1
|
Orser BA. Discovering the Intriguing Properties of Extrasynaptic γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2024; 140:1192-1200. [PMID: 38624275 DOI: 10.1097/aln.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Xin Y, Chu T, Zhou S, Xu A. α5GABA A receptor: A potential therapeutic target for perioperative neurocognitive disorders, a review of preclinical studies. Brain Res Bull 2023; 205:110821. [PMID: 37984621 DOI: 10.1016/j.brainresbull.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Perioperative neurocognitive disorders (PND) are a common complication in elderly patients following surgery, which not only prolongs the recovery period but also affects their future quality of life and imposes a significant burden on their family and society. Multiple factors, including aging, vulnerability, anesthetic drugs, cerebral oxygen desaturation, and severe pain, have been associated with PND. Unfortunately, no effective drug is currently available to prevent PND. α5 γ-aminobutyric acid subtype A (α5GABAA) receptors have been implicated in cognitive function modulation. Positive or negative allosteric modulators of α5GABAA receptors have been found to improve cognitive impairment under different conditions. Therefore, targeting α5GABAA receptors may represent a promising treatment strategy for PND. This review focuses on preclinical studies of α5GABAA receptors and the risk factors associated with PND, primarily including aging, anesthetics, and neuroinflammation. Specifically, positive allosteric modulators of α5GABAA receptors have improved cognitive function in aged experimental animals. In contrast, negative allosteric modulators of α5GABAA receptors have been found to facilitate cognitive recovery in aged or adult experimental animals undergoing anesthesia and surgery but not in aged experimental animals under anesthesia alone. The reasons for the discordant findings have yet to be elucidated. In preclinical studies, different strategies of drug administration, as well as various behavioral tests, may influence the stability of the results. These issues need to be carefully considered in future studies.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
3
|
Sharma D, Tripathi M, Doddamani R, Sharma MC, Lalwani S, Sarat Chandra P, Banerjee Dixit A, Banerjee J. Correlation of age at seizure onset with GABA A receptor subunit and chloride Co-transporter configuration in Focal cortical dysplasia (FCD). Neurosci Lett 2023; 796:137065. [PMID: 36638954 DOI: 10.1016/j.neulet.2023.137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Focal cortical dysplasia (FCD) represents a group of malformations of cortical development, which are speculated to be related to early developmental defects in the cerebral cortex. According to dysmature cerebral development hypothesis of FCD altered GABAA receptor function is known to contribute to abnormal neuronal network. Here, we studied the possible association between age at seizure onset in FCD with the subunit configuration of GABAA receptors in resected brain specimens obtained from patients with FCD. We observed a significantly higher ratio of α4/α1 subunit-containing GABAA receptors in patients with early onset (EO) FCD as compared to those with late onset (LO) FCD as is seen during the course of development where α4-containing GABAA receptors expression is high as compared to α1-containing GABAA receptors expression. Likewise, the influx to efflux chloride co-transporter expression of NKCC1/KCC2 was also increased in patients with EO FCD as seen during brain development. In addition, we observed that the ratio of GABA/Glutamate neurotransmitters was lower in patients with EO FCD as compared to that in patients with LO FCD. Our findings suggest altered configuration of GABAA receptors in FCD which could be contributing to aberrant depolarizing GABAergic activity. In particular, we observed a correlation of age at seizure onset in FCD with subunit configuration of GABAA receptors, levels of NKCC1/KCC2 and the ratio of GABA/Glutamate neurotransmitters such that the patients with EO FCD exhibited a more critically modulated GABAergic network.
Collapse
Affiliation(s)
- Devina Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - M C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Bayat M, Karimi N, Karami M, Haghighi AB, Bayat K, Akbari S, Haghani M. Chronic exposure to 2.45 GHz microwave radiation improves cognition and synaptic plasticity impairment in vascular dementia model. Int J Neurosci 2023; 133:111-122. [PMID: 33635159 DOI: 10.1080/00207454.2021.1896502] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: In this study, we evaluated the effects of 2.45 GHz microwave radiation on cognitive dysfunction induced by vascular dementia (VaD).Methods: The VaD was induced by bilateral-common carotid occlusion (2-VO). The rats were divided into 4 groups including: control (n = 6), sham (n = 6), 2-VO (n = 8), and 2-VO + Wi-Fi (n = 10) groups. Wi-Fi modem centrally located at the distance of 25 cm from the animal's cages and the animals were continuously exposed to Wi-Fi signal while they freely moved in the cage (2 h/day for forty-five days). Therefore, the power density (PD) and specific absorption rate value (SAR) decreased at a distance of 25 to 60 cm (PD = 0.018 to 0.0032 mW/cm2, SAR = 0.0346 to 0.0060 W/Kg). The learning, memory, and hippocampal synaptic-plasticity were evaluated by radial arm maze (RAM), passive avoidance (PA), and field-potential recording respectively. The number of hippocampal CA1 cells was also assessed by giemsa staining.Results: Our results showed that VaD model led to impairment in the spatial learning and memory performance in RAM and PA that were associated with long-term potentiation (LTP) impairment, decrease of basal-synaptic transmission (BST), increase of GABA transmission, and decline of neurotransmitter release-probability as well as hippocampal cell loss. Notably, chronic Wi-Fi exposure significantly recovered the learning-memory performance, LTP induction, and cell loss without any effect on BST.Conclusions: The LTP recovery by Wi-Fi in the 2-VO rats was probably related to significant increases in the hippocampal CA1 neuronal density, partial recovery of neurotransmitter release probability, and reduction of GABA transmissiSon as evident by rescue of paired-pulse ratio 10 ms.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karimi
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Karami
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kamjoo Bayat
- Department of Physics, K. N. Toosi University of Technology, Tehran, Iran
| | - Somayeh Akbari
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Spedding M, Sebban C, Jay TM, Rocher C, Tesolin-Decros B, Chazot P, Schenker E, Szénási G, Lévay GI, Megyeri K, Barkóczy J, Hársing LG, Thomson I, Cunningham MO, Whittington MA, Etherington LA, Lambert JJ, Antoni FA, Gacsályi I. Phenotypical Screening on Neuronal Plasticity in Hippocampal-Prefrontal Cortex Connectivity Reveals an Antipsychotic with a Novel Profile. Cells 2022; 11:1181. [PMID: 35406745 PMCID: PMC8997950 DOI: 10.3390/cells11071181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which was resistant to atropine and prazosin. EGIS 11150 enhanced H-PFC coherence, and increased the 8−9 Hz theta band of the EEG power spectrum (from 0.002 mg/kg i.p, at >30× lower doses than clozapine, and >100× for olanzapine, risperidone, or haloperidol). EGIS 11150 fully blocked the effects of phencyclidine (PCP) or ketamine on EEG. Inhibition of long-term potentiation (LTP) in H-PFC was blocked by platform stress, but was fully restored by EGIS 11150 (0.01 mg/kg i.p.), whereas clozapine (0.3 mg/kg ip) only partially restored LTP. EGIS 11150 has a unique electrophysiological profile, so phenotypical screening on H-PFC connectivity can reveal novel antipsychotics.
Collapse
Affiliation(s)
- Michael Spedding
- Institut de Recherches Internationales Servier, 92284 Suresnes, France;
- Spedding Research Solutions SAS, 78110 Le Vésinet, France
| | - Claude Sebban
- Hôpital Charles Foix, 94205 Ivry-sur-Seine, France; (C.S.); (B.T.-D.)
| | - Thérèse M. Jay
- INSERM UMR_S894, Hôpital Sainte-Anne, Université de Paris V Descartes, 75014 Paris, France; (T.M.J.); (C.R.)
| | - Cyril Rocher
- INSERM UMR_S894, Hôpital Sainte-Anne, Université de Paris V Descartes, 75014 Paris, France; (T.M.J.); (C.R.)
| | | | - Paul Chazot
- Department of Biosciences, University of Durham, Durham DH1 3LE, UK;
| | - Esther Schenker
- Institut de Recherches Internationales Servier, 92284 Suresnes, France;
| | - Gabor Szénási
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - György I. Lévay
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Gedeon Richter Plc., 1103 Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
| | - Katalin Megyeri
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Hungarian Defence Forces Medical Centre, 1134 Budapest, Hungary
| | - Jozsef Barkóczy
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
| | - Laszlo G. Hársing
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary
| | - Ian Thomson
- Institute of Neurosciences, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (I.T.); (M.O.C.)
| | - Mark O. Cunningham
- Institute of Neurosciences, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (I.T.); (M.O.C.)
- Discipline of Physiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Miles A. Whittington
- Deceased, formerly of Hull York Medical School, University of York, Heslington HU6 7RX, UK;
| | - Lori-An Etherington
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK; (L.-A.E.); (J.J.L.)
| | - Jeremy J. Lambert
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK; (L.-A.E.); (J.J.L.)
| | - Ferenc A. Antoni
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Istvan Gacsályi
- Behavioural Pharmacology Laboratory, EGIS Pharmaceuticals Ltd., 1106 Budapest, Hungary; (G.S.); (G.I.L.); (K.M.); (J.B.); (L.G.H.J.); (F.A.A.); (I.G.)
- ATRC Aurigon Toxicological Research Center Ltd., 2120 Dunakeszi, Hungary
| |
Collapse
|
6
|
Pethő B, Szilágyi GB, Mengyel B, Nagy T, Farkas F, Kátai-Fadgyas K, Volk B. Development and Process Intensification of an Efficient Flow–Cascade Reaction Sequence in the Synthesis of Afizagabar. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bálint Pethő
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Gábor B. Szilágyi
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Béla Mengyel
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Tamás Nagy
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Ferenc Farkas
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Katalin Kátai-Fadgyas
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| |
Collapse
|
7
|
The Case for Clinical Trials with Novel GABAergic Drugs in Diabetes Mellitus and Obesity. Life (Basel) 2022; 12:life12020322. [PMID: 35207609 PMCID: PMC8876029 DOI: 10.3390/life12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and diabetes mellitus have become the surprising menaces of relative economic well-being worldwide. Gamma amino butyric acid (GABA) has a prominent role in the control of blood glucose, energy homeostasis as well as food intake at several levels of regulation. The effects of GABA in the body are exerted through ionotropic GABAA and metabotropic GABAB receptors. This treatise will focus on the pharmacologic targeting of GABAA receptors to reap beneficial therapeutic effects in diabetes mellitus and obesity. A new crop of drugs selectively targeting GABAA receptors has been under investigation for efficacy in stroke recovery and cognitive deficits associated with schizophrenia. Although these trials have produced mixed outcomes the compounds are safe to use in humans. Preclinical evidence is summarized here to support the rationale of testing some of these compounds in diabetic patients receiving insulin in order to achieve better control of blood glucose levels and to combat the decline of cognitive performance. Potential therapeutic benefits could be achieved (i) By resetting the hypoglycemic counter-regulatory response; (ii) Through trophic actions on pancreatic islets, (iii) By the mobilization of antioxidant defence mechanisms in the brain. Furthermore, preclinical proof-of-concept work, as well as clinical trials that apply the novel GABAA compounds in eating disorders, e.g., olanzapine-induced weight-gain, also appear warranted.
Collapse
|
8
|
Lebrun F, Violle N, Letourneur A, Muller C, Fischer N, Levilly A, Orset C, Sors A, Vivien D. Post-acute delivery of α5-GABAA antagonist, S 44819, improves functional recovery in juvenile rats following stroke. Exp Neurol 2021; 347:113881. [PMID: 34597681 DOI: 10.1016/j.expneurol.2021.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/04/2022]
Abstract
Hypo-excitability was reported in the peri-infarct tissue following stroke, an effect counteracted by a blockage of α5-GABAA receptors in adult rodents. Our present study aims to evaluate the effect of a selective α5-GABAA receptor antagonist, S 44819, in stroke in juvenile animals. We have set up and characterized an original model of transient ischemic stroke in 28 day-old Sprague-Dawley rats (45-min occlusion of the middle cerebral artery by intraluminal suture). In this model, S 44819 (1, 3 and 10 mg/kg, b.i.d) was orally administered from day 3 to day 16 after stroke onset. Sensorimotor recovery was assessed on day 1, day 9 and day 16 after stroke onset. Results show that rats treated with S 44819 at the doses of 3 and 10 mg/kg displayed a significant improvement of the neurological deficits (neuroscore) on day 9 and day 16, when compared with animals treated with vehicle. Grip-test data analysis reveals that rats treated with S 44819 at the dose of 3 mg/kg displayed a better recovery on day 9 and day 16. These results are in agreement with those previously observed in adult rats, demonstrating that targeting α5-GABAA receptors improves neurological recovery after stroke in juvenile rats.
Collapse
Affiliation(s)
- Florent Lebrun
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France; Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Nicolas Violle
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Annelise Letourneur
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Christophe Muller
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Nicolas Fischer
- ETAP-Lab, STROK@LLIANCE, 13 Rue du Bois de la Champelle, 54500 Vandoeuvre-les-Nancy, France
| | - Anthony Levilly
- ESRP (European Stroke Research Platform), Centre Universitaire de Ressources Biologiques (CURB), Université Caen Basse Normandie, Caen, France
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; ESRP (European Stroke Research Platform), Centre Universitaire de Ressources Biologiques (CURB), Université Caen Basse Normandie, Caen, France
| | - Aurore Sors
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Clinical Research, CHU Caen-Normandie, Caen, France.
| |
Collapse
|
9
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Epileptic Mechanisms Shared by Alzheimer's Disease: Viewed via the Unique Lens of Genetic Epilepsy. Int J Mol Sci 2021; 22:ijms22137133. [PMID: 34281185 PMCID: PMC8268161 DOI: 10.3390/ijms22137133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Our recent work on genetic epilepsy (GE) has identified common mechanisms between GE and neurodegenerative diseases including Alzheimer's disease (AD). Although both disorders are seemingly unrelated and occur at opposite ends of the age spectrum, it is likely there are shared mechanisms and studies on GE could provide unique insights into AD pathogenesis. Neurodegenerative diseases are typically late-onset disorders, but the underlying pathology may have already occurred long before the clinical symptoms emerge. Pathophysiology in the early phase of these diseases is understudied but critical for developing mechanism-based treatment. In AD, increased seizure susceptibility and silent epileptiform activity due to disrupted excitatory/inhibitory (E/I) balance has been identified much earlier than cognition deficit. Increased epileptiform activity is likely a main pathology in the early phase that directly contributes to impaired cognition. It is an enormous challenge to model the early phase of pathology with conventional AD mouse models due to the chronic disease course, let alone the complex interplay between subclinical nonconvulsive epileptiform activity, AD pathology, and cognition deficit. We have extensively studied GE, especially with gene mutations that affect the GABA pathway such as mutations in GABAA receptors and GABA transporter 1. We believe that some mouse models developed for studying GE and insights gained from GE could provide unique opportunity to understand AD. These include the pathology in early phase of AD, endoplasmic reticulum (ER) stress, and E/I imbalance as well as the contribution to cognitive deficit. In this review, we will focus on the overlapping mechanisms between GE and AD, the insights from mutations affecting GABAA receptors, and GABA transporter 1. We will detail mechanisms of E/I imbalance and the toxic epileptiform generation in AD, and the complex interplay between ER stress, impaired membrane protein trafficking, and synaptic physiology in both GE and AD.
Collapse
|
11
|
McGinnity CJ, Riaño Barros DA, Hinz R, Myers JF, Yaakub SN, Thyssen C, Heckemann RA, de Tisi J, Duncan JS, Sander JW, Lingford-Hughes A, Koepp MJ, Hammers A. Αlpha 5 subunit-containing GABA A receptors in temporal lobe epilepsy with normal MRI. Brain Commun 2021; 3:fcaa190. [PMID: 33501420 PMCID: PMC7811756 DOI: 10.1093/braincomms/fcaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
GABAA receptors containing the α5 subunit mediate tonic inhibition and are widely expressed in the limbic system. In animals, activation of α5-containing receptors impairs hippocampus-dependent memory. Temporal lobe epilepsy is associated with memory impairments related to neuron loss and other changes. The less selective PET ligand [11C]flumazenil has revealed reductions in GABAA receptors. The hypothesis that α5 subunit receptor alterations are present in temporal lobe epilepsy and could contribute to impaired memory is untested. We compared α5 subunit availability between individuals with temporal lobe epilepsy and normal structural MRI ('MRI-negative') and healthy controls, and interrogated the relationship between α5 subunit availability and episodic memory performance, in a cross-sectional study. Twenty-three healthy male controls (median ± interquartile age 49 ± 13 years) and 11 individuals with MRI-negative temporal lobe epilepsy (seven males; 40 ± 8) had a 90-min PET scan after bolus injection of [11C]Ro15-4513, with arterial blood sampling and metabolite correction. All those with epilepsy and six controls completed the Adult Memory and Information Processing Battery on the scanning day. 'Bandpass' exponential spectral analyses were used to calculate volumes of distribution separately for the fast component [V F; dominated by signal from α1 (α2, α3)-containing receptors] and the slow component (V S; dominated by signal from α5-containing receptors). We made voxel-by-voxel comparisons between: the epilepsy and control groups; each individual case versus the controls. We obtained parametric maps of V F and V S measures from a single bolus injection of [11C]Ro15-4513. The epilepsy group had higher V S in anterior medial and lateral aspects of the temporal lobes, the anterior cingulate gyri, the presumed area tempestas (piriform cortex) and the insulae, in addition to increases of ∼24% and ∼26% in the ipsilateral and contralateral hippocampal areas (P < 0.004). This was associated with reduced V F:V S ratios within the same areas (P < 0.009). Comparisons of V S for each individual with epilepsy versus controls did not consistently lateralize the epileptogenic lobe. Memory scores were significantly lower in the epilepsy group than in controls (mean ± standard deviation -0.4 ± 1.0 versus 0.7 ± 0.3; P = 0.02). In individuals with epilepsy, hippocampal V S did not correlate with memory performance on the Adult Memory and Information Processing Battery. They had reduced V F in the hippocampal area, which was significant ipsilaterally (P = 0.03), as expected from [11C]flumazenil studies. We found increased tonic inhibitory neurotransmission in our cohort of MRI-negative temporal lobe epilepsy who also had co-morbid memory impairments. Our findings are consistent with a subunit shift from α1/2/3 to α5 in MRI-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- Colm J McGinnity
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Daniela A Riaño Barros
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK
| | - James F Myers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Siti N Yaakub
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Charlotte Thyssen
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rolf A Heckemann
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103SW, The Netherlands
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias J Koepp
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Alexander Hammers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neurodis Foundation, CERMEP, Imagerie du Vivant, 69003 Lyon, France
| |
Collapse
|
12
|
The Effects of GABAergic System under Cerebral Ischemia: Spotlight on Cognitive Function. Neural Plast 2020; 2020:8856722. [PMID: 33061952 PMCID: PMC7539123 DOI: 10.1155/2020/8856722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
In this review, we present evidence about the changes of the GABAergic system on the hippocampus under the ischemic environment, which may be an underlying mechanism to the ischemia-induced cognitive deficit. GABAergic system, in contrast to the glutamatergic system, is considered to play an inhibitory effect on the central nervous system over the past several decades. It has received widespread attention in the area of schizophrenia and epilepsy. The GABAergic system has a significant effect in promoting neural development and formation of local neural circuits of the brain, which is the structural basis of cognitive function. There have been a number of reviews describing changes in the GABAergic system in cerebral ischemia in recent years. However, no study has investigated the changes in the system in the hippocampus during cerebral ischemic injury, which results in cognitive impairment, particularly at the chronic ischemic stage and the late phase of ischemia. We present a review of the changes of the GABAergic system in the hippocampus under ischemia, including GABA interneurons, extracellular GABA neurotransmitter, and GABA receptors. Several studies are also listed correlating amelioration of cognitive impairment by regulating the GABAergic system in the hippocampus damaged under ischemia. Furthermore, exogenous cell transplantation, which improves cognition by modulating the GABAergic system, will also be described in this review to bring new insight and strategy on solving cognitive deficits caused by cerebral ischemia.
Collapse
|
13
|
Duchon A, Gruart A, Albac C, Delatour B, Zorrilla de San Martin J, Delgado-García JM, Hérault Y, Potier MC. Long-lasting correction of in vivo LTP and cognitive deficits of mice modelling Down syndrome with an α5-selective GABA A inverse agonist. Br J Pharmacol 2020; 177:1106-1118. [PMID: 31652355 PMCID: PMC7042104 DOI: 10.1111/bph.14903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Excessive GABAergic inhibition contributes to cognitive dysfunctions in Down syndrome (DS). Selective negative allosteric modulators (NAMs) of α5‐containing GABAA receptors such as the α5 inverse agonist (α5IA) restore learning and memory deficits in Ts65Dn mice, a model of DS. In this study we have assessed the long‐lasting effects of α5IA on in vivo LTP and behaviour in Ts65Dn mice. Experimental Approach We made in vivo LTP recordings for six consecutive days in freely moving Ts65Dn mice and their wild‐type littermates, treated with vehicle or α5IA. In parallel, Ts65Dn mice were assessed by various learning and memory tests (Y maze, Morris water maze, or the novel object recognition) for up to 7 days, following one single injection of α5IA or vehicle. Key Results LTP was not evoked in vivo in Ts65Dn mice at hippocampal CA3‐CA1 synapses. However, this deficit was sustainably reversed for at least six consecutive days following a single injection of α5IA. This long‐lasting effect of α5IA was also observed when assessing working and long‐term memory deficits in Ts65Dn mice. Conclusion and Implications We show for the first time in vivo LTP deficits in Ts65Dn mice. These deficits were restored for at least 6 days following acute treatment with α5IA and might be the substrate for the long‐lasting pharmacological effects of α5IA on spatial working and long‐term recognition and spatial memory tasks. Our results demonstrate the relevance of negative allosteric modulators of α5‐containing GABAA receptors to the treatment of cognitive deficits associated with DS.
Collapse
Affiliation(s)
- Arnaud Duchon
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Seville, Spain
| | - Christelle Albac
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Javier Zorrilla de San Martin
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Yann Hérault
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
14
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|