1
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
2
|
He M, Wu H, Hu L, Liu N, Zhang G, Wang S. Regulatory mechanism of the Glabrene against non-small cell lung cancer by suppressing FGFR3. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38517198 DOI: 10.1002/tox.24235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a highly malignant tumor with limited effective treatment options. This study aimed to investigate the regulatory mechanism of Glabrene on NSCLC through its interaction with FGFR3. METHODS HCC827 cells were implanted into nude mice and treated with Glabrene. Tumor volume was monitored at 0, 3, 6, and 9 days after medical treatment. Tissue analysis included Hematoxylin and Eosin (HE) and Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) staining, as well as immunohistochemistry for Ki67, ERK1/2, and p-ERK1/2 expression. Cell viability was determined with the CCK8 method. We utilized immunofluorescence techniques to observe apoptosis, as well as the levels of E-cadherin and Vimentin expression. Cellular proliferation was determined via plate cloning assay and cellular mobility was determined via scratch assay. Cellular invasion ability was assessed via a transwell assay. mRNA and protein levels of FGFR3, MMP1, MMP9, vimentin, E-cadherin, ERK1/2, and p-ERK1/2 were detected via qPCR and Western blot. IGF-1, VEGF, and Estradiol (E2) levels were measured through Enzyme linked immunosorbent assay (ELISA). RESULTS This study verified that Glabrene was capable of suppressing tumor growth in NSCLC mice, reversing tumor tissue's pathological morphology, attenuating the capacities of cancerous cells' proliferation, migration, and invasion, and leading to apoptosis. Besides, Glabrene could reduce the FGFR3 expression in HCC827 cells. Over-expression of FGFR3 promotes the proliferation of HCC827 cells, increase both contents of IGF-1, VEGF, and E2, and expressions of MMP1, MMP9, vimentin, and p-ERK1/2, while Glabrene inhibited FGFR3. Glabrene, and inhibition of FGFR3 expression were capable of decreasing FGFR3, MMP1, MMP9, vimentin, and p-ERK1/2 expression, as well as contents of IGF-1, VEGF, and E2 in model mice and HCC827 cells, and promoting the expression of E-cadherin. CONCLUSION Glabrene has the potential as a therapeutic agent for NSCLC by reducing cancer invasion and migration through the inhibition of ERK1/2 phosphorylation and suppression of epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Miao He
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Huiling Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Bone and joint rehabilitation department, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjing Hu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Nan Liu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Guoduo Zhang
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shumei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Chitre TS, Mandot AM, Bhagwat RD, Londhe ND, Suryawanshi AR, Hirode PV, Bhatambrekar AL, Choudhari SY. 2,4,6-Trimethoxy chalcone derivatives: an integrated study for redesigning novel chemical entities as anticancer agents through QSAR, molecular docking, ADMET prediction, and computational simulation. J Biomol Struct Dyn 2024:1-24. [PMID: 38321946 DOI: 10.1080/07391102.2024.2309644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
QSAR, an efficient and successful approach for optimizing lead compounds in drug design, was employed to study a reported series of compounds derived from 2,4,6-trimethoxy chalcone derivatives. The ability of these compounds to inhibit CDK1 was examined, with the help of QSARINS software for model development. The generated QSAR model revealed three significant descriptors, exhibiting strong correlations with impressive statistical values: cross-validation leave-one-out correlation coefficient (Q2LOO) = 0.6663, coefficient of determination (R2) = 0.7863, external validation coefficient (R2ext) = 0.7854, cross-validation leave-many-out correlation coefficient (Q2LMO) = 0.6256, Concordance Correlation Coefficient for cross-validation (CCCcv) = 0.8150, CCCtr = 0.8804, and CCCext = 0.8750. From the key structural findings and the insights gained from the descriptors, ETA_dPsi_A, WTPT-5, and GATS7s, new lead molecules were designed. The designed molecules were then evaluated for their CDK1 inhibitory activity using the three-descriptor model developed in this study. To evaluate their drug likeliness, in-silico ADMET predictions were made using Schrodinger's Software. Molecular docking was carried out to determine the interactions of designed compounds with the target protein. The designed compounds having excellent binding pocket molecular stability and anticancer effectiveness was substantiated by the findings of the molecular dynamics simulation. The results of this work point out important properties and crucial interactions necessary for efficient protein inhibition, suggesting lead candidates for further development as novel anticancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Trupti S Chitre
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Aayush M Mandot
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Ramali D Bhagwat
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Nikhil D Londhe
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Atharva R Suryawanshi
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Purvaj V Hirode
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Aniket L Bhatambrekar
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Somdutta Y Choudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
4
|
Luo F, Tang Y, Zheng L, Yang Y, Gao H, Tian S, Chen H, Tang C, Tang S, Man Q, Wu Y. Isoliquiritigenin Inhibits the Growth of Colorectal Cancer Cells through the ESR2/PI3K/AKT Signalling Pathway. Pharmaceuticals (Basel) 2023; 17:43. [PMID: 38256877 PMCID: PMC10820227 DOI: 10.3390/ph17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies. Isoliquiritigenin (ISL), a flavonoid phytoestrogen, has shown anti-tumour activities against various cancers. However, its anti-CRC mechanism has not been clarified. In this study, the potential molecular mechanism of ISL against CRC was investigated through network pharmacological prediction and experimental validation. The results of the network prediction indicate that ESR2, PIK3CG and GSK3β might be the key targets of ISL against CRC, which was verified by molecular docking, and that its anti-tumour mechanisms might be related to the oestrogen and PI3K/AKT signalling pathway. The experimental results show that ISL reduced the viability of SW480 and HCT116 cells, induced apoptosis, blocked the cell cycle in the G2 phase in vitro, and suppressed xenograft tumour growth in vivo. In addition, ISL significantly down-regulated the protein expression of PIK3CG, AKT, p-AKT, p-GSK3β, CDK1, NF-κB and Bcl-2; up-regulated ESR2 and Bax; decreased the ratio of p-AKT/AKT and p-GSK3β/GSK3β; and increased the Bax/Bcl-2 ratio. This study indicates that ISL can inhibit the growth of CRC cells and induce apoptosis, which may be related to the up-regulation of ESR2 and inhibition of the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Fenglin Luo
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Yimeng Tang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Lin Zheng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Ying Yang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Haoyue Gao
- Department of Geriatrics, Women and Children, School of Nursing, Chengdu Medical College, Chengdu 610106, China;
| | - Shiya Tian
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Hongyu Chen
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Chenxi Tang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Shanshan Tang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Qiong Man
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Yiying Wu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
5
|
Vachiraarunwong A, Tuntiwechapikul W, Wongnoppavich A, Meepowpan P, Wongpoomchai R. 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone from Cleistocalyx nervosum var. paniala seeds attenuated the early stage of diethylnitrosamine and 1,2-dimethylhydrazine-induced colorectal carcinogenesis. Biomed Pharmacother 2023; 165:115221. [PMID: 37517291 DOI: 10.1016/j.biopha.2023.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Dichloromethane extract of Cleistocalyx nervosum var. paniala seeds exhibited an anticarcinogenicity against chemically-induced the early stages of carcinogenesis in rats. This study aimed to identify anticarcinogenic compounds from C. nervosum seed extract (CSE). METHODS Salmonella mutation assay was performed to determine mutagenicity and antimutagenicity of partially purified and purified compounds of CSE. The anticarcinogenic enzyme-inducing activity was measured in Hepa1c1c7. Moreover, the anticancer potency was examined on various human cancer cell lines. The anticarcinogenicity of DMC was investigated using dual-organ carcinogenicity model. The number of preneoplastic lesions was evaluated in the liver and colon. The inhibitory mechanisms of DMC on liver- and colorectal carcinogenesis were investigated. RESULTS Six partially purified fractions (MK1 - MK6) and purified compounds, including 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) and hariganetin, were obtained from CSE. Among these fractions, MK4 and DMC presented the greatest antimutagenicity against indirect mutagens in bacterial model. Moreover, MK5 possessed an effective anticarcinogenic enzyme inducer in Hepa1c1c7. The MK4, DMC and CSE showed greater anticancer activity on all cell lines and exhibited the most effective toxicity on colon cancer cells. Furthermore, DMC inhibited the formation of colonic preneoplastic lesions in carcinogens-treated rats. It reduced PCNA-positive cells and frequency of BCAC in rat colon. DMC also enhanced the detoxifying enzyme, GST, in rat livers. CONCLUSIONS DMC obtained from CSE may be a promising cancer chemopreventive compound of colorectal cancer process in rats. It could increase detoxifying enzymes and suppress the cell proliferation process resulting in prevention of post-initiation stage of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Arpamas Vachiraarunwong
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
6
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
7
|
Krishna Priya M, Reuben Jonathan D, Muthu S, Sivasankaran B, Usha G. Synthesis and Chemical Exploration of an Organic Exocyclic Chalcone Derivative for Its Therapeutic Proficiency against Breast Cancer. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- M. Krishna Priya
- PG and Research Department of Physics, Queen Mary’s College(A), University of Madras, Chennai, India
| | - D. Reuben Jonathan
- Department of Chemistry, Madras Christian College(A), University of Madras, Chennai, India
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, India
| | | | - G. Usha
- PG and Research Department of Physics, Queen Mary’s College(A), University of Madras, Chennai, India
| |
Collapse
|
8
|
Shi W, Cao X, Liu Q, Zhu Q, Liu K, Deng T, Yu Q, Deng W, Yu J, Wang Q, Xu X. Hybrid Membrane-Derived Nanoparticles for Isoliquiritin Enhanced Glioma Therapy. Pharmaceuticals (Basel) 2022; 15:1059. [PMID: 36145280 PMCID: PMC9506545 DOI: 10.3390/ph15091059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the obstruction and heterogeneity of the blood-brain barrier, the clinical treatment of glioma has been extremely difficult. Isoliquiritigenin (ISL) exhibits antitumor effects, but its low solubility and bioavailability limit its application potential. Herein, we established a nanoscale hybrid membrane-derived system composed of erythrocytes and tumor cells. By encapsulating ISL in hybrid membrane nanoparticles, ISL is expected to be enhanced for the targeting and long-circulation in gliomas therapy. We fused erythrocytes with human glioma cells U251 and extracted the fusion membrane via hypotension, termed as hybrid membrane (HM). HM-camouflaged ISL nanoparticles (ISL@HM NPs) were prepared and featured with FT-IR, SEM, TEM, and DLS particle analysis. As the results concluded, the ISL active pharmaceutical ingredients (APIs) were successfully encapsulated with HM membranes, and the NPs loading efficiency was 38.9 ± 2.99% under maximum entrapment efficiency. By comparing the IC50 of free ISL and NPs, we verified that the solubility and antitumor effect of NPs was markedly enhanced. We also investigated the mechanism of the antitumor effect of ISL@HM NPs, which revealed a marked inhibition of tumor cell proliferation and promotion of senescence and apoptosis of tumor cells of the formulation. In addition, the FSC and WB results examined the effects of different concentrations of ISL@HM NPs on tumor cell disruption and apoptotic protein expression. Finally, it can be concluded that hybridized membrane-derived nanoparticles could prominently increase the solubility of insoluble materials (as ISL), and also enhance its targeting and antitumor effect.
Collapse
Affiliation(s)
- Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qin Zhu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| |
Collapse
|
9
|
Li M, Lu G, Ma X, Wang R, Chen X, Yu Y, Jiang C. Anti-inflammation of isoliquiritigenin via the inhibition of NF-κB and MAPK in LPS-stimulated MAC-T cells. BMC Vet Res 2022; 18:320. [PMID: 35986317 PMCID: PMC9392288 DOI: 10.1186/s12917-022-03414-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background The application of plant extracts has received great interest for the treatment of bovine mastitis. Isoliquiritigenin (ISL) is a rich dietary flavonoid that has significant antioxidative, anti-inflammatory and anticancer activities. This study was conducted to explore the protective efficacy and related mechanism of ISL against lipopolysaccharide (LPS)-stimulated oxidation and inflammation in bovine mammary epithelial cells (MAC-T) by in vitro experiments. Results Real-time PCR and ELISA assays indicated that ISL treatment at 2.5, 5 and 10 μg/mL significantly reduced the mRNA and protein expression of the oxidative indicators cyclooxygenase-2 and inducible nitric oxide synthase (P < 0.01), and of the inflammatory cytokines interleukin-6 (P < 0.05), interleukin-1β (P < 0.01) and tumor necrosis factor-α (P < 0.01) in LPS-stimulated MAC-T cells. Moreover, Western blotting and immunofluorescence tests indicated that the phosphorylation levels of nuclear factor kappa (NF-κB) p65 and the inhibitor of NF-κB were significantly decreased by ISL treatment, thus blocking the nuclear transfer of NF-κB p65. In addition, ISL attenuated the phosphorylation levels of p38, extracellular signal-regulated kinase and c-jun NH2 terminal kinase. Conclusions Our data demonstrated that ISL downregulated the LPS-induced inflammatory response in MAC-T cells. The anti-inflammatory and antioxidative activity of ISL involves the NF-κB and MAPK cascades. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03414-1.
Collapse
|
10
|
Structural, spectroscopic and quantum chemical analysis of an exocyclic extended double-bonded chalcone single crystal, with pharmaceutical scanning for breast cancer using MCF-7 cell line and EGFR domain target. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sohel M, Sultana H, Sultana T, Mamun AA, Amin MN, Hossain MA, Ali MC, Aktar S, Sultana A, Rahim ZB, Mitra S, Dash R. Chemotherapeutics activities of dietary phytoestrogens against prostate cancer: From observational to clinical studies. Curr Pharm Des 2022; 28:1561-1580. [PMID: 35652403 DOI: 10.2174/1381612828666220601153426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment was well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka-1230. Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Armin Sultana
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
12
|
Kumar B, Babu JN, Chowhan LR. Sustainable Synthesis of Highly Diastereoselective & Fluorescent Active Spirooxindoles Catalyzed by Copper Oxide Nanoparticle Immobilized on Microcrystalline Cellulose. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bhupender Kumar
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| | - J. Nagendra Babu
- Department of Chemistry School for Basic and Applied Sciences, Central University of Punjab, VPO Ghudda Bathinda Punjab India
| | - L. Raju Chowhan
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| |
Collapse
|
13
|
Priya MK, Jonathan DR, Muthu S, Shirmila DA, Hemalatha J, Usha G. Structural examination, theoretical calculations, and pharmaceutical scanning of a new tetralone based chalcone derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Mohamed LA, El Bolok AHM, Elgayar SF, Fahmy AN. miRNA-155 as a Novel Target for Isoliquiritigenin to Induce Autophagy in Oral Squamous Cell Carcinoma. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and Aim :The most common obstacle facing chemotherapeutic agents is the development of drug resistance to cancer cells by dysregulation of autophagy and apoptosis. Targeting miRNAs by a natural flavonoid such as Isoliquiritigenin (ISL) is a novel strategy to reverse drug resistance. The aim of the present study was to evaluate ISL impacts on apoptosis and autophagy in oral squamous carcinoma cells (OSCC) through the expression levels of related two microRNAs: miRNA-21 and miRNA-155. Materials & Methods: The expression levels of both miRNAs were analysed using quantitative real time PCR and the effect of ISL on apoptosis was evaluated using annexin assay. In addition, the expression of the autophagy marker (ATG7) was measured using immunofluorescence. Results : Our results showed that ISL significantly downregulated both miRNA-21 and miRNA-155 with a fold change of 22.01 and 52.35, respectively. It also induced apoptosis in the cancer cells with high percentage (51.3 %). Moreover, ATG7 was highly expressed after ISL treatment. Conclusion : From this sudy we can conclude that ISL has an apoptotic and autophagic effect on OSCC through the down-regulation of miRNA-21 and miRNA-155, major regulators of PI3K/Akt pathway which can provide novel targets for OSCC therapy.
Collapse
|
15
|
Wu Y, Wang Z, Du Q, Zhu Z, Chen T, Xue Y, Wang Y, Zeng Q, Shen C, Jiang C, Liu L, Zhu H, Liu Q. Pharmacological Effects and Underlying Mechanisms of Licorice-Derived Flavonoids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9523071. [PMID: 35082907 PMCID: PMC8786487 DOI: 10.1155/2022/9523071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Glycyrrhizae Radix et Rhizoma is the most frequently prescribed natural medicine in China and has been used for more than 2,000 years. The flavonoids of licorice have garnered considerable attention in recent decades due to their structural diversity and myriad pharmacological effects, especially as novel therapeutic agents against inflammation and cancer. Although many articles have been published to summarize different pharmacological activities of licorice in recent years, the systematic summary for flavonoid components is not comprehensive. Therefore, in this review, we summarized the pharmacological and mechanistic data from recent researches on licorice flavonoids and their bioactive components.
Collapse
Affiliation(s)
- Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Qiu X, Zhu L, Wang H, Tan Y, Yang Z, Yang L, Wan L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg Med Chem 2021; 52:116510. [PMID: 34826681 DOI: 10.1016/j.bmc.2021.116510] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) play a key role in the homeostasis of protein acetylation in histones and have recently emerged as a therapeutic target for numerous diseases. The inhibition of HDACs may block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumour cells. Thus, HDAC inhibitors (HDACi) have received increasing attention and many of which are developed from natural sources. In the past few decades, naturally occurring HDACi have been identified to have potent anticancer activities, some of which have demonstrated promising therapeutic effects on haematological malignancies. In this review, we summarized the discovery and modification of HDAC inhibitors from natural sources, novel drug design that uses natural products as parent nuclei, and dual target design strategies that combine HDAC with non-HDAC targets.
Collapse
Affiliation(s)
- Xiang Qiu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lv Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
de Souza PS, Bibá GCC, Melo EDDN, Muzitano MF. Chalcones against the hallmarks of cancer: a mini-review. Nat Prod Res 2021; 36:4809-4826. [PMID: 34865580 DOI: 10.1080/14786419.2021.2000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chalcones (1,3-diphenylpropen-1-ones) are a class of flavonoids that have been shown a broad spectrum of biological activities with therapeutic potential. Naturally occurring chalcones or synthetic chalcone derivatives have been extensively investigated as anticancer compounds. Cancer is still among the leading causes of death globally, although cancer treatments have improved over the past decades. Most of chemotherapeutic drugs target proliferating tumor cells; however, the cancer cells capabilities are also associated to tumor surround microenvironment. Thereby, the search of new compounds with a broad antitumor activity is still a great challenge. The cytotoxicity mechanisms of chalcones are beyond apoptosis induction in tumor cells, which make them promising compound for cancer therapy. In this mini-review we summarized recent studies that describe the anticancer potential of chalcones related to some of hallmarks of cancer. We shed a light on sustaining proliferative signaling, tumor-promoting inflammation, activating invasion and metastasis, inducing angiogenesis and resisting cell death.
Collapse
Affiliation(s)
- Paloma Silva de Souza
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geysa Cristina Caldas Bibá
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelynn Dalila do Nascimento Melo
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
19
|
Misra SK, Pathak K. Naturally occurring heterocyclic anticancer compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University , Kanpur , 208026 , India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| |
Collapse
|
20
|
New insights into binding of natural chalcones to Bcl-2, Bcl-xL and Mcl-1 anti-apoptotic proteins. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021; 11:1203. [PMID: 34439870 PMCID: PMC8392591 DOI: 10.3390/biom11081203] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Collapse
Affiliation(s)
- Hiba A. Jasim
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Al-Anbar 10081, Iraq
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mohammad A. Jasim
- Department of Biology, College of Education for Women, University of Anbar, Al-Anbar 10081, Iraq;
| | - Sharon A. Moore
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Kenneth J. Ritchie
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| |
Collapse
|
22
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
23
|
Michalkova R, Mirossay L, Gazdova M, Kello M, Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers (Basel) 2021; 13:cancers13112730. [PMID: 34073042 PMCID: PMC8198114 DOI: 10.3390/cancers13112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite the important progress in cancer treatment in the past decades, the mortality rates in some types of cancer have not significantly decreased. Therefore, the search for novel anticancer drugs has become a topic of great interest. Chalcones, precursors of flavonoid synthesis in plants, have been documented as natural compounds with pleiotropic biological effects including antiproliferative/anticancer activity. This article focuses on the knowledge on molecular mechanisms of antiproliferative action of chalcones and draws attention to this group of natural compounds that may be of importance in the treatment of cancer disease. Abstract Although great progress has been made in the treatment of cancer, the search for new promising molecules with antitumor activity is still one of the greatest challenges in the fight against cancer due to the increasing number of new cases each year. Chalcones (1,3-diphenyl-2-propen-1-one), the precursors of flavonoid synthesis in higher plants, possess a wide spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer. A plethora of molecular mechanisms of action have been documented, including induction of apoptosis, autophagy, or other types of cell death, cell cycle changes, and modulation of several signaling pathways associated with cell survival or death. In addition, blockade of several steps of angiogenesis and proteasome inhibition has also been documented. This review summarizes the basic molecular mechanisms related to the antiproliferative effects of chalcones, focusing on research articles from the years January 2015–February 2021.
Collapse
|
24
|
Discovery of novel isoliquiritigenin analogue ISL-17 as a potential anti-gastric cancer agent. Biosci Rep 2021; 40:225219. [PMID: 32515470 PMCID: PMC7306486 DOI: 10.1042/bsr20201199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural product isolated from licorice root, exhibits anti-gastric cancer effects. However, applications of ISL are still limited in clinical practice due to its poor bioavailability. To discovery of more effective anti-gastric cancer agents based on ISL, aldol condensation reaction was applied to synthesize the ISL analogues. MTS assay was used to evaluate the inhibitory activities of ISL analogues against SGC-7901, BGC-823 and GES-1 cells in vitro. Cell cycle distribution, apoptosis and reactive oxygen species (ROS) generation were detected by flow cytometry. Western blot assay was used to analyze the expression levels of related proteins. The drug-likeness and pharmacokinetic properties were predicted with Osiris property explorer and PreADMET server. As a result, 18 new ISL analogues (ISL-1 to ISL-18) were synthesized. Among these analogues, ISL-17 showed the strongest inhibitory activities against SGC-7901 and BGC-823 cells, and could induce G2/M cell cycle arrest and apoptosis in these two cell lines. Treatment with ISL-17 resulted in increased ROS production and elevated autophagy levels in SGC-7901 cells. The PI3K/AKT/mTOR signaling pathway was down-regulated after treatment with ISL-17 in SGC-7901 cells. The results of drug-likeness and pharmacokinetic prediction indicated that all the ISL analogues complied with Lipinski's rule of five and Veber rule and had a favorable ADME character. Overall, our results attest that ISL-17 holds promise as a candidate agent against gastric cancer.
Collapse
|
25
|
Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113635. [PMID: 33246112 DOI: 10.1016/j.jep.2020.113635] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been commonly used in traditional Chinese medicine for treatment of gastric, liver, and respiratory disease conditions for more than two thousand years. It is a major component of several Chinese patent medicines certificated by National Medical Products Administration that possess great anticancer activities. AIM OF THE STUDY To comprehensively summarize the anticancer activities of licorice flavonoids, explain the underlying molecular mechanisms, and assess their therapeutic potentials and side-effects. METHODS PubMed, Research Gate, Web of Science, Google Scholar, academic journals, and Science Direct were used as information sources, with the key words of "anticancer", "licorice", "flavonoids", and their combinations, mainly from 2000 to 2019. RESULTS Sixteen licorice flavonoids are found to possess anticancer activities. These flavonoids inhibit cancer cells through blocking cell cycle and regulating multiple signaling pathways. The major pathways targeted by licorice flavonoids include: the MAPK pathway, PI3K/AKT pathway, NF-κB pathway, death receptor - dependent extrinsic signaling pathway, and mitochondrial apoptotic pathway. CONCLUSION Licorice flavonoids are a group of versatile molecules that have pleiotropic effects on cell growth, survival and cell signaling. Many of the flavonoids possess inhibitory activities toward cancer cell growth and hence have a great therapeutic potential in cancer treatment. However, additional preclinical studies are still needed to assess their in vivo efficacy and possible toxicities. It is also imperative to evaluate the effects of licorice flavonoids on the metabolism of other drugs and explore the potential synergistic mechanism.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
26
|
Lv X, Li R, Li Z, Wang J. Purification of Gekko Small Peptide Fraction and Its Effect of Inducing Apoptosis of EC 9706 Esophageal Cancer Cells by Inhibiting PI3K/Akt/GLUT1 Signaling Pathway. Chem Biodivers 2021; 18:e2000720. [PMID: 33534194 DOI: 10.1002/cbdv.202000720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/02/2021] [Indexed: 11/07/2022]
Abstract
This study aimed to isolate and purify a cytotoxic extraction from Gekko japonicus, identify its components and determine its cytotoxic activity in vitro. We isolated and identified the most potent cytotoxic Gekko small peptide LH-20-15. The identification and analysis of peptide sequences of LH-20-15 were performed by de novo peptide sequencing, and two new peptides were found. LH-20-15 significantly inhibited the proliferation of human esophageal squamous carcinoma EC 9706 cells in a dose-dependent manner. Furthermore, LH-20-15 induced apoptosis in esophageal cancer cells by activating the mitochondrial apoptotic pathway. Further research showed that LH-20-15 inhibited the PI3 K/Akt/GLUT1 signaling pathway. In conclusion, LH-20-15 from Gekko japonicus is a peptide mixture and may inhibit EC 9706 cell proliferation and induce apoptosis by activating the mitochondrial apoptotic pathway. It also regulates glucose metabolism by targeting the PI3 K/Akt/GLUT1 signaling pathway. These small peptides could be new sources of natural cytotoxic ingredients against esophageal cancer with potential drug values.
Collapse
Affiliation(s)
- Xingzhi Lv
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Ruifang Li
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Zhongjie Li
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Jiangang Wang
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| |
Collapse
|
27
|
tRNA Lys-Derived Fragment Alleviates Cisplatin-Induced Apoptosis in Prostate Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13010055. [PMID: 33406670 PMCID: PMC7824007 DOI: 10.3390/pharmaceutics13010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a standard treatment for prostate cancer, which is the third leading cause of cancer-related deaths among men globally. However, patients who have undergone cisplatin can rxperience relapse. tRNA-derived fragments (tRFs) are small non-coding RNAs generated via tRNA cleavage; their physiological activities are linked to the development of human diseases. Specific tRFs, including tRF-315 derived from tRNALys, are highly expressed in prostate cancer patients. However, whether tRF-315 regulates prostate cancer cell proliferation or apoptosis is unclear. Herein, we confirmed that tRF-315 expression was higher in prostate cancer cells (LNCaP, DU145, and PC3) than in normal prostate cells. tRF-315 prevented cisplatin-induced apoptosis and alleviated cisplatin-induced mitochondrial dysfunction in LNCaP and DU145 cells. Moreover, transfection of tRF-315 inhibitor increased the expression of apoptotic pathway-related proteins in LNCaP and DU145 cells. Furthermore, tRF-315 targeted the tumor suppressor gene GADD45A, thus regulating the cell cycle, which was altered by cisplatin in LNCaP and DU145 cells. Thus, tRF-315 protects prostate cancer cells from mitochondrion-dependent apoptosis induced by cisplatin treatment.
Collapse
|
28
|
Wang KL, Yu YC, Hsia SM. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers (Basel) 2021; 13:E115. [PMID: 33401375 PMCID: PMC7795842 DOI: 10.3390/cancers13010115] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
Isoliquiritigenin (2',4',4-trihydroxychalcone, ISL), one of the most important bioactive compounds with a chalcone structure, is derived from licorice root. Licorice is commonly known as Glycyrrhiza, including Glycyrrhiza uralensis, Glycyrrhiza radix, and Glycyrrhiza glabra, which are generally available in common foods and Chinese herbal medicines based on a wide variety of biological functions and pharmacological effects, and its derivative (ISL) is utilized as a food additive and adjunct disease treatment. In this review, we summarized the progress over the last 10 years in the targeted pathways and molecular mechanisms of ISL that are involved in the regulation of the onset and progression of different types of cancers.
Collapse
Affiliation(s)
- Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ying-Chun Yu
- Sex Hormonal Research Center, China Medical University Hospital, Taichung 40403, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, China Medical University, Taichung 40403, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
29
|
Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci Rep 2020; 40:221502. [PMID: 31840737 PMCID: PMC6944659 DOI: 10.1042/bsr20192727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
The overall survival rate of patients with hepatocellular carcinoma (HCC) has remained unchanged over the last several decades. Therefore, novel drugs and therapies are required for HCC treatment. Isoliquiritigenin (ISL), a natural flavonoid predominantly isolated from the traditional Chinese medicine Glycyrrhizae Radix (Licorice), has a high anticancer potential and broad application value in various cancers. Here, we aimed to investigate the anticancer role of ISL in the HCC cell line Hep3B. Functional analysis revealed that ISL inhibited the proliferation of Hep3B cells by causing G1/S cell cycle arrest in vitro. Meanwhile, the inhibitory effect of ISL on proliferation was also observed in vivo. Further analysis revealed that ISL could suppress the migration and metastasis of Hep3B cells in vitro and in vivo. Mechanistic analysis revealed that ISL inhibited cyclin D1 and up-regulated the proteins P21, P27 that negatively regulate the cell cycle. Furthermore, ISL induced apoptosis while inhibiting cell cycle transition. In addition, phosphatidylinositol 3′-kinase/protein kinase B (PI3K/AKT) signal pathway was suppressed by ISL treatment, and the epithelial marker E-cadherin was up-regulated when the mesenchymal markers Vimentin and N-cadherin were down-regulated. In brief, our findings suggest that ISL could be a promising agent for preventing HCC tumorigenesis and metastasis.
Collapse
|
30
|
Song L, Luo Y, Li S, Hong M, Wang Q, Chi X, Yang C. ISL Induces Apoptosis and Autophagy in Hepatocellular Carcinoma via Downregulation of PI3K/AKT/mTOR Pathway in vivo and in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4363-4376. [PMID: 33116421 PMCID: PMC7585813 DOI: 10.2147/dddt.s270124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Aims Isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, has previously been reported to have anti-tumor effects in vivo and in vitro. However, the mechanisms whereby ISL exerts its anticancer effects remain poorly understood in hepatocellular carcinoma (HCC). Purpose In the present study, we investigated the anticancer efficacy and associated mechanisms of ISL in HCC MHCC97-H and SMMC7721 cells. Results We found that ISL inhibited cell viability and proliferation and induced apoptosis in a dose- and time-dependent manner in liver cancer lines. Furthermore, ISL could activate autophagy in HCC cells, and the autophagy inhibitor HCQ enhances ISL-induced apoptosis in HCC cells. Additionally, ISL induced apoptosis and autophagy through inhibition of the PI3K/Akt/mTOR pathway. Most importantly, in a xenograft tumor model in nude mice, data showed that the administration of ISL decreased tumor growth and concurrently promoted the expression of LC3-II and cleaved-caspase-3. Interestingly, we found that ISL inhibits mTOR by docking onto the ATP-binding pocket of mTOR (ie, it competes with ATP). We thus suggest that mTOR is a potential target for ISL inhibition of hepatocellular carcinoma development, which could be of interest for future investigations. Conclusion Taken together, the results reveal that ISL effectively inhibited proliferation and induced apoptosis in HCC through autophagy induction in vivo and in vitro, probably via the PI3K/Akt/mTOR pathway. ISL may be a potential therapeutic agent for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Shaoling Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Xiaoling Chi
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Cong Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| |
Collapse
|
31
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
32
|
Fadaly WA, Elshaier YA, Hassanein EH, Abdellatif KR. New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorg Chem 2020; 98:103752. [DOI: 10.1016/j.bioorg.2020.103752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
|
33
|
Natural Chalcones in Chinese Materia Medica: Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3821248. [PMID: 32256642 PMCID: PMC7102474 DOI: 10.1155/2020/3821248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. These chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hepatoprotective activities, and so on. This review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
Collapse
|
34
|
Isoliquiritigenin Suppressed Esophageal Squamous Carcinoma Growth by Blocking EGFR Activation and Inducing Cell Cycle Arrest. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9259852. [PMID: 32190688 PMCID: PMC7063883 DOI: 10.1155/2020/9259852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023]
Abstract
Isoliquiritigenin (ILQ) is a natural product isolated from licorice root which has served as traditional Chinese medicine for a long time. Recently, the antitumor effects of ILQ have been widely studied in various cancers, but the role and related mechanisms of ILQ in esophageal squamous carcinoma cells (ESCC) are still poorly understood. In our studies, ILQ showed profound antitumor activities in ESCC cells. In vitro, ILQ substantially inhibited cell proliferation and anchorage-independent growth in a panel of human ESCC cells. Mechanism studies showed that EGFR signaling pathway played an important role for ILQ to exert its antitumor activity in ESCC. Exposure to isoliquiritigenin substantially decreased EGF-induced EGFR activation and its downstream Akt and ERK1/2 signaling pathway. EGFR knockdown with shRNA in ESCC cell significantly reduced the sensitivity of cancer cells to ILQ. Moreover, it was found that ILQ had a significantly inhibitory effect on AP-1 family, the protein of Jun and Fos subfamilies was substantially downregulated, and the transcriptional activity of AP-1 family was dramatically suppressed by ILQ. By reducing the expression of cyclin D1, ESCC cells were induced G0/G1 arrest, and cell division was substantially blocked. Finally, the antitumor potency of ILQ was validated in xenograft models and the tumor growth was prominently restrained by ILQ. Briefly, our study showed that ILQ, or its analogue, appeared to be a promising new therapeutic agent for ESCC management.
Collapse
|
35
|
Chang H, Chen P, Ma M. Feeding preference of Altica deserticola for leaves of Glycyrrhiza glabra and G. uralensis and its mechanism. Sci Rep 2020; 10:1534. [PMID: 32001773 PMCID: PMC6992774 DOI: 10.1038/s41598-020-58537-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 11/17/2022] Open
Abstract
Altica deserticola (Coleoptera: Chrysomelidae) is a monophagous insect that feeds on, and is thus a harmful pest of, liquorice. Both adults and larvae feed on leaves, causing serious damage to leaf blades. It will even lead to the extinction of liquorice, resulting in significant economic losses. Leaf-disc tests were used to determine the feeding preference of A. deserticola on leaves of Glycyrrhiza uralensis and G. glabra and explore the underlying mechanism of liquorice feeding resistance to A. deserticola by comparing leaf hardness and thickness, cuticle thickness, and nitrogen and tannin content in the two plants. The results showed that larvae and adults have the same feeding preferences, i.e., both preferably fed on G. uralensis, indicating a higher resistance in this species. The hardness, thickness, and the thickness of the stratum corneum of the leaves of G. glabra were significantly greater than those of G. uralensis. Nitrogen content was higher in G. uralensis, while total tannin, tannic acid, and catechin content were higher in G. glabra. The thick cuticle and hard texture of G. glabra leaves may be an important physical trait for effectively resisting A. deserticola feeding, while high tannin and low nitrogen content may also be important.
Collapse
Affiliation(s)
- Honglei Chang
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang, 832003, The People's Republic of China
| | - Pengyou Chen
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang, 832003, The People's Republic of China
| | - Miao Ma
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang, 832003, The People's Republic of China.
| |
Collapse
|
36
|
Kim B, Hwang M, Kwon M. Isoliquiritigenin induces apoptosis through caspases and reactive oxygen species signaling pathways in human bladder cancer cells. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_21_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Zhao TT, Xu YQ, Hu HM, Gong HB, Zhu HL. Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr Med Chem 2019; 26:6786-6796. [DOI: 10.2174/0929867325666181112091700] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/09/2023]
Abstract
Isoliquiritigenin (2’,4’,4-trihydroxychalcone, ISL) is one of the most important
chalcone compounds which is mainly derived from licorice root and many other plants. It exhibits
a remarkable range of potent biological and pharmacological activities such as antioxidative,
antitumor, antiaging, anti-inflammatory, anti-diabetic activities, etc. Numerous research
teams have demonstrated that ISL posseses the ability to carry out antigrowth and proliferation
in various cancer cells in vitro and in vivo. Meanwhile, the underlying mechanisms
of ISL that inhibit cancer cell proliferation have not been well explored. However, the poor
bioavailability and low water-soluble limit its clinical application. This review aims at providing
a comprehensive overview of the pharmacology antitumor activity of ISL and its mechanisms
in different malignancy especially in breast cancer cell line and summarize developments
of formulation utilized to overcome the barrier between its delivery characteristics and
application in clinics over the past 20 years.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yu-Qing Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui-Min Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hai-Bin Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Inami K, Asada Y, Harada T, Okayama Y, Usui N, Mochizuki M. Antimutagenic components in Spatholobus suberectus Dunn against N-methyl- N-nitrosourea. Genes Environ 2019; 41:22. [PMID: 31890055 PMCID: PMC6907206 DOI: 10.1186/s41021-019-0137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND An extract from Spatholobus suberectus (S. suberectus) Dunn has been reported to show potent antimutagenic effects against N-alkyl-N-nitrosoureas in umu screening. The aim of this study was to identify the antimutagenic components from extracts of S. suberectus against N-methyl-N-nitrosourea (MNU) in the Ames assay with Salmonella typhimurium strain TA1535 and to elucidate the antimutagenic mechanism of the flavonoids. RESULTS From the ethyl acetate fraction obtained from fractionation of the methanol extract of S. suberectus Dunn, medicarpin, formononetin and isoliquiritigenin were successfully isolated through a combination of normal- and reversed-phase chromatography. Genistein and naringenin, which were already reported to be contained in S. suberectus Dunn, were also tested for their antimutagenicity towards MNU, along with formononetin, isoliquiritigenin and medicarpin. Our results demonstrated that genistein, isoliquiritigenin, medicarpin and naringenin were antimutagenic against MNU without showing cytotoxicity. MNU is reported to cause not only DNA alkylation but also induce reactive oxygen species. The hydroxyl radical scavenging capacity of the flavonoids was correlated with the antimutagenic capacity, indicating that the hydroxyl radical scavenging activity was involved in their antimutagenicity towards MNU. CONCLUSIONS It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention. Genistein, isoliquiritigenin, medicarpin and naringenin were demonstrated to possess an antigenotoxic effects against carcinogenic MNU due to their radical scavenging activity.
Collapse
Affiliation(s)
- Keiko Inami
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Takumi Harada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yuta Okayama
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Noriko Usui
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Masataka Mochizuki
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| |
Collapse
|
39
|
Cao ZX, Wen Y, He JL, Huang SZ, Gao F, Guo CJ, Liu QQ, Zheng SW, Gong DY, Li YZ, Zhang RQ, Chen JP, Peng C. Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti-Acute Myeloid Leukemia Efficacy In Vitro and In Vivo. Mol Pharmacol 2019; 96:589-599. [PMID: 31462456 DOI: 10.1124/mol.119.116129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Licorice is a medicinal herb widely used to treat inflammation-related diseases in China. Isoliquiritigenin (ISL) is an important constituent of licorice and possesses multiple bioactivities. In this study, we examined the selective anti-AML (acute myeloid leukemia) property of ISL via targeting FMS-like tyrosine kinase-3 (FLT3), a certified valid target for treating AML. In vitro, ISL potently inhibited FLT3 kinase, with an IC50 value of 115.1 ± 4.2 nM, and selectively inhibited the proliferation of FLT3-internal tandem duplication (FLT3-ITD) or FLT3-ITD/F691L mutant AML cells. Moreover, it showed very weak activity toward other tested cell lines or kinases. Western blot immunoassay revealed that ISL significantly inhibited the activation of FLT3/Erk1/2/signal transducer and activator of transcription 5 (STAT5) signal in AML cells. Meanwhile, a molecular docking study indicated that ISL could stably form aromatic interactions and hydrogen bonds within the kinase domain of FLT3. In vivo, oral administration of ISL significantly inhibited the MV4-11 flank tumor growth and prolonged survival in the bone marrow transplant model via decreasing the expression of Ki67 and inducing apoptosis. Taken together, the present study identified a novel function of ISL as a selective FLT3 inhibitor. ISL could also be a potential natural bioactive compound for treating AML with FLT3-ITD or FLT3-ITD/F691L mutations. Thus, ISL and licorice might possess potential therapeutic effects for treating AML, providing a new strategy for anti-AML.
Collapse
Affiliation(s)
- Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yi Wen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jun-Lin He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shen-Zhen Huang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Fei Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Chuan-Jie Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Qing-Qing Liu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shu-Wen Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Dao-Yin Gong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Ruo-Qi Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jian-Ping Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| |
Collapse
|
40
|
Gioti K, Papachristodoulou A, Benaki D, Beloukas A, Vontzalidou A, Aligiannis N, Skaltsounis AL, Mikros E, Tenta R. Glycyrrhiza glabra-Enhanced Extract and Adriamycin Antiproliferative Effect on PC-3 Prostate Cancer Cells. Nutr Cancer 2019; 72:320-332. [PMID: 31274029 DOI: 10.1080/01635581.2019.1632357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men worldwide, which is almost incurable, once it progresses into the metastatic stage. Adriamycin (ADR) is a known chemotherapeutic agent that causes severe side effects. In recent years, studies in natural plant products have revealed their anticancer activities. In particular, Glycyrrhiza glabra enhanced extract (GGE), commonly known as licorice, has been reported to exert antiproliferative properties against cancer cells. In this study, the cytotoxic potential of GGE was assessed in PC-3 cells, when it is administrated alone or in combination with Adriamycin. PC-3 cells were treated with GGE and/or ADR, and the inhibition of cell proliferation was evaluated by the MTT assay. Cell cycle alterations and apoptosis rate were measured through flow cytometry. Expression levels of autophagy-related genes were evaluated with specific ELISA kits, Western blotting, and real-time PCR, while NMR spectrometry was used to identify the implication of specific metabolites. Our results demonstrated that GGE alone or in co-treatment with ADR shows antiproliferative properties against PC-3 cells, which are mediated by both apoptosis and autophagy mechanisms.
Collapse
Affiliation(s)
- Katerina Gioti
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Anastasia Papachristodoulou
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Dimitra Benaki
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, Athens, Greece.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Argyro Vontzalidou
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Nektarios Aligiannis
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Alexios-Leandros Skaltsounis
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Emmanuel Mikros
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Roxane Tenta
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| |
Collapse
|
41
|
The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal 2019; 3:NS20180201. [PMID: 32269833 PMCID: PMC7104307 DOI: 10.1042/ns20180201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of early childhood; it accounts for approximately 8–10% of all childhood cancers and is the most common cancer in children in the first year of life. Patients in the high-risk group have a poor prognosis, with relapses being common and often refractory to drug treatment in those that survive. Moreover, the drug treatment itself can lead to a range of long-term sequelae. Therefore, there is a critical need to identify new therapeutics for NB. Isoliquiritigenin (ISLQ) is a naturally-occurring, dietary chalcone-type flavonoid with a range of biological effects that depend on the cell type and context. ISLQ has potential as an anticancer agent. Here we show that ISLQ has potent cytotoxic effects on SK-N-BE(2) and IMR-32 human NB cells, which carry amplification of the MYCN gene, the main prognostic marker of poor survival in NB. ISLQ was found to increase cellular reactive oxygen species (ROS). The cytotoxic effect of ISLQ was blocked by small molecule inhibitors of oxidative stress-induced cell death, and by the antioxidant N-acetyl-l-cysteine (NAC). Combined treatment of either SK-N-B-E(2) or IMR-32 cells with ISLQ and the anticancer agent cisplatin resulted in loss of cell viability that was greater than that induced by cisplatin alone. This study provides proof-of-principle that ISLQ is a potent cytotoxin for MYCN-amplified human NB cells. This is an important first step in rationalizing the further study of ISLQ as a potential adjunct therapy for high-risk NB.
Collapse
|
42
|
Isoliquiritigenin Induces Mitochondrial Dysfunction and Apoptosis by Inhibiting mitoNEET in a Reactive Oxygen Species-Dependent Manner in A375 Human Melanoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9817576. [PMID: 30805086 PMCID: PMC6360568 DOI: 10.1155/2019/9817576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/22/2018] [Accepted: 11/04/2018] [Indexed: 11/25/2022]
Abstract
The mitochondrial protein mitoNEET is a type of iron-sulfur protein localized to the outer membrane of mitochondria and is involved in a variety of human pathologies including cystic fibrosis, diabetes, muscle atrophy, and neurodegeneration. In the current study, we found that isoliquiritigenin (ISL), one of the components of the root of Glycyrrhiza glabra L., could decrease the expression of mitoNEET in A375 melanoma cells. We also demonstrated that mitoNEET could regulate the content of reactive oxygen species (ROS), by showing that the ISL-mediated increase in the cellular ROS content could be mitigated by the mitoNEET overexpression. We also confirmed the important role of ROS in ISL-treated A375 cells. The increased apoptosis rate and the decreased mitochondrial membrane potential were mitigated by the overexpression of mitoNEET in A375 cells. These findings indicated that ISL could decrease the expression of mitoNEET, which regulated ROS content and subsequently induced mitochondrial dysfunction and apoptosis in A375 cells. Our findings also highlight mitoNEET as a promising mitochondrial target for cancer therapy.
Collapse
|
43
|
Xiong D, Hu W, Ye ST, Tan YS. Isoliquiritigenin alleviated the Ang II-induced hypertensive renal injury through suppressing inflammation cytokines and oxidative stress-induced apoptosis via Nrf2 and NF-κB pathways. Biochem Biophys Res Commun 2018; 506:161-168. [PMID: 30340829 DOI: 10.1016/j.bbrc.2018.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Hypertensive renal injury plays important role in the pathogenesis of end-stage nephropathy and the need for dialysis. Isoliquiritigenin (ISL) is a natural compound with antioxidant and anti-inflammatory activities. In this study, the protective effects of ISL on Angiotensin II (Ang II)- induced apoptosis, inflammation and extracellular matrix production in HK-2 cells were observed and its mechanisms were elucidated. METHODS Cell survival was determined with MTT assay. Cell cycle and apoptosis was assessed with flow cytometric analysis. The production of cytokines including IL-1β and TNF-α were evaluated with Elisa. Western blotting assay was used to determine protein levels of apoptosis related signaling, oxidative stress, NF-κB and ECM related molecules. mRNA levels of fibronectin and collagen Ⅳ were detected by RT-qPCR. RESULTS Ang II significantly inhibited cell survival, induced cell cycle arrest and enhanced cell apoptosis. However, the above effects were markedly alleviated by ISL treatment in a dose-dependent manner. In addition, Ang II significantly induced oxidative stress and NF-κB signaling activation, as well as inflammatory cytokines release. In contrast, these effects were remarkably reversed by ISL via regulation of Nrf2. Notably, Ang II also triggered generation of extracellular matrix, including fibronectin and collagen Ⅳ, which was abolished upon ISL treatment. CONCLUSIONS Taken together, ISL alleviated the Ang II-induced hypertensive renal injury through suppressing inflammation cytokines, excessive deposition of extracellular matrix and oxidative stress-induced apoptosis via Nrf2 and NF-κB pathways. Our findings provided the evidences for exploring the possible mechanism of hypertensive renal injury pathogenesis and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Dan Xiong
- Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Wei Hu
- Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Shu-Ting Ye
- Department of Geriatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, PR China
| | - Yuan-Sheng Tan
- Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|
44
|
Xiang S, Chen H, Luo X, An B, Wu W, Cao S, Ruan S, Wang Z, Weng L, Zhu H, Liu Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:184. [PMID: 30081934 PMCID: PMC6091185 DOI: 10.1186/s13046-018-0844-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural flavonoid isolated from the root of licorice (Glycyrrhiza uralensis), has shown various pharmacological properties including anti-oxidant, anti-inflammatory and anti-cancer activities. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been reported as post-transcriptional regulators with altered expression levels in melanoma. This study aims to investigate the anti-melanoma effect of ISL and its potential mechanism. METHODS We investigated the effect of ISL on the proliferation and apoptosis of melanoma cell lines with functional assays, such as CCK-8 assay, colony formation assay and flow cytometry. The protein level of apoptosis related genes were measured by western blotting. High-throughput genome sequencing was used for screening differentially expressed miRNAs of melanoma cell lines after the treatment of ISL. We performed functional assays to determine the oncogenic role of miR-301b, the most differentially expressed miRNA, and its target gene leucine rich repeats and immunoglobulin like domains 1 (LRIG1), confirmed by bioinformatic analysis, luciferase reporter assay, western blotting and immunohistochemical assay in melanoma. Immunocompromised mouse models were used to determine the role of miR-301b and its target gene in melanoma tumorigenesis in vivo. The relationship between miR-301b and LRIG1 was further verified in GEO data set and tissue specimens. RESULTS Functional assays indicated that ISL exerted significant growth inhibition and apoptosis induction on melanoma cells. MiR-301b is the most differentially expressed miRNA after the treatment of ISL and significantly downregulated. The suppressive effect of ISL on cell growth is reversed by ectopic expression of miR-301b. Intratumorally administration of miR-301b angomir enhances the inhibitory effect of ISL on tumor growth in vivo. Bioinformatic analysis showed that miR-301b may target LRIG1, miR-301b suppresses the luciferase activity of reporter constructs containing 3'UTR of LRIG1 as well as the expression level of LRIG1. And the anti-cancer effect of ISL is mitigated when LRIG1 is silenced in vivo and in vitro. Analysis of the melanoma samples obtained from patients shows that LRIG1 is negatively correlated with miR-301b. CONCLUSIONS ISL may inhibit the proliferation of melanoma cells by suppressing miR-301b and inducing its target LRIG1.
Collapse
Affiliation(s)
- Shijian Xiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojun Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Baichao An
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Siwei Cao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shifa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lidong Weng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
45
|
Wang Z, Liu F, Yu JJ, Jin JZ. β-Bourbonene attenuates proliferation and induces apoptosis of prostate cancer cells. Oncol Lett 2018; 16:4519-4525. [PMID: 30197674 PMCID: PMC6126340 DOI: 10.3892/ol.2018.9183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sesquiterpenes have antitumor, anti-inflammation, and anti-fungal effects. β-bourbonene is a kind of sesquiterpene, but its pharmacological effect has not been studied. The present study was conducted in order to investigate the potential anticancer effects of β-bourbonene on human prostate cancer PC-3M cells. PC-3M cells were incubated with 0, 25, 50, 100 µg/ml of β-bourbonene. Cell Counting Kit-8 (CCK-8) detection showed that compared with the control group, β-bourbonene inhibited the growth of PC-3M cells in a dose-dependent manner. G0/G1 phase arrest was observed by β-bourbonene by using flow cytometry. TUNEL staining and Annexin V/PI dual-staining method revealed that apoptosis was found in cells with β-bourbonene treatment, and the quantity of apoptotic cells was increased with the elevation in concentration. The mRNA and protein expression levels of Fas and FasL in the drug-treatment group were significantly elevated. Furthermore, the western blot assay also indicated that with an increase in the concentration of β-bourbonene, the protein expression of Bax in the drug-treatment group was significantly elevated, while a decrease was identified in the protein expression of Bcl-2. Taken together, β-bourbonene can inhibit the proliferation and simultaneously, induce apoptosis and G0/G1 arrest of prostate cancer PC-3M cells, which may be realized by upregulation of mRNA expression of Fas and FasL, increase of Bax protein expression and decrease of Bcl-2 protein expression.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| | - Feng Liu
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| | - Jian-Jun Yu
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| | - Ji-Zhong Jin
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| |
Collapse
|
46
|
Takac P, Kello M, Pilatova MB, Kudlickova Z, Vilkova M, Slepcikova P, Petik P, Mojzis J. New chalcone derivative exhibits antiproliferative potential by inducing G2/M cell cycle arrest, mitochondrial-mediated apoptosis and modulation of MAPK signalling pathway. Chem Biol Interact 2018; 292:37-49. [PMID: 29981726 DOI: 10.1016/j.cbi.2018.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
In the present study, we investigated antiproliferative activity of seven newly synthesized chalcone derivatives. Among tested compounds, (2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one (1C) was the most potent with IC50 = 4.1 μmol/L in human colorectal HCT116 cells and was selected for further studies. Inhibition of cell proliferation was associated with cell cycle arrest in G2/M phase and dysregulation of α, α1 and β5 tubulins. Moreover, 1C caused disruption of the mitochondrial membrane potential and increased number of cells with sub G0/G1 DNA content which is considered as marker of apoptosis. Apoptosis was confirmed by annexin V/PI and AO/PI staining. Furthermore, we found increased concentration of cytochrome c, Smac/Diablo and increased caspase-3 and caspase-9 activity, cleavage of PARP as well as activation of DNA repair mechanisms in 1C-treated HCT116 cancer cells. Moreover this chalcone derivative up-regulated proapoptotic Bax expression and down-regulated antiapoptotic Bcl-2 and Bcl-xL expression. Additionally, 1C treatment led to modulation of MAPKs and Akt signalling pathways. In conclusion, our data showed ability of 1C to suppress cancel cell growth and provide the rationale for further in vivo study.
Collapse
Affiliation(s)
- Peter Takac
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic
| | - Zuzana Kudlickova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic; Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, 04181, Košice, Slovak Republic
| | - Maria Vilkova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic
| | - Pavlina Slepcikova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic
| | - Peter Petik
- Department of Pathology, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic.
| |
Collapse
|