1
|
Cheng H, Huang H, Guo Z, Chang Y, Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Am J Cancer Res 2021; 11:8836-8854. [PMID: 34522214 PMCID: PMC8419039 DOI: 10.7150/thno.63396] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15-PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release.
Collapse
|
2
|
Sugiyama A, Shimizu Y, Okada M, Otani K, Yamawaki H. Preventive Effect of Canstatin against Ventricular Arrhythmia Induced by Ischemia/Reperfusion Injury: A Pilot Study. Int J Mol Sci 2021; 22:1004. [PMID: 33498253 PMCID: PMC7863958 DOI: 10.3390/ijms22031004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 01/16/2023] Open
Abstract
Ventricular arrhythmia induced by ischemia/reperfusion (I/R) injury is a clinical problem in reperfusion therapies for acute myocardial infarction. Ca2+ overload through reactive oxygen species (ROS) production is a major cause for I/R-induced arrhythmia. We previously demonstrated that canstatin, a C-terminal fragment of type IV collagen α2 chain, regulated Ca2+ handling in rat heart. In this study, we aimed to clarify the effects of canstatin on I/R-induced ventricular arrhythmia in rats. Male Wistar rats were subjected to I/R injury by ligating the left anterior descending artery followed by reperfusion. Ventricular arrhythmia (ventricular tachycardia and ventricular fibrillation) was recorded by electrocardiogram. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and ROS production in neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen glucose deprivation/reperfusion (OGD/R) were measured by lucigenin assay and 2',7'-dichlorodihydrofluorescein diacetate staining, respectively. The H2O2-induced intracellular Ca2+ ([Ca2+]i) rise in NRCMs was measured by a fluorescent Ca2+ indicator. Canstatin (20 µg/kg) inhibited I/R-induced ventricular arrhythmia in rats. Canstatin (250 ng/mL) inhibited OGD/R-induced NOX activation and ROS production and suppressed the H2O2-induced [Ca2+]i rise in NRCMs. We for the first time demonstrated that canstatin exerts a preventive effect against I/R-induced ventricular arrhythmia, perhaps in part through the suppression of ROS production and the subsequent [Ca2+]i rise.
Collapse
Affiliation(s)
| | | | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori 034-8628, Japan; (A.S.); (Y.S.); (K.O.); (H.Y.)
| | | | | |
Collapse
|
3
|
Sugiyama A, Okada M, Otani K, Yamawaki H. [Development of basic research toward clinical application of cleaved fragment of type IV collagen]. Nihon Yakurigaku Zasshi 2021; 156:282-287. [PMID: 34470932 DOI: 10.1254/fpj.21016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Basement membrane is a dense sheet-like extracellular matrix (ECM), which separates cells from surrounding interstitium. Type IV collagen is a major component of basement membrane and three of six α chains (namely α1-α6 chains) form a triple-helix structure. Recently, endogenous bioactive factors called "matricryptins" or "matrikines", which are produced by degrading and cleaving C-terminal domain of type IV collagen, attract attentions as a novel therapeutic target or a candidate for biomarkers. In all type IV collagens, matricryptins called arresten (α1 chain), canstatin (α2), tumstatin (α3), tetrastatin (α4), pentastatin (α5), and hexastatin (α6), have been identified. The type IV collagen-derived matricryptins have been previously studied as new therapeutic targets for neoplastic diseases since they exert anti-angiogenic and/or anti-tumor effects. On the other hand, we have recently demonstrated the cardioprotective effects of matricryptins in addition to the altered expression levels in cardiac diseases. In this review, we introduce the results of fundamental studies for the type IV collagen-derived matricryptins in various diseases, such as neoplastic diseases and cardiac diseases, and discuss the potential clinical application as novel therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
4
|
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2219-2235. [PMID: 32354387 DOI: 10.1016/j.jacc.2020.03.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia and infarction, both in the acute and chronic phases, are associated with cardiomyocyte loss and dramatic changes in the cardiac extracellular matrix (ECM). It has long been appreciated that these changes in the cardiac ECM result in altered mechanical properties of ischemic or infarcted myocardial segments. However, a growing body of evidence now clearly demonstrates that these alterations of the ECM not only affect the structural properties of the ischemic and post-infarct heart, but they also play a crucial and sometimes direct role in mediating a range of biological pathways, including the orchestration of inflammatory and reparative processes, as well as the pathogenesis of adverse remodeling. This final part of a 4-part JACC Focus Seminar reviews the evidence on the role of the ECM in relation to the ischemic and infarcted heart, as well as its contribution to cardiac dysfunction and adverse clinical outcomes.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York.
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
5
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Decreased Expression of Canstatin in Rat Model of Monocrotaline-Induced Pulmonary Arterial Hypertension: Protective Effect of Canstatin on Right Ventricular Remodeling. Int J Mol Sci 2020; 21:ijms21186797. [PMID: 32947968 PMCID: PMC7554857 DOI: 10.3390/ijms21186797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease which causes right ventricular (RV) failure. Canstatin, a C-terminal fragment of type IV collagen α2 chain, is expressed in various rat organs. However, the expression level of canstatin in plasma and organs during PAH is still unclear. We aimed to clarify it and further investigated the protective effects of canstatin in a rat model of monocrotaline-induced PAH. Cardiac functions were assessed by echocardiography. Expression levels of canstatin in plasma and organs were evaluated by enzyme-linked immunosorbent assay and Western blotting, respectively. PAH was evaluated by catheterization. RV remodeling was evaluated by histological analyses. Real-time polymerase chain reaction was performed to evaluate RV remodeling-related genes. The plasma concentration of canstatin in PAH rats was decreased, which was correlated with a reduction in acceleration time/ejection time ratio and an increase in RV weight/body weight ratio. The protein expression of canstatin in RV, lung and kidney was decreased in PAH rats. While recombinant canstatin had no effect on PAH, it significantly improved RV remodeling, including hypertrophy and fibrosis, and prevented the increase in RV remodeling-related genes. We demonstrated that plasma canstatin is decreased in PAH rats and that administration of canstatin exerts cardioprotective effects.
Collapse
|
7
|
Long-term administration of recombinant canstatin prevents adverse cardiac remodeling after myocardial infarction. Sci Rep 2020; 10:12881. [PMID: 32732948 PMCID: PMC7393096 DOI: 10.1038/s41598-020-69736-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/15/2020] [Indexed: 11/08/2022] Open
Abstract
Myocardial infarction (MI) still remains a leading cause of mortality throughout the world. An adverse cardiac remodeling, such as hypertrophy and fibrosis, in non-infarcted area leads to uncompensated heart failure with cardiac dysfunction. We previously demonstrated that canstatin, a C-terminus fragment of type IV collagen α2 chain, exerted anti-remodeling effect against isoproterenol-induced cardiac hypertrophy model rats. In the present study, we examined whether a long-term administration of recombinant canstatin exhibits a cardioprotective effect against the adverse cardiac remodeling in MI model rats. Left anterior descending artery of male Wistar rats was ligated and recombinant mouse canstatin (20 μg/kg/day) was intraperitoneally injected for 28 days. Long-term administration of canstatin improved survival rate and significantly inhibited left ventricular dilatation and dysfunction after MI. Canstatin significantly inhibited scar thinning in the infarcted area and significantly suppressed cardiac hypertrophy, nuclear translocation of nuclear factor of activated T-cells, interstitial fibrosis and increase of myofibroblasts in the non-infarcted area. Canstatin significantly inhibited transforming growth factor-β1-induced differentiation of rat cardiac fibroblasts into myofibroblasts. The present study for the first time demonstrated that long-term administration of recombinant canstatin exerts cardioprotective effects against adverse cardiac remodeling in MI model rats.
Collapse
|
8
|
de Castro Brás LE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol 2020; 91-92:176-187. [PMID: 32438055 DOI: 10.1016/j.matbio.2020.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022]
Abstract
Alterations in the composition of the extracellular matrix (ECM) critically regulate the cellular responses in tissue repair, remodeling, and fibrosis. After injury, proteolytic degradation of ECM generates bioactive ECM fragments, named matricryptins, exposing cryptic sites with actions distinct from the parent molecule. Matricryptins contribute to the regulation of inflammatory, reparative, and fibrogenic cascades through effects on several different cell types both in acute and chronic settings. Fibroblasts play a major role in matricryptin generation not only as the main cellular source of ECM proteins, but also as producers of matrix-degrading proteases. Moreover, several matricryptins exert fibrogenic or reparative actions by modulating fibroblast phenotype and function. This review manuscript focuses on the mechanisms of matricyptin generation in injured and remodeling tissues with an emphasis on fibroblast-matricryptin interactions.
Collapse
Affiliation(s)
- Lisandra E de Castro Brás
- The Brody School of Medicine, East Carolina University, Department of Physiology, Greenville 27858 North Carolina.
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
9
|
Yao LW, Wu LL, Zhang LH, Zhou W, Wu L, He K, Ren JC, Deng YC, Yang DM, Wang J, Mu GG, Xu M, Zhou J, Xiang GA, Ding QS, Yang YN, Yu HG. MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway. Oncogenesis 2020; 9:17. [PMID: 32054827 PMCID: PMC7018958 DOI: 10.1038/s41389-020-0198-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/23/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies and its prognosis is extremely poor. This study identifies a novel oncogene, microfibrillar-associated protein 2 (MFAP2) in GC. With integrative reanalysis of transcriptomic data, we found MFAP2 as a GC prognosis-related gene. And the aberrant expression of MFAP2 was explored in GC samples. Subsequent experiments indicated that silencing and exogenous MFAP2 could affect motility of cancer cells. The inhibition of silencing MFAP2 could be rescued by another FAK activator, fibronectin. This process is probably through affecting the activation of focal adhesion process via modulating ITGB1 and ITGA5. MFAP2 regulated integrin expression through ERK1/2 activation. Silencing MFAP2 by shRNA inhibited tumorigenicity and metastasis in nude mice. We also revealed that MFAP2 is a novel target of microRNA-29, and miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression. In conclusion, our data identified MFAP2 as a novel oncogene in GC and revealed that miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression.
Collapse
Affiliation(s)
- Li-Wen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lian-Lian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Li-Hui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China.,Department of Biochemistry, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Cai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Yun-Chao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Dong-Mei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Gang-Gang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Guo-An Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China
| | - Qian-Shan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China. .,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Yan-Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Hong-Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China. .,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
10
|
Sugiyama A, Okada M, Yamawaki H. Canstatin suppresses isoproterenol-induced cardiac hypertrophy through inhibition of calcineurin/nuclear factor of activated T-cells pathway in rats. Eur J Pharmacol 2019; 871:172849. [PMID: 31843516 DOI: 10.1016/j.ejphar.2019.172849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
Pathological cardiac hypertrophy associated with cardiac dysfunction is an independent risk factor for arrhythmia, myocardial infarction and sudden death. Canstatin, a C-terminal fragment of type IV collagen α2 chain, is abundantly expressed in normal heart tissue. We previously demonstrated that canstatin inhibits isoproterenol (ISO)-induced dephosphorylation of nuclear factor of activated T-cells (NFAT)c4, which plays an important role in cardiac hypertrophy, in differentiated H9c2 cardiomyoblasts. Thus, we investigated whether in vivo canstatin administration prevents ISO-induced cardiac hypertrophy through the inhibition of NFATc4 pathway. Rats were subcutaneously injected with ISO (5 mg/kg) or saline (Cont) for 7 days. Simultaneously, recombinant mouse canstatin (20 μg/kg) or vehicle was intraperitoneally administered. After left ventricular wall thickness and cardiac function were measured by echocardiography, the hearts were isolated and left ventricular weight (LVW) was weighed. Azan staining was performed to measure cross-sectional diameter of cardiomyocytes. Activity of calcineurin, which dephosphorylates NFATc4, was measured by calcineurin phosphatase activity assay. Immunohistochemical staining was performed to evaluate nuclear translocation of NFATc4. Intracellular Ca2+ concentration in neonatal rat cardiomyocytes (NRCMs) was measured by using a calcium indicator. Canstatin significantly inhibited ISO-induced increase of LVW, left ventricular posterior wall thickness at end-diastole and diameter of cardiomyocytes. Canstatin significantly inhibited ISO-induced activation of calcineurin, nuclear translocation of NFATc4, increased mRNA expression of β-myosin heavy chain and α-skeletal actin, and intracellular Ca2+ rise in NRCMs. In summary, we for the first time demonstrated that canstatin administration suppresses ISO-induced cardiac hypertrophy possibly through the blockade of calcineurin/NFATc4 pathway in rats.
Collapse
Affiliation(s)
- Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| |
Collapse
|
11
|
The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis 2019; 6:jcdd6040035. [PMID: 31547598 PMCID: PMC6956278 DOI: 10.3390/jcdd6040035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) provides structural support and a microenvironmentfor soluble extracellular molecules. ECM is comprised of numerous proteins which can be broadly classified as fibrillar (collagen types I and III) and non-fibrillar (basement membrane, proteoglycans, and glycoproteins). The basement membrane provides an interface between the cardiomyocytes and the fibrillar ECM, while proteoglycans sequester soluble growth factors and cytokines. Myocardial fibrosis was originally only linked to accumulation of fibrillar collagens, but is now recognized as the expansion of the ECM including the non-fibrillar ECM proteins. Myocardial fibrosis can be reparative to replace the lost myocardium (e.g., ischemic injury or myocardial infarction), or can be reactive resulting from pathological activity of fibroblasts (e.g., dilated or hypertrophic cardiomyopathy). Contribution of fibrillar collagens to fibrosis is well studied, but the role of the non-fibrillar ECM proteins has remained less explored. In this article, we provide an overview of the contribution of the non-fibrillar components of the extracellular space of the heart to highlight the potential significance of these molecules in fibrosis, with direct evidence for some, although not all of these molecules in their direct contribution to fibrosis.
Collapse
|
12
|
Sugiyama A, Mitsui A, Okada M, Yamawaki H. Cathepsin S degrades arresten and canstatin in infarcted area after myocardial infarction in rats. J Vet Med Sci 2019; 81:522-531. [PMID: 30726795 PMCID: PMC6483919 DOI: 10.1292/jvms.18-0674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The basement membrane surrounding cardiomyocytes is mainly composed of α1 and α2 chain of
type IV collagen. Arresten and canstatin are fragments of non-collagenous C-terminal
domain of α1 and α2 chain, respectively. We previously reported that the expression of
canstatin was decreased in infarcted area 2 weeks after myocardial infarction in rats. In
the present study, we investigated the regulatory mechanism for expression of arresten and
canstatin. Myocardial infarction model rats were produced by ligating left anterior
descending artery. Western blotting and immunohistochemical staining were performed to
determine the protein expression and distribution. Arresten and canstatin were highly
expressed in the heart. One day and three days after myocardial infarction, the expression
of arresten and canstatin in infarcted area was lower than that in non-infarcted area. The
expression of cathepsin S, which is known to degrade arresten and canstatin, was increased
in the infarcted area. A knockdown of cathepsin S gene using small interference RNA
suppressed the decline of arresten and canstatin in the infarcted area 3 days after
myocardial infarction. This study for the first time revealed that arresten and canstatin
are immediately degraded by cathepsin S in the infarcted area after myocardial infarction.
These findings present a novel fundamental insight into the pathogenesis of myocardial
infarction through the turnover of basement membrane-derived endogenous factors.
Collapse
Affiliation(s)
- Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Ayaka Mitsui
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|
13
|
A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J Pharmacol Sci 2018; 139:59-64. [PMID: 30580971 DOI: 10.1016/j.jphs.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Type IV collagen is a main component of basement membrane extracellular matrix. Canstatin, a non-collagenous C-terminal fragment of type IV collagen α2 chain, was firstly identified as an endogenous anti-angiogenic and anti-tumor factor, which also has an anti-lymphangiogenic effect. Then, canstatin has been widely investigated as a novel target molecule for cancer therapy. The anti-angiogenic effect of canstatin may be also useful for the treatment of ocular neovascularization. Recently, we have demonstrated that canstatin, which is abundantly expressed in the heart tissue, exerts various biological activities in cardiac cells. In rat H9c2 cardiomyoblasts, canstatin inhibits isoproterenol- or hypoxia-induced apoptosis. Canstatin plays an important role in modulating voltage-dependent calcium channel activity in rat cardiomyocytes. Canstatin also regulates various biological functions in rat cardiac fibroblasts and myofibroblasts. The expression of canstatin decreases in the infarcted area after myocardial infarction. This review focuses on a current perspective for the roles of canstatin in tumorigenesis, ocular neovascularization and cardiac pathology.
Collapse
|
14
|
Okada M, Imoto K, Sugiyama A, Yasuda J, Yamawaki H. New Insights into the Role of Basement Membrane-Derived Matricryptins in the Heart. Biol Pharm Bull 2018; 40:2050-2060. [PMID: 29199230 DOI: 10.1248/bpb.b17-00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM), which contributes to structural homeostasis as well as to the regulation of cellular function, is enzymatically cleaved by proteases, such as matrix metalloproteinases and cathepsins, in the normal and diseased heart. During the past two decades, matricryptins have been defined as fragments of ECM with a biologically active cryptic site, namely the 'matricryptic site,' and their biological activities have been initially identified and clarified, including anti-angiogenic and anti-tumor effects. Thus, matricryptins are expected to be novel anti-tumor drugs, and thus widely investigated. Although there are a smaller number of studies on the expression and function of matricryptins in fields other than cancer research, some matricryptins have been recently clarified to have biological functions beyond an anti-angiogenic effect in heart. This review particularly focuses on the expression and function of basement membrane-derived matricryptins, including arresten, canstatin, tumstatin, endostatin and endorepellin, during cardiac diseases leading to heart failure such as cardiac hypertrophy and myocardial infarction.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
15
|
Imoto K, Hirakawa M, Okada M, Yamawaki H. Canstatin modulates L-type calcium channel activity in rat ventricular cardiomyocytes. Biochem Biophys Res Commun 2018; 499:954-959. [PMID: 29626474 DOI: 10.1016/j.bbrc.2018.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022]
Abstract
Excessive increase of cytosolic Ca2+ through the activation of L-type Ca2+ channels (LTCCs) via β adrenergic receptor induces apoptosis of cardiomyocytes. Canstatin, a cleaved fragment of collagen type IV α2 chain, is abundantly expressed in normal heart tissue. We previously reported that canstatin inhibits β adrenergic receptor-stimulated apoptosis in cardiomyoblasts. Here, we tested the hypothesis that canstatin regulates LTCCs activity in ventricular cardiomyocytes. Collagen type IV α2 chain (COL4A2) small interfering (si) RNA (for canstatin suppression) or control siRNA was injected via jugular vein in Wistar rats. Two days after the injection, electrocardiogram (ECG) was recorded and the left ventricular tissue was isolated using Langendorff apparatus. Immunofluorescence staining was performed to clarify the distribution of canstatin in cardiomyocytes. The knockdown efficiency was confirmed by Western blotting. The L-type Ca2+ channel current (ICaL) of ventricular cardiomyocyte was measured by a whole-cell patch clamp technique. In immunofluorescence staining, colocalization of canstatin and αv integrin was observed in the isolated ventricular cardiomyocytes. The ICaL of ventricular cardiomyocyte isolated from COL4A2 siRNA-injected rats was significantly enhanced compared with control siRNA-injected rats. Recombinant canstatin (250 ng/ml) significantly reversed it. ECG analysis showed that QT interval tended to be shortened and amplitude of T wave was significantly increased in the COL4A2 siRNA-injected rats. In summary, we for the first time clarified that suppressing canstatin expression increases the basal ICaL in ventricular cardiomyocytes. It is proposed that canstatin might play a role in the stabilization of cardiac function through the modulation of LTCC activity in cardiomyocytes.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| | - Masaki Hirakawa
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Japan
| |
Collapse
|
16
|
Endostatin Stimulates Proliferation and Migration of Myofibroblasts Isolated from Myocardial Infarction Model Rats. Int J Mol Sci 2018; 19:ijms19030741. [PMID: 29509663 PMCID: PMC5877602 DOI: 10.3390/ijms19030741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Myofibroblasts contribute to the healing of infarcted areas after myocardial infarction through proliferation, migration, and production of extracellular matrix (ECM). Expression of endostatin, a cleaved fragment of type XVIII collagen, increases in the heart tissue of an experimental myocardial infarction model. In the present study, we examined the effect of endostatin on the function of myofibroblasts derived from an infarcted area. The myocardial infarction model was created by ligating the left anterior descending artery in rats. Two weeks after the operation, α-smooth muscle actin (α-SMA)-positive myofibroblasts were isolated from the infarcted area. Endostatin significantly increased the proliferation and migration of myofibroblasts in vitro. On the other hand, endostatin had no effect on the production of type I collagen, a major ECM protein produced by myofibroblasts. Endostatin activated Akt and extracellular signal-regulated kinase (ERK), and the pharmacological inhibition of these signaling pathways suppressed the endostatin-induced proliferation and migration. A knockdown of the COL18A1 gene in the myocardial infarction model rats using small interference RNA (siRNA) worsened the cardiac function concomitant with wall thinning and decreased the α-SMA-positive myofibroblasts and scar formation compared with that of control siRNA-injected rats. In summary, we demonstrated for the first time that endostatin might be an important factor in the healing process after myocardial infarction through the activation of myofibroblasts.
Collapse
|
17
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
18
|
T3 peptide, a fragment of tumstatin, stimulates proliferation and migration of cardiac fibroblasts through activation of Akt signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1135-1144. [DOI: 10.1007/s00210-017-1413-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
|