1
|
Wang J, Wu T, Zhao Y, Mao L, Ding J, Wang X. IL-17A Aggravated Blood-Brain Barrier Disruption via Activating Src Signaling in Epilepsy Mice. Mol Neurobiol 2024; 61:11012-11025. [PMID: 38819634 DOI: 10.1007/s12035-024-04203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an important pathogenic driving force in the genesis and development of epilepsy. The latest researches demonstrated that IL-17A mediated blood-brain barrier (BBB) dysfunction through disruption of tight junction protein expression. To investigate whether IL-17A is involved in BBB disruption after acute seizure attack, the pilocarpine model was established with C57BL/6 J (wild type, WT) and IL-17R-deficient mice in vivo and with primary cultured rat brain microvascular endothelial cells in vitro. The mortality rate and brain water content were evaluated at 24 h after status epilepticus, and IL-17A concentration, endothelial tight junction, adherens junction proteins, and albumin leakage were assessed at 0 h, 4 h, 12 h, and 24 h after status epilepticus (SE). IL-17R-deficient mice showed lessen severity of epilepsy than WT mice, accompanied by less albumin leakage, reduced brain water content, decreased IL-17A, and upregulated expression of target proteins (ZO-1, Occludin and VE-cadherin). IL-17R knockout abrogated abnormal upregulation of Src kinase and phosphorylated Src kinase in the setting of SE, and Src kinase inhibitor PP1 abrogated IL-17A-induced SE related endothelial injury in vitro. In conclusion, IL-17A inhibition might be a promising therapeutic option to attenuate endothelial cell injury and further BBB disruption by reducing Src kinase activation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanan Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
2
|
Roy S, Ghosh A, Majie A, Karmakar V, Das S, Dinda SC, Bose A, Gorain B. Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155638. [PMID: 38728916 DOI: 10.1016/j.phymed.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Diabetes mellitus, a hyperglycemic condition associated with multitudinous organ dysfunction, is a hallmark of the metabolic disorder. This life-threatening condition affects millions of individuals globally, harming them financially, physically and psychologically in the course of therapy. PURPOSES The course therapy for illnesses has undergone ground-breaking transformations due to recent technical advances and insights. Alternatively, the administration of hyperglycemia-reducing agents results in several complications, including severe cardiovascular disease, kidney failure, hepatic problems, and several dermatological conditions. Consideration of alternate diabetic therapy having minimal side effects or no adverse reactions has been driven by such problems. STUDY DESIGN An extensive literature study was conducted in authoritative scientific databases such as PubMed, Scopus, and Web of Science to identify the studies elucidating the bioactivities of terpenoids in diabetic conditions. METHODS Keywords including 'terpenoids', 'monoterpenes', 'diterpenes', 'sesquiterpenes', 'diabetes', 'diabetes mellitus', 'clinical trials', 'preclinical studies', and 'increased blood glucose' were used to identify the relevant research articles. The exclusion criteria, such as English language, duplication, open access, abstract only, and studies not involving preclinical and clinical research, were set. Based on these criteria, 937 relevant articles were selected for further evaluation. RESULTS Triterpenes can serve as therapeutic agents for diabetic retinopathy, peripheral neuropathy, and kidney dysfunction by inhibiting several pathways linked to hyperglycemia and its complications. Therefore, it is essential to draw special attention to these compounds' therapeutic effectiveness and provide scientific professionals with novel data. CONCLUSION This study addressed recent progress in research focussing on mechanisms of terpenoid, its by-products, physiological actions, and therapeutic applications, particularly in diabetic and associated disorders.
Collapse
Affiliation(s)
- Sukanta Roy
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Subas Chandra Dinda
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Anirbandeep Bose
- School of Medical Science, Adamas University, Barbaria, Jagannathpur, Kolkata, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
3
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
4
|
Li C, Jiang M, Fang Z, Chen Z, Li L, Liu Z, Wang J, Yin X, Wang J, Wu M. Current evidence of synaptic dysfunction after stroke: Cellular and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14744. [PMID: 38727249 PMCID: PMC11084978 DOI: 10.1111/cns.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhi‐Ting Fang
- Department of Pathophysiology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Li Li
- Department of Intensive Care UnitThe Affiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
5
|
Jin J, Chen M, Wang H, Li S, Ma L, Wang B. Schizandrin A attenuates early brain injury following subarachnoid hemorrhage through suppressing neuroinflammation. Mol Biol Rep 2024; 51:236. [PMID: 38285214 DOI: 10.1007/s11033-023-08956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Early brain injury (EBI) is the vital factor in determining the outcome of subarachnoid hemorrhage (SAH). Schizandrin A (Sch A), the bioactive ingredient extracted from Schisandra chinensis, has been proved to exert beneficial effects in multiple human diseases. However, the effect of Sch A on SAH remains unknown. The current study was designed to explored role and mechanism of Sch A in the pathophysiological process of EBI following SAH. METHOD A total of 74 male C57BL/6 J mice were subjected to endovascular perforation to establish the SAH model. Different dosages of Sch A were administrated post-modeling. The post-modeling assessments included neurological test, brain water content, RT-PCR, immunofluorescence, Nissl staining. Oxygenated hemoglobin was introduced into microglia to establish a SAH model in vitro. RESULT Sch A significantly alleviated SAH-induced brain edema and neurological impairment. Moreover, application of Sch A remarkably inhibited SAH-induced neuroinflammation, evidenced by the decreased microglial activation and downregulated TNF-α, IL-1β and IL-6 and expression. Additionally, Sch A, both in vivo and in vitro, protected neurons against SAH-induced inflammatory injury. Mechanismly, administration of Sch A inhibited miR-155/NF-κB axis and attenuated neuroinflammation, as well as alleviating neuronal injury. CONCLUSION Our data suggested that Sch A could attenuated EBI following SAH via modulating neuroinflammation. The anti-inflammatory effect was exerted, at least partly through the miR-155/NF-κB axis, which may shed light on a possible therapeutic target for SAH.
Collapse
Affiliation(s)
- Jianxiang Jin
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Maosong Chen
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Hongcai Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Shiwei Li
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Lei Ma
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Boding Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China.
| |
Collapse
|
6
|
Liu Y, Yao C, Sheng B, Zhi S, Chen X, Ding P, Zhang J, Tao Z, Li W, Zhuang Z, Mao J, Peng Z, Yan H, Jin W. Inhibition of USP30 Promotes Mitophagy by Regulating Ubiquitination of MFN2 by Parkin to Attenuate Early Brain Injury After SAH. Transl Stroke Res 2023:10.1007/s12975-023-01228-3. [PMID: 38147294 DOI: 10.1007/s12975-023-01228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a type of stroke with a high disability and mortality rate. Apoptosis caused by massive damage to mitochondria in neuron cells and inflammatory responses caused by high extracellular ATP lead to poor outcomes. USP30 is a deubiquitinating enzyme that inhibits mitophagy, resulting in a failure to remove damaged mitochondria in a timely manner after SAH; nevertheless, the pathway through which USP30 inhibits mitophagy is unknown. This study evaluated the neuroprotective role and possible molecular basis by which inhibiting USP30 to attenuate SAH-induced EBI by promoting neuronal mitophagy. We used an in vitro model of hemoglobin exposure and an in vivo model of intravascular perforation. Increased expression of USP30 was found after SAH in vivo and in vitro, and USP30 inhibition expression in SAH mice treated with MF094 resulted in significant improvement of neurological injury and inflammatory response and mediated good outcomes, suggesting a neuroprotective effect of USP30 inhibition. In cultured neurons, inhibition of USP30 promoted ubiquitination modification of mitochondrial fusion protein 2 (MFN2) by E3 ubiquitin ligase (Parkin), separating damaged mitochondria from the healthy mitochondrial network and prompting mitophagy, causing early clearance of damaged intracellular mitochondria, and reducing the onset of apoptosis. The high extracellular ATP environment was meliorated, reversing the conversion of microglia to a pro-inflammatory phenotype and reducing inflammatory injury. USP30 inhibition had no autophagy-promoting effect on structurally and functionally sound mitochondria and did not inhibit normal intracellular ATP production. The findings suggest that USP30 inhibition has a neuroprotective effect after SAH by promoting early mitophagy after SAH to clear damaged mitochondria.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Chenbei Yao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Simin Zhi
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Xiangxin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Pengfei Ding
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jiatong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zhennan Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jiannan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Huiying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
7
|
Ávila-Gálvez MÁ, Marques D, Figueira I, Cankar K, Bosch D, Brito MA, Dos Santos CN. Costunolide and parthenolide: Novel blood-brain barrier permeable sesquiterpene lactones to improve barrier tightness. Biomed Pharmacother 2023; 167:115413. [PMID: 37683593 DOI: 10.1016/j.biopha.2023.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sesquiterpene lactones - such as those found in chicory - are considered promising bioactive compounds. These small molecules have shown several health benefits for various diseases, including brain disorders. However, it is unknown whether these compounds can cross the blood-brain barrier (BBB), and which could be the effects on brain microvascular endothelial cells. We show that six sesquiterpene lactones evaluated in an in vitro model of the BBB have different capacities to be transported through the barrier. Costunolide presented more than 20 % of transport while lactucin, 11β-13-dihydrolactucin, 11β-13-dihydrolactucopicrin, and parthenolide presented between 10 % and 20 %, whilst almost no transport was detected for lactucopicrin. Furthermore, costunolide and parthenolide reduced P-gp ABC transporter expression alongside an increase in caveolin-1, the main protein of caveolae. Remarkably, these two compounds improved barrier tightness by increasing the expression of both tight and adherens junctions. These findings open a new avenue to explore costunolide and parthenolide as promising compounds for brain therapies.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Daniela Marques
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Katarina Cankar
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Dirk Bosch
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Zhao F, Peng C, Li H, Chen H, Yang Y, Ai Q, Chen N, Liu F. Paeoniae Radix Rubra extract attenuates cerebral ischemia injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116567. [PMID: 37172921 DOI: 10.1016/j.jep.2023.116567] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, but its effect on cerebral ischemia is still rarely reported. AIM OF THE STUDY The present study aimed to assess the potential therapeutic possibilities of the extract of PRR (PRRE) on cerebral ischemia, further exploring the underlying mechanism, and preliminary screening of the corresponding active components. MATERIALS AND METHODS The neuroprotective effects of PRRE in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO) injury and mouse hippocampal neuronal cells (HT22 cell line) following oxidative stress were confirmed. The mechanism was investigated using immunohistochemical staining, western blotting, transmission electron microscopy (TEM), and immunofluorescence. The active components of PRRE were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecular docking. RESULTS The in vivo study showed that PRRE reduced infarct volume and improved neurological deficits in rats, and the expression of GPX4, FTH1, Beclin1, LC3 II, and p-Akt was upregulated in the rat hippocampi. In addition, the vitro research indicated that PRRE can also alleviate H2O2-induced HT22 cell damage by regulating cytokines such as malondialdehyde (MDA), reduced glutathione (GSH) and reactive oxygen species (ROS), and the expressions of GPX4 and Beclin1 were observed to be elevated. The PI3K/Akt signalling pathway was inhibited by LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K). Furthermore, the effective components of PRRE in regulating ferroptosis and autophagy are mainly defined as albiflorin, paeoniflorin, benzoyl paeoniflorin, oleanolic acid, and hederagenin. CONCLUSION PRRE exerts neuroprotective effects against cerebral ischaemic injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. This study provides an experimental basis for the potential application of PRRE as a novel therapeutic drug, and PI3K/Akt-associated ferroptosis and autophagy as therapeutic targets for cerebral ischemia.
Collapse
Affiliation(s)
- Fengyan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Haodong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Qidi Ai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Naihong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
| |
Collapse
|
9
|
Chen C, Ai Q, Shi A, Wang N, Wang L, Wei Y. Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutr Neurosci 2023; 26:414-428. [PMID: 35311613 DOI: 10.1080/1028415x.2022.2051957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain disorders such as neurodegenerative diseases and neuropsychiatric diseases have become serious threatens to human health and quality of life. Oleanolic acid (OA) and ursolic acid (UA) are pentacyclic triterpenoid isomers widely distributed in various plant foods and Chinese herbal medicines. Accumulating evidence indicates that OA and UA exhibit neuroprotective effects on multiple brain disorders. Therefore, this paper reviews researches of OA and UA on neurodegenerative diseases, neuropsychiatric diseases and other brain disorders including ischemic stroke, epilepsy, etc, as well as the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Axi Shi
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Nan Wang
- Department of General medicine, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Lina Wang
- Department of Pediatric surgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
10
|
Lin YT, Chen HD, Ai QD, Yang YT, Zhang Z, Chu SF, Chen NH. Characteristics and pathogenesis of chemokines in the post-stroke stage. Int Immunopharmacol 2023; 116:109781. [PMID: 36720195 DOI: 10.1016/j.intimp.2023.109781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Chemokines, as small molecular proteins, play a crucial role in the immune and inflammatory responses after stroke. A large amount of evidence showed chemokines and their receptors were increasingly recognized as potential targets for stroke treatment, which were involved in the processing of neovascularization, neurogenesis, and neural network reconstruction. In this review, we summarized the characteristics of chemokine alterations throughout the post-stroke nerve repair phase to gain insight into the pathological mechanisms of chemokines and find effective therapeutic targets for stroke.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-Dong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qi-di Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan-Tao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Peng X, Tang F, Yang Y, Li T, Hu X, Li S, Wu W, He K. Bidirectional effects and mechanisms of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115578. [PMID: 35917892 DOI: 10.1016/j.jep.2022.115578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bidirectional property of traditional Chinese medicines (TCMs) was recorded in the classic work Medicine Origin (Yi Xue Qi Yuan) as early as the Jin and Yuan dynasties of ancient China. Since then, this imperative theory has been applied to guide the clinical application of TCMs. Studies have been performed to investigate this phenomenon only over the last three decades. A limited number of reviews on the bidirectional role of TCMs have been published, and almost all current studies are published in the Chinese language. AIM OF THE REVIEW The aim of this review is to provide the first comprehensive evidence regarding the bidirectional effects and the underlying mechanisms of TCMs and their active compounds. MATERIALS AND METHODS Information relevant to opposing pharmacological activities or opposing properties exerted by TCM prescriptions, herbal medicines, and their active compound, as well as their mechanisms was summarized by searching Chinese and English databases, including the Chinese National Knowledge Infrastructure (CNKI), Wan Fang Data, Chinese Scientific Journal Database (VIP), Google Scholar, PubMed, Web of Science, Science Direct, and Wiley Online Library. RESULTS Although the bidirectional regulation of TCMs has been applied in the clinic since ancient times in China, only limited reviews have been published in Chinese. The existing data showed that bidirectional effects can be found in TCM prescriptions, herbal medicines, and pure active compounds. Additionally, the bidirectional role of TCMs was primarily reported in the modulation of immune function, blood circulation and hemostasis, gastrointestinal motility, the central nervous system and blood pressure. This may because the therapeutic outcomes of these disorders are more obvious than those of other complicated diseases. Intriguingly, some herbal medicines have multiple bidirectional activities; for instance, Panax ginseng C. A. Meyer showed bidirectional regulation of immune function and the central nervous system; Astragalus membranaceus can bidirectionally regulate blood pressure and immune function; and Rheum officinale Baill exerts bidirectional effects on blood circulation and hemostasis, gastrointestinal motility and immune function. The mechanisms underlying the bidirectional effects of TCMs are largely attributed to the complexity of herbal constituents, dosage differences, the processing of herbal medicine, and compatibility of medicines, the physiological conditions of patients and adaptogenic effects. CONCLUSION Uncovering the bidirectional effects and mechanisms of TCMs is of great importance for both scientific research and clinical applications. This review may help to facilitate the recognition of the bidirectional role of TCMs, to explain some seemingly-opposite phenomena in the pharmacological study of herbal medicines and to provide guidance for TCM practitioners.
Collapse
Affiliation(s)
- Xiaonian Peng
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Fang Tang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Sha Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Weihua Wu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
12
|
Radix Actinidia chinensis Suppresses Renal Cell Carcinoma Progression: Network Pharmacology Prediction and In Vivo Experimental Validation. Anal Cell Pathol 2022; 2022:3584445. [PMID: 35942173 PMCID: PMC9356879 DOI: 10.1155/2022/3584445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a frequent disease with limited curative methods. This study is aimed at investigating the role and mechanism of Radix Actinidia chinensis (RAC) on RCC. Methods The ingredients, target, and crucial pathways of RAC in RCC therapy were analyzed by network pharmacology. Then, an RCC animal model was established by subcutaneously injecting A498 cell suspension to BALB/c nude mice. After 1 week, the mice in the RAC-L/M/H groups were administered with RAC at 5, 10, and 20 mg/kg/d, respectively. The histopathology of the tumor was evaluated. The contents of tumor inflammatory cytokines and serum oxidative stress factors were detected by ELISA. The apoptosis of tumor tissues was assessed by TUNEL staining. The expressions of apoptosis-, proliferate-, autophagy-, and MAPK-related proteins were measured. Results There were 13 active ingredients, and 20 RCC-relevant targets were selected from RAC; KEGG pathway indicated that these targets were enriched in the PI3K/AKT/mTOR and MAPK pathway. In in vivo experiments, RAC not only obviously damaged tumor cells and decreased the release of inflammatory cytokines and oxidative stress factors but also enhanced the apoptosis of the tumor cell in RCC mice. Besides, the expressions of apoptosis-, proliferate-, autophagy-, PI3K/AKT/mTOR path-, and MAPK path-related proteins were all affected by RAC. Conclusion RAC attenuated RCC by regulating inflammation response, oxidative stress, apoptosis, proliferation, and autophagy, and its effects were partly linked to the PI3K/AKT/mTOR and MAPK pathway, which indicated that RAC may be a candidate drug for RCC.
Collapse
|
13
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Oleanolic Acid Alleviates Cerebral Ischemia/Reperfusion Injury via Regulation of the GSK-3β/HO-1 Signaling Pathway. Pharmaceuticals (Basel) 2021; 15:ph15010001. [PMID: 35056059 PMCID: PMC8781522 DOI: 10.3390/ph15010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
Oleanolic acid (OA), a bioactive ingredient of Panax ginseng, exhibits neuroprotective pharmacological effects. However, the protective role of OA in cerebral ischemia and involved mechanisms remain unclear. This study attempted to explore the therapeutic effects of OA both in vitro and in vivo. OA attenuated cytotoxicity and overproduction of intracellular reactive oxygen species (ROS) by regulation of glycogen synthase kinase-3β (GSK-3β)/heme oxygenase-1 (HO-1) signal in oxygen-glucose deprivation/reoxygenation (OGD/R)-exposed SH-SY5Y cells. Additionally, OA administration significantly reduced the area of cerebral infarction and the neurological scores in the rat models of cerebral ischemia with middle cerebral artery occlusion (MCAO). The OA administration group showed a higher percentage of Nissl+ and NeuN+ cells, along with lower TUNEL+ ratios in the infarct area of MCAO rats. Moreover, OA administration reduced ROS production while it suppressed the GSK-3β activation and upregulated the HO-1 expression in infarcted tissue. Our results illustrated that OA significantly counteracted cerebral ischemia-mediated injury through antioxidant effects induced by the regulation of the GSK-3β/HO-1 signaling pathway, implicating OA as a promising neuroprotective drug for the therapy of ischemic stroke.
Collapse
|
15
|
Han Y, Wang C, Li X, Liang G. Oleanolic acid reduces oxidative stress and neuronal apoptosis after experimental subarachnoid hemorrhage by regulating Nrf2/HO-1 pathway. Drug Dev Res 2021; 83:680-687. [PMID: 34820872 DOI: 10.1002/ddr.21899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Oxidative stress is an early major pathological feature after subarachnoid hemorrhage (SAH) and involves in the development of acute brain injury, neuronal apoptosis and cerebral vasospasm following SAH. Antioxidant stress is an effective way to improve the prognosis of SAH. Oleanolic acid is a widely used triterpenoid from plants, which has strong antioxidant activities, hepatoprotective, anti-inflammatory and anti-cancer activities. However, whether oleanolic acid exerts its anti-oxidant effect after SAH and the underlying mechanisms involved in it is unclear. In current study, the SAH model was established on Sprague Dawley rats using a standard intravascular puncture model. We found OA treatment significantly reduced malondialdehyde levels, and increased the levels of superoxide dismutase, catalase and GSH-Px after SAH, and reduced many EBI-related indicators, including brain edema, BBB disruption, SAH grades, and neurological score. In addition, the activation of Nrf2/HO-1 pathway after SAH was also detected. And by using Nrf2 siRNA intracerebroventricular injections, apoptosis related factors downstream of Nrf2/HO-1 pathway were detected. By TUNEL staining, OA treatment obviously reduced neuronal apoptosis. Therefore, we suggest that OA could alleviate oxidative stress and reduce neuronal apoptosis through activating Nrf 2/HO-1 pathway.
Collapse
Affiliation(s)
- Yuwei Han
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Chenchen Wang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xiaoming Li
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Guobiao Liang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Gupta N. A Review on Recent Developments in the Anticancer Potential of Oleanolic acid and its analogs (2017-2020). Mini Rev Med Chem 2021; 22:600-616. [PMID: 35135459 DOI: 10.2174/1389557521666210810153627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid class of natural product known to possess a broad range of biological activities, specifically, anticancer. Considering the anticancer potential of OA, a large number of analogs have been prepared by several researchers through modifications at C-3, C-12 and C-28 -COOH to develop the potent anticancer agents with improved cytotoxicity and pharmaceutical properties. Some of the synthesized derivatives have been assessed in clinical trials also. This review summarizes the most recent synthetic and biological efforts in the development of oleanolic acid and its analogs during the period 2017-2020. Reports published during this period revealed that both OA and its analogs possess a remarkable potential for the development of effective anticancer agents along with several others such as anti-inflammatory, anti-viral, anti-microbial and anti-diabetic agents.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Pharmaceutical Sciences, MM College of Pharmacy, M. M. University, Mullana, Ambala, Haryana. India
| |
Collapse
|
17
|
Ramírez GM, Villar CC, Saraiva L, Benítez CG, Rubio CM, Malheiros ZM, Stewart B, Kilpatrick L, Romito GA. The effect of a toothpaste containing oleanolic acid in reducing plaque and gingivitis: a proof-of-concept randomized trial. Int J Dent Hyg 2021; 19:450-463. [PMID: 34046989 DOI: 10.1111/idh.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To assess the safety and efficacy of an oleanolic acid (OA)-containing toothpaste in reducing gingival inflammation and plaque in patients with gingivitis. METHODS This proof-of-concept parallel, double-blind, randomized controlled clinical trial included 99 patients. Following a 1-week washout, patients were randomized into three groups: OA group (fluoride toothpaste containing 0.1% OA and placebo mouthwash); negative control (fluoride toothpaste and placebo mouthwash); and CHX group (fluoride toothpaste and 0.12% chlorhexidine mouthwash). Patients were clinically assessed at inclusion, pre-washout visit, baseline and after 4 days, 1 week and 2 weeks of twice-daily use of the products. Patients received a diary for documentation of bleeding on brushing and provided unstimulated saliva samples. RESULTS After two weeks, all groups showed significant reductions in all clinical parameters. The CHX group exhibited significantly greater reductions in gingival index and interproximal gingival index scores at week 2, as compared to patients in the negative control (p = 0.04). In contrast, reductions in gingival index scores did not differ between CHX and OA groups and between OA and negative control groups at week 2. The CHX group had significantly greater reductions in plaque index scores at day-4, 1-week and 2-week evaluations, as compared to the negative control and OA groups. The frequency of adverse events was similar among the groups. None of the groups reduced salivary transferrin levels. Finally, the OA group had the lowest percentage of self-reported bleeding events. CONCLUSION OA toothpaste failed to provide antiplaque and antigingivitis effects superior to those of a fluoride toothpaste after 2 weeks of use.
Collapse
Affiliation(s)
- Gloria M Ramírez
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Cristina Cunha Villar
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Luciana Saraiva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Carlos G Benítez
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Colgate-Palmolive, Piscataway, NJ, USA
| | - Carlos M Rubio
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Giuseppe A Romito
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Amoo M, Henry J, Pender N, Brennan P, Campbell M, Javadpour M. Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochir (Wien) 2021; 163:1457-1467. [PMID: 33404877 DOI: 10.1007/s00701-020-04670-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid haemorrhage is associated with significant morbidity and mortality due to the myriad of complications contributing to early brain injury and delayed cerebral ischaemia. There is increasing interest in the exploration of the association between blood-brain barrier integrity and risks of delayed cerebral ischaemia and poor outcomes. Despite recent advances in cerebral imaging, radiographic imaging of blood-brain barrier disruption, as a biomarker for outcome prediction, has not been adopted in clinical practice. METHODS We performed a narrative review by searching for articles describing molecular changes or radiological identification of changes in BBB permeability following subarachnoid haemorrhage (SAH) on MEDLINE. Preclinical studies were analysed if reported structural changes and clinical studies were included if they investigated for radiological markers of BBB disruption and its correlation with delayed cerebral ischaemia. RESULTS There is ample preclinical evidence to suggest that there are structural changes in BBB permeability following SAH. The available clinical literature has demonstrated correlations between permeability imaging and outcomes following aneurysmal subarachnoid haemorrhage (aSAH). CONCLUSION Radiological biomarkers offer a potential non-invasive prognostication tool and may also allow early identifications of patients who may be at risk of DCI.
Collapse
|
19
|
Liu CD, Liu NN, Zhang S, Ma GD, Yang HG, Kong LL, Du GH. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol Sin 2021; 42:370-381. [PMID: 33303991 PMCID: PMC8027612 DOI: 10.1038/s41401-020-00568-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Stroke is an acute cerebrovascular disease caused by ruptured or blocked blood vessels. For the prevention of ischemic stroke, the coagulation state of blood and cerebrovascular protection should be considered. Our previous study has shown that salvianolic acid A (SAA), which is a water-soluble component from the root of Salvia Miltiorrhiza Bge, prevents thrombosis with a mild inhibitory effect on platelet aggregation. In this study we investigated the preventive effects of SAA on cerebrovascular endothelial injury caused by ischemia in vivo and oxygen-glucose deprivation (OGD) in vitro, and explored the underlying mechanisms. An autologous thrombus stroke model was established in SD rats by electrocoagulation. SAA (10 mg/kg) was orally administered twice a day for 5 days before the operation. The rats were sacrificed at 24 h after the operation. We showed that pretreatment with SAA significantly improved the neurological deficits, intracerebral hemorrhage, BBB disruption, and vascular endothelial dysfunction as compared with model group. In human brain microvascular endothelial cells (HBMECs), pretreatment with SAA (10 μM) significantly inhibited OGD-induced cell viability reduction and degradation of tight junction proteins (ZO-1, occludin, claudin-5). Furthermore, we found that SAA inhibited the upregulation of Src signaling pathway in vivo and vitro and reversed the increased expression of matrix metalloproteinases (MMPs) after ischemic stroke. In conclusion, our results suggest that SAA protects cerebrovascular endothelial cells against ischemia and OGD injury via suppressing Src signaling pathway. These findings show that pretreatment with SAA is a potential therapeutic strategy for the prevention of ischemic stroke.
Collapse
Affiliation(s)
- Cheng-di Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nan-Nan Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guo-Dong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hai-Guang Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Lei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
20
|
Han Y, Tong Z, Wang C, Li X, Liang G. Oleanolic acid exerts neuroprotective effects in subarachnoid hemorrhage rats through SIRT1-mediated HMGB1 deacetylation. Eur J Pharmacol 2021; 893:173811. [PMID: 33345851 DOI: 10.1016/j.ejphar.2020.173811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Anti-inflammatory therapy for early brain injury after subarachnoid hemorrhage is a promising treatment for improving the prognosis. HMGB1 is the initiator of early inflammation after subarachnoid hemorrhage. Oleanolic acid is a natural pentacyclic triterpenoid compound with strong anti-inflammatory activity. It can relieve early brain injury in subarachnoid hemorrhage rats, but its mechanism is not very clear. Here, we study the potential mechanism of Oleanolic acid in the treatment of subarachnoid hemorrhage. First, we demonstrated that oleanolic acid alleviated early brain injury after subarachnoid hemorrhage, including improvement of grading score, neurological score, brain edema and permeability of brain blood barrier. Then we found that oleanolic acid could inhibit the transfer of HMGB1 from nucleus to cytoplasm and reduce the level of serum HMGB1. Furthermore, we found that oleanolic acid decreased the acetylation level of HMGB1 by increasing SIRT1 expression rather than by inhibiting JAK/STAT3 pathway. SIRT1 inhibitor sirtinol eliminated all beneficial effects of oleanolic acid on subarachnoid hemorrhage, which indicated that oleanolic acid inhibited the acetylation of HMGB1 by up regulating SIRT1. In addition, oleanolic acid treatment also reduced the levels of TLR4 and apoptosis related factors and reduced neuronal apoptosis after subarachnoid hemorrhage. In summary, our findings suggest that oleanolic acid may activate SIRT1 by acting as an activator of SIRT1, thereby reducing the acetylation of HMGB1, thus playing an anti-inflammatory role to alleviate early brain injury after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Yuwei Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China; China Medical University, Shenyang, China
| | - Zhenhua Tong
- Department of Science Training, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenchen Wang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoming Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
21
|
Yu M, Ma X, Jiang D, Wang L, Zhan Q, Zhao J. CXC chemokine ligand 5 (CXCL5) disrupted the permeability of human brain microvascular endothelial cells via regulating p38 signal. Microbiol Immunol 2021; 65:40-47. [PMID: 33026667 DOI: 10.1111/1348-0421.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/27/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
The ischemia-reperfusion-induced damage in human brain microvascular endothelial cells (BMECs) is associated with disruption of the blood-brain barrier. CXC chemokine ligand 5 (CXCL5) is reported to be up-regulated in ischemic stroke. However, the detailed function of CXCL5 in this pathological process remains largely unclear. To further analyze the function of CXCL5 in ischemic stroke, an oxygen-glucose deprivation model on human BMECs was constructed to mimic the ischemic stroke condition in vitro. Cell proliferation was analyzed using a cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction and western blot were utilized to determine gene expression. The barrier function of BMECs was assessed using a fluorescently labeled dextran assay and a trans-epithelial/endothelial electrical resistance (TEER) technique. The results indicated that CXCL5 antibody (anti-CXCL5) promoted the proliferation of model cells, whereas it reduced the permeability. Moreover, the TEER value of model cells was enhanced in the presence of anti-CXCL5. Therefore, these findings demonstrated that CXCL5 silencing attenuated the ischemic/hypoxic-induced injury in human BMECs. Importantly, human recombinant protein CXCL5 (Re-CXCL5) deeply disrupted the function of BMECs in the normoxic condition. Furthermore, the p38 inhibitor SB203580 significantly abolished the function of CXCL5 in model cells. More importantly, similar results were also obtained in BMECs under normoxic conditions in the presence of Re-CXCL5. These results indicated that CXCL5 might regulate the function of BMECs by mediating the p38 pathway. This investigation not only enhanced the understanding of the biological effect of CXCL5 in human BMECs under ischemic/hypoxic conditions but also indicated its potential value as a therapeutic target for ischemic-induced brain disease.
Collapse
Affiliation(s)
- Min Yu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaokun Ma
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dudu Jiang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Zhan
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangmin Zhao
- Department of Radiology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Therapeutic Potential of Heme Oxygenase-1 in Aneurysmal Diseases. Antioxidants (Basel) 2020; 9:antiox9111150. [PMID: 33228202 PMCID: PMC7699558 DOI: 10.3390/antiox9111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) and intracranial aneurysm (IA) are serious arterial diseases in the aorta and brain, respectively. AAA and IA are associated with old age in males and females, respectively, and if rupture occurs, they carry high morbidity and mortality. Aneurysmal subarachnoid hemorrhage (SAH) due to IA rupture has a high rate of complication and fatality. Despite these severe clinical outcomes, preventing or treating these devastating diseases remains an unmet medical need. Inflammation and oxidative stress are shared pathologies of these vascular diseases. Therefore, therapeutic strategies have focused on reducing inflammation and reactive oxygen species levels. Interestingly, in response to cellular stress, the inducible heme oxygenase-1 (HO-1) is highly upregulated and protects against tissue injury. HO-1 degrades the prooxidant heme and generates molecules with antioxidative and anti-inflammatory properties, resulting in decreased oxidative stress and inflammation. Therefore, increasing HO-1 activity is an attractive option for therapy. Several HO-1 inducers have been identified and tested in animal models for preventing or alleviating AAA, IA, and SAH. However, clinical trials have shown conflicting results. Further research and the development of highly selective HO-1 regulators may be needed to prevent the initiation and progression of AAA, IA, or SAH.
Collapse
|
23
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
24
|
Wang F, Teng Z, Liu D, Wang Y, Lou J, Dong Z. β-Caryophyllene Liposomes Attenuate Neurovascular Unit Damage After Subarachnoid Hemorrhage in Rats. Neurochem Res 2020; 45:1758-1768. [PMID: 32444923 DOI: 10.1007/s11064-020-03037-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Abstract
This study was conducted to prepare β-caryophyllene loaded liposomes (BCP-LP) and investigated their effects on neurovascular unit (NVU) damage after subarachnoid hemorrhage (SAH) in rats. A blood injection into the pre-chiasmatic cistern was used to achieve SAH. BCP-LP were prepared, characterized and administrated to rats with SAH. The prepared BCP-LP were spherical with a size distribution of approximately 189.3 nm and Zeta potential of - 13.9 mV. Neurological scoring, the balance beam test, cerebral blood flow monitoring, brain edema and biochemical analyses were applied to evaluate the effects of BCP-LP on rat NVU damage after SAH. The results demonstrated that BCP-LP treatment improved neurological function disorder, balance ability and cerebral blood perfusion in rats. Brain edema detection and blood-brain barrier permeability detection revealed that BCP-LP could reduce brain edema and promote repairment of blood-brain barrier after SAH. Using the western blot experiments, we demonstrated that BCP-LP attenuated the loss of tight junction proteins Occludin and Zonula occludens-1, inhibit the high expression of VEGFR-2 and GFAP, and promote the repair of laminin. These results demonstrate the protective effect BCP-LP exert in the NVU after SAH in rats, and supports the use of BCP-LP for future study and therapy of SAH.
Collapse
Affiliation(s)
- Fang Wang
- Chongqing Key Laboratory of Biochemistry & Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, People's Republic of China
| | - Zhipeng Teng
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, People's Republic of China
| | - Daohang Liu
- Chongqing Key Laboratory of Biochemistry & Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, People's Republic of China
| | - Yuchun Wang
- Chongqing Key Laboratory of Biochemistry & Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, People's Republic of China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry & Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, District of Yuzhong, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
25
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci 2020; 14:68. [PMID: 32317935 PMCID: PMC7146617 DOI: 10.3389/fncel.2020.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening neurological disease characterized by high mortality and morbidity. Various pathophysiological responses are initiated after blood enters the interstitial space of the brain, compressing the brain tissue and thus causing cell death. Recently, three new programmed cell deaths (PCDs), necroptosis, pyroptosis, and ferroptosis, were also found to be important contributors in the pathophysiology of hemorrhagic stroke. Additionally, blood-brain barrier (BBB) dysfunction plays a crucial role in the pathophysiology of hemorrhagic stroke. The primary insult following BBB dysfunction may disrupt the tight junctions (TJs), transporters, transcytosis, and leukocyte adhesion molecule expression, which may lead to brain edema, ionic homeostasis disruption, altered signaling, and immune infiltration, consequently causing neuronal cell death. This review article summarizes recent advances in our knowledge of the mechanisms regarding these new PCDs and reviews their contributions in hemorrhagic stroke and potential crosstalk in BBB dysfunction. Numerous studies revealed that necroptosis, pyroptosis, and ferroptosis participate in cell death after subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Endothelial dysfunction caused by these three PCDs may be the critical factor during BBB damage. Also, several signaling pathways were involved in PCDs and BBB dysfunction. These new PCDs (necroptosis, pyroptosis, ferroptosis), as well as BBB dysfunction, each play a critical role after hemorrhagic stroke. A better understanding of the interrelationship among them might provide us with better therapeutic targets for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Wang JL, Ren CH, Feng J, Ou CH, Liu L. Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed Pharmacother 2020; 123:109752. [PMID: 31924596 DOI: 10.1016/j.biopha.2019.109752] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is reported as a devastating disease, leading to tissue loss and neurologic dysfunction. However, there is no effective therapeutic strategy for SCI treatment. Oleanolic acid (OA), as a triterpenoid, has anti-oxidant, anti-inflammatory, and anti-apoptotic activities. However, its regulatory effects on SCI have little to be elucidated, as well as the underlying molecular mechanisms. In this study, we attempted to explore the role of OA in SCI progression. Behavior tests suggested that OA treatments markedly alleviated motor function in SCI mice. Evans blue contents up-regulated in spinal cords of SCI mice were significantly reduced by OA in a dose-dependent manner, demonstrating the improved blood-spinal cord barrier. Moreover, we found that OA treatments significantly reduced the apoptotic cell death in spinal cord samples of SCI mice through decreasing the expression of cleaved Caspase-3. In addition, pro-inflammatory response in SCI mice was significantly attenuated by OA treatments. Furthermore, SCI mice exhibited higher activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways, but these effects were clearly blocked in SCI mice with OA treatments, as evidenced by the down-regulated phosphorylation of p38, c-Jun-NH 2 terminal kinase (JNK), IκB kinase α (IKKα), inhibitor of nuclear factor κB-α (IκBα) and NF-κB. The protective effects of OA against SCI were confirmed in lipopolysaccharide (LPS)-stimulated mouse neurons mainly through the suppression of apoptosis and inflammatory response, which were tightly associated with the blockage of p38 and JNK activation. Together, our data demonstrated that OA treatments could dose-dependently ameliorate spinal cord damage through impeding p38- and JNK-regulated apoptosis and inflammation, and therefore OA might be served as an effective therapeutic agent for SCI treatment.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Chang-He Ren
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
27
|
Yang J, Li K, He D, Gu J, Xu J, Xie J, Zhang M, Liu Y, Tan Q, Zhang J. Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metab Rev 2020; 52:19-43. [PMID: 31984816 DOI: 10.1080/03602532.2020.1714646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today, it is very challenging to develop new active pharmaceutical ingredients. Developing good preparations of well-recognized natural medicines is certainly a practical and economic strategy. Low-solubility, low-permeability natural medicines (LLNMs) possess valuable advantages such as effectiveness, relative low cost and low toxicity, which is shown by the presence of popular products on the market. Understanding the in vivo metabolic and pharmacokinetic characteristics of LLNMs contributes to overcoming their associated problems, such as low absorption and low bioavailability. In this review, the structure-based metabolic reactions of LLNMs and related enzymatic systems, cellular and bodily pharmacological effects and metabolic influences, drug-drug interactions involved in metabolism and microenvironmental changes, and pharmacokinetics and dose-dependent/linear pharmacokinetic models are comprehensively evaluated. This review suggests that better pharmacological activity and pharmacokinetic behaviors may be achieved by modifying the metabolism through using nanotechnology and nanosystem in combination with the suitable administration route and dosage. It is noteworthy that novel nanosystems, such as triggered-release liposomes, nucleic acid polymer nanosystems and PEGylated dendrimers, in addition to prodrug and intestinal penetration enhancer, demonstrate encouraging performance. Insights into the metabolic and pharmacokinetic characteristics of LLNMs may help pharmacists to identify new LLNM formulations with high bioavailability and amazing efficacy and help physicians carry out LLNM-based precision medicine and individualized therapies.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Zhu L, Wang W, Xie TH, Zou J, Nie X, Wang X, Zhang MY, Wang ZY, Gu S, Zhuang M, Tan J, Shen C, Dai Y, Yang X, Yao Y, Wei TT. TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling. FASEB J 2020; 34:4189-4203. [PMID: 31957105 DOI: 10.1096/fj.201902496rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Abnormal energy metabolism in microvascular endothelium is involved in the progression of diabetic retinopathy. Bile Acid G-Protein-Coupled Membrane Receptor (TGR5) has emerged as a novel regulator of metabolic disorders. However, the role of TGR5 in diabetes mellitus-induced microvascular dysfunction in retinas is largely unknown. Herein, enzyme-linked immunosorbent assay was used for analyzing bile acid (BA) profiles in diabetic rat retinas and retinal microvascular endothelial cells (RMECs) cultured in high glucose medium. The effects of TGR5 agonist on streptozotocin (STZ)-induced diabetic retinopathy were evaluated by HE staining, TUNEL staining, retinal trypsin digestion, and vascular permeability assay. A pharmacological inhibitor of RhoA was used to study the role of TGR5 on the regulation of Rho/Rho-associated coiled-coil containing protein kinase (ROCK) and western blot, immunofluorescence and siRNA silencing were performed to study the related signaling pathways. Here we show that bile acids were downregulated during DR progression in the diabetic rat retinas and RMECs cultured in high glucose medium. The TGR5 agonist obviously ameliorated diabetes-induced retinal microvascular dysfunction in vivo, and inhibited the effect of TNF-α on endothelial cell proliferation, migration, and permeability in vitro. In contrast, knockdown of TGR5 by siRNA aggravated TNF-α-induced actin polymerization and endothelial permeability. Mechanistically, the effects of TGR5 on the improvement of endothelial function was due to its regulatory role on the ROCK signaling pathway. An inhibitor of RhoA significantly reversed the loss of tight junction protein under TNF-α stimulation. Taken together, our findings suggest that insufficient BA signaling plays an important pathogenic role in the development of DR. Upregulation or activation of TGR5 may inhibit RhoA/ROCK-dependent actin remodeling and represent an important therapeutic intervention for DR.
Collapse
Affiliation(s)
- Lingpeng Zhu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Wenjuan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Xiaowei Nie
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Xiaolu Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Meng-Yuan Zhang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Zhong-Yuan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Shun Gu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Jianxin Tan
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Chenyou Shen
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Youai Dai
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Xusheng Yang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Ting-Ting Wei
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| |
Collapse
|
29
|
Guo F, Xu D, Lin Y, Wang G, Wang F, Gao Q, Wei Q, Lei S. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway following acute intracerebral hemorrhage. FASEB J 2019; 34:1872-1884. [PMID: 31914700 DOI: 10.1096/fj.201902203rr] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Fuyou Guo
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Dingkang Xu
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Yazhou Lin
- Department of Human Anatomy, School of Basic Medical Sciences Zhengzhou University Zhengzhou PR China
| | - Guoqing Wang
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Fang Wang
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Qiang Gao
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Qingjie Wei
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Shixiong Lei
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| |
Collapse
|
30
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
31
|
Park H, Choi SH, Kong MJ, Kang TC. Dysfunction of 67-kDa Laminin Receptor Disrupts BBB Integrity via Impaired Dystrophin/AQP4 Complex and p38 MAPK/VEGF Activation Following Status Epilepticus. Front Cell Neurosci 2019; 13:236. [PMID: 31178701 PMCID: PMC6542995 DOI: 10.3389/fncel.2019.00236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Status epilepticus (SE, a prolonged seizure activity) impairs brain-blood barrier (BBB) integrity, which results in secondary complications following SE. The non-integrin 67-kDa laminin receptor (67-kDa LR) plays a role in cell adherence to laminin (a major glycoprotein component in basement membrane), and participates laminin-mediated signaling pathways including p38 mitogen-activated protein kinase (p38 MAPK). Thus, we investigated the role of 67-kDa LR in SE-induced vasogenic edema formation in the rat piriform cortex (PC). SE diminished 67-kDa LR expression, but increased laminin expression, in endothelial cells accompanied by the reduced SMI-71 (a rat BBB barrier marker) expression. Astroglial 67-kDa LR expression was also reduced in the PC due to massive astroglial loss. 67-kDa LR neutralization led to serum extravasation in the PC concomitant with the reduced SMI-71 expression. 67-kDa LR neutralization also decreased expressions of dystrophin and aquaporin-4 (AQP4). In addition, it increased p38 MAPK phosphorylation and expressions of vascular endothelial growth factor (VEGF), laminin and endothelial nitric oxide synthase (eNOS), which were abrogated by SB202190, a p38 MAPK inhibitor. Therefore, our findings indicate that 67-kDa LR dysfunction may disrupt dystrophin-AQP4 complex, which would evoke vasogenic edema formation and subsequent laminin over-expression via activating p38 MAPK/VEGF axis.
Collapse
Affiliation(s)
- Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Seo-Hyeon Choi
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Min-Jeong Kong
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
32
|
Wang Y, Bao DJ, Xu B, Cheng CD, Dong YF, Wei XP, Niu CS. Neuroprotection mediated by the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Neural Regen Res 2019; 14:1013-1024. [PMID: 30762013 PMCID: PMC6404485 DOI: 10.4103/1673-5374.250620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Wnt/Frizzled signaling pathway participates in many inflammation-linked diseases. However, the inflammatory response mediated by the Wnt/Frizzled signaling pathway in experimental subarachnoid hemorrhage has not been thoroughly investigated. Consequently, in this study, we examined the potential role of the Wnt/Frizzled signaling pathway in early brain injury in rat models of subarachnoid hemorrhage. Simultaneously, possible neuroprotective mechanisms were also investigated. Experimental subarachnoid hemorrhage rat models were induced by injecting autologous blood into the prechiasmatic cistern. Experiment 1 was designed to examine expression of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. In total, 42 adult rats were divided into sham (injection of equivalent volume of saline), 6-, 12-, 24-, 48-, 72-hour, and 1-week subarachnoid hemorrhage groups. Experiment 2 was designed to examine neuroprotective mechanisms of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Rats were treated with recombinant human Wnt1 (rhwnt1), small interfering Wnt1 (siwnt1) RNA, and monoclonal antibody of Frizzled1 (anti-Frizzled1) at 48 hours after subarachnoid hemorrhage. Expression levels of Wnt1, Frizzled1, β-catenin, peroxisome proliferator-activated receptor-γ, CD36, and active nuclear factor-κB were examined by western blot assay and immunofluorescence staining. Microglia type conversion and inflammatory cytokine levels in brain tissue were examined by immunofluorescence staining and enzyme-linked immunosorbent assay. Our results show that compared with the sham group, expression levels of Wnt1, Frizzled1, and β-catenin were low and reduced to a minimum at 48 hours, gradually returning to baseline at 1 week after subarachnoid hemorrhage. rhwnt1 treatment markedly increased Wnt1 expression and alleviated subarachnoid hemorrhage-induced early brain injury (within 72 hours), including cortical cell apoptosis, brain edema, and neurobehavioral deficits, accompanied by increasing protein levels of β-catenin, CD36, and peroxisome proliferator-activated receptor-γ and decreasing protein levels of nuclear factor-κB. Of note, rhwnt1 promoted M2-type microglia conversion and inhibited release of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α). In contrast, siwnt1 RNA and anti-Frizzled1 treatment both resulted in an opposite effect. In conclusion, the Wnt/Frizzled1 signaling pathway may participate in subarachnoid hemorrhage-induced early brain injury via inhibiting the inflammatory response, including regulating microglia type conversion and decreasing inflammatory cytokine release. The study was approved by the Animal Ethics Committee of Anhui Medical University and First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (approval No. LLSC-20180202) in May 2017.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - De-Jun Bao
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Bin Xu
- Anhui Medical University Auhui Province Medical Genetic Center, Hefei, Anhui Province, China
| | - Chuan-Dong Cheng
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yong-Fei Dong
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiang-Pin Wei
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Shi Niu
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, China
| |
Collapse
|