and Bax. Met also prevented the downregulation of Bcl-2, activated the AMPK pathway, and inhibited the MAPK pathway. SIGNIFICANCE Met showed protective effects on DOX-induced cardiotoxicity by reducing oxidative stress and apoptosis, as well as regulating AMPK and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiaoting Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China; Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guixuan Pan
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Lin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongying Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Song Mei
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijing Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhihang Hu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianguo Chen
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huaxing Luo
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanfei Xin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Zhenqiang You
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Baniahmad B, Safaeian L, Vaseghi G, Rabbani M, Mohammadi B. Cardioprotective effect of vanillic acid against doxorubicin-induced cardiotoxicity in rat. Res Pharm Sci 2020; 15:87-96. [PMID: 32180820 PMCID: PMC7053285 DOI: 10.4103/1735-5362.278718] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background and purpose: Doxorubicin (DOX) is an effective agent for the treatment of many neoplastic diseases. Cardiotoxicity is the major side effect of this drug and limits its use. Vanillic acid (VA) is a pharmaceutical compound from the phenolic acids family. The present study is an attempt to investigate the possible helpful effects of VA against DOX-induced cardiotoxicity in rats. Experimental approach: For induction of cardiotoxicity, male Wistar rats received total of six doses of DOX (2.5 mg/kg i.p.) three times per week from days 14 to 28. Treatment groups received daily oral doses of VA (10, 20, and 40 mg/kg) two weeks before DOX injection and then plus DOX for 2 weeks. At the end of experiment, systolic blood pressure (SBP) and heart rate (HR) were detected using tail-cuff method. Lactate dehydrogenase (LDH), creatine phosphokinase-MB (CK-MB), serum glutamic oxaloacetic transaminase (SGOT), malondialdehyde (MDA), and ferric reducing antioxidant power (FRAP) were measured in serum samples. Troponin-I and toll-like receptor 4 (TLR4) were measured in cardiac tissue. All the measurements processed spectrophotometrically using commercial ELISA kits. Cardiac tissue was also processed for histopathological examination. Findings / Results: Treatment with VA significantly increased SBP compared to the DOX group and restored HR near to the normal level. Administration of VA at all of doses, decreased serum levels of LDH, SGOT, CK-MB, MDA, cardiac troponin-I, cardiac TLR4 and increased FRAP value. Conclusion and implications: These results suggest that VA may exert cardioprotective effects against DOX-induced cardiotoxicity by decreasing oxidative stress and biomarkers of cardiotoxicity, suppression of TLR4 signaling and consequently inflammation pathway.
Collapse
Affiliation(s)
- Bahar Baniahmad
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Leila Safaeian
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Behnoosh Mohammadi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
25
|
Ghazouani L, Feriani A, Mufti A, Tir M, Baaziz I, Mansour HB, Mnafgui K. Toxic effect of alpha cypermethrin, an environmental pollutant, on myocardial tissue in male wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5709-5717. [PMID: 31119542 DOI: 10.1007/s11356-019-05336-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
α-Cypermethrin (CYP) is a pyrethroid insecticide-like environmental pollutant, widely found in the environment. New research links exposure to high levels of CYP to health damage; however, little is known about the effect of CYP on cardiovascular disease. The purpose of the present study was to evaluate, for the first time, biochemical and cardiovascular changes in male rats resulting from subchronic CYP exposure. The animals were divided into three groups: group 1 served as the control, group 2 (CYP1) received 4 mg/kg of CYP by gavage, and group 3 (CYP2) received 8 mg/kg of CYP by gavage, for 8 weeks each. Results showed that both CYP1 and CYP2 markedly increased plasma concentrations of cardiac markers (LDH, CK-MB, and troponin-T). Moreover, compared to the control group, CYP treatment elevated cardiac oxidative stress, as shown by increased MDA level and decreased activity of SOD, CAT, and GSH-Px. In addition, CYP2 caused a significant increase of 42% the concentration of total cholesterol and more than 75% in triglycerides compared to the control group. Furthermore, DNA fragmentation and collagen deposition were both amplified owing to CYP toxicity. This harmful effect was confirmed by a histological study using H-E and Sirius Red staining. Overall, our results clearly proved the cardiotoxicity caused by α-cypermethrin.
Collapse
Affiliation(s)
- Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia.
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Afoua Mufti
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Meriam Tir
- UR de Physiologie et Environnement Aquatique, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Intissar Baaziz
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to Environmental (APAE) UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia, "ISSAT", University of Monastir, Monastir, Tunisia
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, 3052, Sfax, Tunisia
| |
Collapse
|
26
|
Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother Pharmacol 2020; 85:563-571. [DOI: 10.1007/s00280-019-04019-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
|
27
|
Aykan DA, Yaman S, Eser N, Özcan Metin T, Seyithanoğlu M, Aykan AÇ, Kurt AH, Ergün Y. Bisoprolol and linagliptin ameliorated electrical and mechanical isometric myocardial contractions in doxorubicin-induced cardiomyopathy in rats. Pharmacol Rep 2019; 72:867-876. [PMID: 32048248 DOI: 10.1007/s43440-019-00034-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Doxorubicin is an anthracycline chemotherapeutic agent that causes cardiomyopathy as a side effect. Here, we aimed to investigate the effects of linagliptin and bisoprolol on the management of doxorubicin-induced cardiomyopathy in rats. METHODS Wistar rats were divided into six groups (n = 8). Group I received saline for 4 weeks; group II received 1 mg/kg bisoprolol for 8 weeks; group III received 3 mg/kg linagliptin for 8 weeks; group IV received 1.25 mg/kg doxorubicin for 4 weeks for the induction of cardiomyopathy; group V received 1.25 mg/kg doxorubicin for 4 weeks plus 1 mg/kg bisoprolol for 8 weeks; and group VI received 1.25 mg/kg doxorubicin for 4 weeks plus 3 mg/kg linagliptin for 8 weeks. Electrocardiography and isometric mechanography were conducted to measure ventricular contractile responses. Myocardial tissue and serum samples were analyzed for oxidative and cardiotoxic markers by ELISA. RESULTS Electrocardiography revealed that QRS, QT and Tp intervals were longer in group IV than group I. Doxorubicin caused a significant decrease in ventricular contraction, which was significantly prevented by bisoprolol. Doxorubicin resulted in myocardial fiber disorganization and disruption, but bisoprolol or linagliptin improved this myocardial damage. Glutathione peroxidase was significantly decreased in groups IV and V. Bisoprolol or linagliptin treatment attenuated the significant doxorubicin-mediated increase in malondialdehyde. Doxorubicin and linagliptin provided significant elevations in CK-MB activity and troponin-I levels. CONCLUSIONS Doxorubicin resulted in pronounced oxidative stress. The beneficial effects of bisoprolol and linagliptin on myocardial functional, histopathological and biochemical changes could be related to the attenuation of oxidative load.
Collapse
Affiliation(s)
- Duygun Altıntaş Aykan
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Avsar Kampusu, Onikisubat, Kahramanmaras, Turkey.
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
| | - Nadire Eser
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Avsar Kampusu, Onikisubat, Kahramanmaras, Turkey
| | - Tuba Özcan Metin
- Department of Histology and Embryology, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
| | - Muhammed Seyithanoğlu
- Department of Biochemistry, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
| | - Ahmet Çağrı Aykan
- Department of Cardiology, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
| | - Akif Hakan Kurt
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Avsar Kampusu, Onikisubat, Kahramanmaras, Turkey
| | - Yusuf Ergün
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sütçü Imam University, Avsar Kampusu, Onikisubat, Kahramanmaras, Turkey
| |
Collapse
|
28
|
Cobos-Puc L, Aguayo-Morales H. Cardiovascular Effects Mediated by Imidazoline Drugs: An Update. Cardiovasc Hematol Disord Drug Targets 2019; 19:95-108. [PMID: 29962350 DOI: 10.2174/1871529x18666180629170336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Clonidine is a centrally acting antihypertensive drug. Hypotensive effect of clonidine is mediated mainly by central α2-adrenoceptors and/or imidazoline receptors located in a complex network of the brainstem. Unfortunately, clonidine produces side effects such as sedation, mouth dry, and depression. Moxonidine and rilmenidine, compounds of the second generation of imidazoline drugs, with fewer side effects, display a higher affinity for the imidazoline receptors compared with α2-adrenoceptors. The antihypertensive action of these drugs is due to inhibition of the sympathetic outflow primarily through central I1-imidazoline receptors in the RVLM, although others anatomical sites and mechanisms/receptors are involved. Agmatine is regarded as the endogenous ligand for imidazoline receptors. This amine modulates the cardiovascular function. Indeed, when administered in the RVLM mimics the hypotension of clonidine. RESULTS Recent findings have shown that imidazoline drugs also exert biological response directly on the cardiovascular tissues, which can contribute to their antihypertensive response. Currently, new imidazoline receptors ligands are in development. CONCLUSION In the present review, we provide a brief update on the cardiovascular effects of clonidine, moxonidine, rilmenidine, and the novel imidazoline agents since representing an important therapeutic target for some cardiovascular diseases.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hilda Aguayo-Morales
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
29
|
El-Agamy DS, El-Harbi KM, Khoshhal S, Ahmed N, Elkablawy MA, Shaaban AA, Abo-Haded HM. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag Res 2018; 11:47-61. [PMID: 30588110 PMCID: PMC6304079 DOI: 10.2147/cmar.s186696] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background/purpose Pristimerin (Pris) is triterpenoid compound with many biological effects. Until now, nothing is known about its effect on doxorubicin (DOX)-induced cardiotoxicity. Hence, this study investigated the impact of Pris on DOX-induced cardiotoxic effects. Materials and methods Rats were treated with Pris 1 week before and 2 weeks contaminant with repeated DOX injection. Afterwards, electrocardiography (ECG), biochemical, histopathological, PCR, and Western blot assessments were performed. Results Pris effectively alleviated DOX-induced deleterious cardiac damage. It inhibited DOX-induced ECG abnormities as well as DOX-induced elevation of serum indices of cardiotoxicity. The histopathological cardiac lesions and fibrosis were remarkably improved in Pris-treated animals. Pris reduced hydroxyproline content and attenuated the mRNA and protein expression of the pro-fibrogenic genes. The antioxidant activity of Pris was prominent through the amelioration of oxidative stress parameters and enhancement of antioxidants. Furthermore, Pris enhanced the activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway as it increased the mRNA and protein expression of Nrf2 and Nrf2-dependent antioxidant genes (GCL, NQO1, HO-1). Additionally, the anti-inflammatory effect of Pris was obvious through the inhibition of mitogen activated protein kinase (MAPK)/nuclear factor kappa-B (NF-kB) signaling and subsequent inhibition of inflammatory mediators. Conclusion This study provides evidence of the cardioprotective activity of Pris which is related to the modulation of Nrf2 and MAPK/NF-kB signaling pathways.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Khaled M El-Harbi
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Saad Khoshhal
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Mohamed A Elkablawy
- Department of Pathology, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Hany M Abo-Haded
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia, .,Pediatric Cardiology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt,
| |
Collapse
|
30
|
Ameliorating oxidative stress and inflammation by Hesperidin and vitamin E in doxorubicin induced cardiomyopathy. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2018-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background
Doxorubicin (DOX) is a common chemotherapeutic drug. However, it causes cardiomyopathy which reduces its clinical use in human cancer therapy.
Objective
The purpose of our study was to assess the cardioprotective effect of hesperidin (HSP) and vitamin E (VIT.E) against DOX-induced cardiomyopathy.
Material and methods
Seventy rats were allocated into seven groups: control, HSP (50 mg/kg, orally), VIT.E (100 mg/kg orally), DOX [4 mg/kg, intraperitoneally (i.p.)], DOX+HSP, DOX+VIT.E and DOX+HSP+VIT.E.
Results
Our findings showed that serum lactate dehydrogenase (LDH), creatine kinase (CK), myeloperoxidase (MPO), cardiac catalase and caspase activities as well as cardiac malondialdehyde (MDA) and serum nitric oxide (NO) concentrations were reduced DOX+HSP or DOX+VIT.E or DOX+VIT.E+HSP groups compared to DOX group. Whereas, cardiac reduced glutathione (GSH) level, serum arylesterase, and paraoxonase activities were higher in rats injected with DOX and administrated with HSP and VIT.E than that of rats injected with DOX only. Cardiac histopathology of DOX group showed some changes that were improved during administration with HSP and VIT.E.
Conclusion
HSP and VIT.E possess a protective effect against DOX-induced cardiomyopathy via inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
|
31
|
Khalilzadeh M, Abdollahi A, Abdolahi F, Abdolghaffari AH, Dehpour AR, Jazaeri F. Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sci 2018; 207:436-441. [DOI: 10.1016/j.lfs.2018.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
|
32
|
Danmaigoro A, Selvarajah GT, Mohd Noor MH, Mahmud R, Abu Bakar MZ. Toxicity and Safety Evaluation of Doxorubicin-Loaded Cockleshell-Derived Calcium Carbonate Nanoparticle in Dogs. Adv Pharmacol Sci 2018; 2018:4848602. [PMID: 30079088 PMCID: PMC6035816 DOI: 10.1155/2018/4848602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/17/2018] [Accepted: 04/30/2018] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin (DOX) is a potent anticancer agent with cytotoxic effects which limit its clinical usage. This effect is due to its nonselective nature causing injury to the cells as a result of reactive free oxygen radical's release. Cockleshell-derived calcium carbonate nanoparticle (CS-CaCO3NP) is a pH-responsive carrier with targeted delivery potentials. This study aimed at evaluating the toxicity effects of repeated dose administration of DOX-loaded CS-CaCO3NP in healthy dogs. Fifteen dogs with an average body weight of 15 kg were randomized equally into 5 groups. Dogs were subjected to 5 doses at every 3-week interval with (i) normal saline, (ii) DOX, 30 mg/m2, and the experimental groups: CS-CaCO3NP-DOX at (iii) high dose, 50 mg/m2, (iv) clinical dose, 30 mg/m2, and (v) low dose, 20 mg/m2. Radiographs, electrocardiography, and blood samples were collected before every treatment for haematology, serum biochemistry, and cardiac injury assessment. Heart and kidney tissues were harvested after euthanasia for histological and ultrastructural evaluation. The cumulative dose of DOX 150 mg/m2 over 15 weeks revealed significant effects on body weight, blood cells, functional enzymes, and cardiac injury biomarkers with alterations in electrocardiogram, myocardium, and renal tissue morphology. However, the dogs given CS-CaCO3NP-DOX 150 mg/m2 and below did not show any significant change in toxicity biomarker as compared to those given normal saline. The study confirmed the safety of repeated dose administration of CS-CaCO3NP-DOX (30 mg/m2) for 5 cycles in dogs. This finding offers opportunity to dogs with cancer that might require long-term administration of DOX without adverse effects.
Collapse
Affiliation(s)
- Abubakar Danmaigoro
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Rozi Mahmud
- Department of Imaging, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Md Zuki Abu Bakar
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
33
|
Zhu H, Gao Y, Zhu S, Cui Q, Du J. Klotho Improves Cardiac Function by Suppressing Reactive Oxygen Species (ROS) Mediated Apoptosis by Modulating Mapks/Nrf2 Signaling in Doxorubicin-Induced Cardiotoxicity. Med Sci Monit 2017; 23:5283-5293. [PMID: 29107939 PMCID: PMC5687120 DOI: 10.12659/msm.907449] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Anthracyclines-induced cardiotoxicity has become one of the major restrictions of their clinical applications. Klotho showed cardioprotective effects. This study aimed to investigate the effects and possible mechanisms of klotho on doxorubicin (DOX)-induced cardiotoxicity. Material/Methods Rats and isolated myocytes were exposed to DOX and treated with exogenous klotho. Specific inhibitors and siRNAs silencing MAPKs were also used to treat the animals and/or myocytes. An invasive hemodynamic method was used to determine cardiac functions. Intracellular ROS generation was evaluated by DHE staining. Western blotting was used to determine the phosphorylation levels of JNK, ERK, and p38 MAPKs in plasma extracts and Nrf2 in nuclear extracts. Nuclear translocation of Nrf2 in myocytes was evaluated by immunohistochemistry. Cell apoptosis was evaluated by TUNEL assay and flow cytometry. Results Klotho treatment improved DOX-induced cardiac dysfunction in rats. The DOX-induced ROS accumulation and cardiac apoptosis were attenuated by klotho. Impaired phosphorylations of MAPKs, Nrf2 translocation and expression levels of HO1 and Prx1 were also attenuated by klotho treatment. However, the anti-oxidant and anti-apoptotic effects of klotho on DOX-exposed myocardium and myocytes were impaired by both specific inhibitors and siRNAs against MAPKs. Moreover, the recovery effects of klotho on phosphorylations of MAPKs, Nrf2 translocation and expression levels of HO1 and Prx1 were also impaired by specific inhibitors and siRNAs against MAPKs. Conclusions By recovering the activation of MAPKs signaling, klotho improved cardiac function loss which was triggered by DOX-induced ROS mediated cardiac apoptosis.
Collapse
Affiliation(s)
- Huolan Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Yan Gao
- ECG Exam Room, Function Testing Lab, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Shunming Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Jie Du
- Health Examination Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|