1
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
L-proline transporter inhibitor (LQFM215) promotes neuroprotection in ischemic stroke. Pharmacol Rep 2023; 75:276-292. [PMID: 36719635 DOI: 10.1007/s43440-023-00451-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND L-proline transporter (PROT/SLC6A7) is closely associated with glutamatergic neurotransmission, where L-proline modulates the NMDA receptor (NMDAR) function. NMDAR-mediated excitotoxicity is a primary cause of neuronal death following stroke, which is triggered by the uncontrolled release of glutamate during the ischemic process. After ischemic stroke, L-proline levels show a reduction in the plasma, but high circulating levels of this molecule indicate good functional recovery. This work aimed to produce new PROT inhibitors and explore their effects on ischemic stroke. METHODS Initially, we built a three-dimensional model of the PROT protein and run a molecular docking with the newly designed compounds (LQFM215, LQFM216, and LQFM217). Then, we synthesized new PROT inhibitors by molecular hybridization, and proline uptake was measured in ex vivo and in vivo models. The behavioral characterization of the treated mice was performed by the open-field test, elevated plus-maze, Y-maze, and forced swimming test. We used the permanent middle cerebral artery occlusion (MCAO) model to study the ischemic stroke damage and analyzed the motor impairment with limb clasping or cylinder tests. RESULTS LQFM215 inhibited proline uptake in hippocampal synaptosomes, and the LQFM215 treatment reduced proline levels in the mouse hippocampus. LQFM215 reduced the locomotor and exploratory activity in mice and did not show any anxiety-related or working memory impairments. In the MCAO model, LQFM215 pre-treatment and treatment reduced the infarcted area and reduced motor impairments in the cylinder test and limb clasping. CONCLUSIONS This dataset suggests that the new compounds inhibit cerebral L-proline uptake and that LQFM215 promotes neuroprotection and neuro-repair in the acute ischemic stroke model.
Collapse
|
3
|
Prasad A, Mahmood A, Gupta R, Bisoyi P, Saleem N, Naga Prasad SV, Goswami SK. In cardiac muscle cells, both adrenergic agonists and antagonists induce reactive oxygen species from NOX2 but mutually attenuate each other's effects. Eur J Pharmacol 2021; 908:174350. [PMID: 34265295 DOI: 10.1016/j.ejphar.2021.174350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
In cardiac muscle cells adrenergic agonists stimulate the generation of reactive oxygen species, followed by redox signaling. We postulated that the antagonists would attenuate such reactive oxygen species generation by the agonists. H9c2 cardiac myoblasts, neonatal rat cardiac myocytes, and HEK293 cells expressing β1/β2 adrenoceptors were stimulated with several agonists and antagonists. All the agonists and antagonists independently generated reactive oxygen species; but its generation was minimum whenever an agonists was added together with an antagonist. We monitored the Ca++ signaling in the treated cells and obtained similar results. In all treatment sets, superoxide and H2O2 were generated in the mitochondria and the cytosol respectively. NOX2 inhibitor gp91ds-tat blocked reactive oxygen species generation by both the agonists and the antagonists. The level of p47phox subunit of NOX2 rapidly increased upon treatment, and it translocated to the plasma membrane, confirming NOX2 activation. Inhibitor studies showed that the activation of NOX2 involves ERK, PI3K, and tyrosine kinases. Recombinant promoter-reporter assays showed that reactive oxygen species generated by both the agonists and antagonists modulated downstream gene expression. Mice injected with the β-adrenergic agonist isoproterenol and fed with the antagonist metoprolol showed a robust induction of p47phox in the heart. We conclude that both the agonism and antagonism of adrenoceptors initiate redox signaling but when added together, they mutually counteract each other's effects. Our study thus highlights the importance of reactive oxygen species in adrenoceptor agonism and antagonism with relevance to the therapeutic use of the β blockers.
Collapse
Affiliation(s)
- Anamika Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Amena Mahmood
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India; DDU-Kaushal Kendra, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Sathyamangla V Naga Prasad
- NB50, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
4
|
Alam MJ, Gupta R, Mahapatra NR, Goswami SK. Catestatin reverses the hypertrophic effects of norepinephrine in H9c2 cardiac myoblasts by modulating the adrenergic signaling. Mol Cell Biochem 2019; 464:205-219. [PMID: 31792650 DOI: 10.1007/s11010-019-03661-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Catestatin (CST) is a catecholamine release-inhibitory peptide secreted from the adrenergic neurons and the adrenal glands. It regulates the cardiovascular functions and it is associated with cardiovascular diseases. Though its mechanisms of actions are not known, there are evidences of cross-talk between the adrenergic and CST signaling. We hypothesized that CST moderates the adrenergic overdrive and studied its effects on norepinephrine-mediated hypertrophic responses in H9c2 cardiac myoblasts. CST alone regulated the expression of a number of fetal genes that are induced during hypertrophy. When cells were pre-treated CST, it blunted the modulation of those genes by norepinephrine. Norepinephrine (2 µM) treatment also increased cell size and enhanced the level of Troponin T in the sarcomere. These effects were attenuated by the treatment with CST. CST attenuated the immediate generation of ROS and the increase in glutathione peroxidase activity induced by norepinephrine treatment. Expression of fosB and AP-1 promoter-reporter constructs was used as the endpoint readout for the interaction between the CST and adrenergic signals at the gene level. It showed that CST largely attenuates the stimulatory effects of norepinephrine and other mitogenic signals through the modulation of the gene regulatory modules in a characteristic manner. Depending upon the dose, the signaling by CST appears to be disparate, and at 10-25 nM doses, it primarily moderated the signaling by the β1/2-adrenoceptors. This study, for the first time, provides insights into the modulation of adrenergic signaling in the heart by CST.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Fridabad, 121001, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shyamal K Goswami
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Fridabad, 121001, India.
| |
Collapse
|
5
|
Kitmitto A, Baudoin F, Cartwright EJ. Cardiomyocyte damage control in heart failure and the role of the sarcolemma. J Muscle Res Cell Motil 2019; 40:319-333. [PMID: 31520263 PMCID: PMC6831538 DOI: 10.1007/s10974-019-09539-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023]
Abstract
The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.
Collapse
Affiliation(s)
- Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK.
| | - Florence Baudoin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| |
Collapse
|