1
|
Huang XL, Hu Y, Jiang W, Jiang JM, Zou W, Zhang P, Tang XQ. Suppression of cGAS/STING pathway-triggered necroptosis in the hippocampus relates H 2S to attenuate cognitive dysfunction of Parkinson's disease. Exp Neurol 2024; 385:115093. [PMID: 39637964 DOI: 10.1016/j.expneurol.2024.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cognitive dysfunction is the most severe non-motor symptom of Parkinson's disease (PD). Our previous study revealed that hydrogen sulfide (H2S) ameliorates cognitive dysfunction in PD, but the underlying mechanisms remain unclear. Hippocampal necroptosis plays a vital role in cognitive dysfunction, while the cGAS/STING pathway triggers necroptosis. To understand the mechanism underlying the inhibitory role of H2S in cognitive dysfunction of PD, we explored whether H2S reduces the enhancement of necroptosis and the activation of the cGAS/STING pathway in the hippocampus of the rotenone (ROT)-induced PD rat model. METHOD Adult Sprague-Dawley (SD) rats were pre-treated with NaHS (30 or 100 μmol/kg/d, i.p.) for 7 days and then co-treated with ROT (2 mg/kg/d, s.i.) for 35 days. The Y-maze and Morris water maze (MWM) tests were used to assess the cognitive function. Hematoxylin-eosin (H&E) staining was used to detect the hippocampal pathological morphology. Western blotting analysis was used to measure the expressions of proteins. Enzyme-linked immunosorbent assay was used to determine the levels of inflammatory factors. RESULT NaHS (a donor of H2S) mitigated cognitive dysfunction in ROT-exposed rats, according to the Y-maze and MWM tests. NaHS treatment also markedly down-regulated the expressions of necroptosis-related proteins (RIPK1, RIPK3, and MLKL) and decreased the levels of necroptosis-related inflammatory factors (IL-6 and IL-1β) in the hippocampus of ROT-exposed rats. Furthermore, NaHS treatment reduced the expressions of cGAS/STING pathway-related proteins (cGAS, STING, p-TBK1Ser172, p-IRF3Ser396, and p-P65Ser536) and decreased the contents of pro-inflammation factors (INF-β and TNF-α) in the hippocampus of ROT-exposed rats. CONCLUSION H2S attenuates the cGAS/STING pathway-triggered necroptosis in the hippocampus, which is related to H2S to attenuate cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Xin-Le Huang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Yu Hu
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Sichuan Provincial Women's and Children's Hospital/The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610041, Sichuan, PR China
| | - Wu Jiang
- The Affiliated Nanhua Hospital, Department of Neurology & Hengyang Key Laboratory of Parkinson's Disease Basic and Clinical Research (202150084071), Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Key Laboratory of Hunan Provincial General Higher Education for Major Brain Disease, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology & Hengyang Key Laboratory of Parkinson's Disease Basic and Clinical Research (202150084071), Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology & Hengyang Key Laboratory of Parkinson's Disease Basic and Clinical Research (202150084071), Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Xiao-Qing Tang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Key Laboratory of Hunan Provincial General Higher Education for Major Brain Disease, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China.
| |
Collapse
|
2
|
Xu Y, Yang Y, Shi Y, Li B, Xie Y, Le G. Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice. NPJ Sci Food 2024; 8:104. [PMID: 39702349 DOI: 10.1038/s41538-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.86% Met) or a Met-supplemented diet (1.72% Met) for 11 weeks. Behavioral experiments were conducted, and we measured the plasma metabolite levels, hippocampal and plasma redox and inflammatory states, and hippocampal transsulfuration pathway-related parameters. Met supplementation prevented aging-induced anxiety and cognitive deficiencies, and normalized the plasma levels of multiple systemic metabolites (e.g., betaine, taurine, and choline). Furthermore, dietary Met supplementation abolished oxidative stress and inflammation, selectively modulated the expression of multiple cognition-related genes and proteins, and increased flux via the transsulfuration pathway in the hippocampi of aging mice, with significant increase in H2S and glutathione production. Our findings suggest that dietary Met supplementation prevented cognitive deficiencies in aging mice, probably because of increased flux via the transsulfuration pathway.
Collapse
Affiliation(s)
- Yuncong Xu
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhui Yang
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Guowei Le
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Munteanu C, Onose G, Rotariu M, Poștaru M, Turnea M, Galaction AI. Role of Microbiota-Derived Hydrogen Sulfide (H 2S) in Modulating the Gut-Brain Axis: Implications for Alzheimer's and Parkinson's Disease Pathogenesis. Biomedicines 2024; 12:2670. [PMID: 39767577 PMCID: PMC11727295 DOI: 10.3390/biomedicines12122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Microbiota-derived hydrogen sulfide (H2S) plays a crucial role in modulating the gut-brain axis, with significant implications for neurodegenerative diseases such as Alzheimer's and Parkinson's. H2S is produced by sulfate-reducing bacteria in the gut and acts as a critical signaling molecule influencing brain health via various pathways, including regulating inflammation, oxidative stress, and immune responses. H2S maintains gut barrier integrity at physiological levels and prevents systemic inflammation, which could impact neuroinflammation. However, as H2S has a dual role or a Janus face, excessive H2S production, often resulting from gut dysbiosis, can compromise the intestinal barrier and exacerbate neurodegenerative processes by promoting neuroinflammation and glial cell dysfunction. This imbalance is linked to the early pathogenesis of Alzheimer's and Parkinson's diseases, where the overproduction of H2S exacerbates beta-amyloid deposition, tau hyperphosphorylation, and alpha-synuclein aggregation, driving neuroinflammatory responses and neuronal damage. Targeting gut microbiota to restore H2S homeostasis through dietary interventions, probiotics, prebiotics, and fecal microbiota transplantation presents a promising therapeutic approach. By rebalancing the microbiota-derived H2S, these strategies may mitigate neurodegeneration and offer novel treatments for Alzheimer's and Parkinson's diseases, underscoring the critical role of the gut-brain axis in maintaining central nervous system health.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| |
Collapse
|
4
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen Y, Li X, Chen Y, Ding W, Xia C, Zhao Y, Gao F. Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications. Asian J Pharm Sci 2024; 19:100858. [PMID: 38362469 PMCID: PMC10867614 DOI: 10.1016/j.ajps.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 02/17/2024] Open
Abstract
Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Li
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
6
|
Wang B, Chen SM, Yang SQ, Jiang JM, Zhang P, Zou W, Tang XQ. GDF11 mediates H 2S to prevent chronic stress-induced cognitive impairment by reducing hippocampal NLRP3/caspase-1-dependent pyroptosis. J Affect Disord 2024; 344:600-611. [PMID: 37827256 DOI: 10.1016/j.jad.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND We previously revealed that hydrogen sulfide (H2S) attenuates chronic stress-induced cognitive impairment, but the underlying mechanism needs to be further clarified. Growth differentiation factor 11 (GDF11) plays an important regulatory role in cognitive function and that hippocampal NLRP3/caspase-1-mediated pyroptosis contributes to the pathogenesis of cognitive impairment. Hence, this research aimed to explore whether promoting GDF11 levels and suppressing hippocampal NLRP3/caspase-1-mediated pyroptosis mediate H2S to alleviate chronic stress-induced cognitive impairment. METHODS Sprague-Dawley rats were subjected to unpredictable chronic mild stress lasting four weeks to establish an animal model of chronic stress-induced cognitive impairment. Behavioral performance was assessed by the Y-maze test and the novel object recognition test. The expression levels of proteins were analyzed by Western blot analysis. The levels of IL-1β and IL-18 in the hippocampus were measured by ELISA. RESULTS NaHS upregulated the expression of GDF11 in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed rats. Silencing GDF11 blocked NaHS-improved cognitive impairment in CUMS-exposed rats, according to the Y-maze test and the novel object recognition test. Furthermore, NaHS mitigated NLRP3/caspase-1-mediated pyroptosis in the hippocampus of CUMS-exposed rats and this effect was reversed by silencing GDF11. Moreover, overexpression of GDF11 alleviated CUMS-induced cognitive impairment and NLRP3/caspase-1-mediated hippocampal pyroptosis. CONCLUSIONS GDF11 mediates H2S to attenuate chronic stress-induced cognitive impairment via inhibiting hippocampal NLRP3/caspase-1-mediated pyroptosis.
Collapse
Affiliation(s)
- Bo Wang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Si-Min Chen
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - San-Qiao Yang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The Second Affiliated Hospital, Institute of Cerebral Disease, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
7
|
Wang Z, Tang Y, Gao M, Bai X, Li Y, Hao X, Lu Y, Zhou X. Cell-Membrane Coated Self-Immolative Poly(thiourethane) for Cysteine/Homocysteine-Triggered Intracellular H 2S Delivery. ACS Macro Lett 2023; 12:1583-1588. [PMID: 37937586 DOI: 10.1021/acsmacrolett.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hydrogen sulfide (H2S) is an important gaseous signaling molecule with unique pleiotropic pharmacological effects, but may be limited for clinical translation due to the lack of a reliable delivery form that delivers exogenous H2S to cells at action site with precisely controlled dosage. Herein, we report the design of a poly(thiourethane) (PTU) self-immolative polymer terminally caged with an acrylate moiety to trigger release of H2S in response to cysteine (Cys) and homocysteine (Hcy), the most used and independent indicators of neurodegenerative diseases. The synthesized PTU polymer was then coated with the red-blood-cell (RBC) membrane in the presence of solubilizing agent to self-assemble into nanoparticles with enhanced stability and cytocompatibility. The Hcy/Cys mediated addition/cyclization chemistry actuated the biomimetic polymeric nanoparticles to disintegrate into carbonyl sulfide (COS), and finally convert into H2S via the ubiquitous carbonic anhydrase (CA). H2S released in a controlled manner exhibited a strong antioxidant ability to resist Alzheimer's disease (AD)-related oxidative stress factors in BV-2 cells, a neurodegenerative disease model in vitro. Thus, this work may provide an effective strategy to construct H2S donors that can degrade in response to a specific pathological microenvironment for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xue Bai
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yajie Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoying Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| |
Collapse
|
8
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
9
|
Lin C, Huang C, Shi Z, Ou M, Sun S, Yu M, Chen T, Yi Y, Ji X, Lv F, Wu M, Mei L. Biodegradable calcium sulfide-based nanomodulators for H 2S-boosted Ca 2+-involved synergistic cascade cancer therapy. Acta Pharm Sin B 2022; 12:4472-4485. [PMID: 36561996 PMCID: PMC9764068 DOI: 10.1016/j.apsb.2022.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation. Inspired by the fact that H2S can also serve as a promoter for intracellular Ca2+ influx, tumor-specific nanomodulators (I-CaS@PP) have been constructed by encapsulating calcium sulfide (CaS) and indocyanine green (ICG) into methoxy poly (ethylene glycol)-b-poly (lactide-co-glycolide) (PLGA-PEG). I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H2S release. The released H2S can effectively suppress the catalase (CAT) activity and synergize with released Ca2+ to facilitate abnormal Ca2+ retention in cells, thus leading to mitochondria destruction and amplification of oxidative stress. Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins (HSPs) expression, which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance. Such a H2S-boosted Ca2+-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment, indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.
Collapse
Affiliation(s)
- Chuchu Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chenyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ting Chen
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China,Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China,Corresponding author. Tel./fax: +18665387360.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China,Corresponding author. Tel./fax: +18665387360.
| |
Collapse
|
10
|
Vo TTT, Huynh TD, Wang CS, Lai KH, Lin ZC, Lin WN, Chen YL, Peng TY, Wu HC, Lee IT. The Potential Implications of Hydrogen Sulfide in Aging and Age-Related Diseases through the Lens of Mitohormesis. Antioxidants (Basel) 2022; 11:1619. [PMID: 36009338 PMCID: PMC9404924 DOI: 10.3390/antiox11081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The growing increases in the global life expectancy and the incidence of chronic diseases as a direct consequence have highlighted a demand to develop effective strategies for promoting the health of the aging population. Understanding conserved mechanisms of aging across species is believed helpful for the development of approaches to delay the progression of aging and the onset of age-related diseases. Mitochondrial hormesis (or mitohormesis), which can be defined as an evolutionary-based adaptive response to low-level stress, is emerging as a promising paradigm in the field of anti-aging. Depending on the severity of the perceived stress, there are varying levels of hormetic response existing in the mitochondria called mitochondrial stress response. Hydrogen sulfide (H2S) is a volatile, flammable, and toxic gas, with a characteristic odor of rotten eggs. However, H2S is now recognized an important gaseous signaling molecule to both physiology and pathophysiology in biological systems. Recent studies that elucidate the importance of H2S as a therapeutic molecule has suggested its protective effects beyond the traditional understanding of its antioxidant properties. H2S can also be crucial for the activation of mitochondrial stress response, postulating a potential mechanism for combating aging and age-related diseases. Therefore, this review focuses on highlighting the involvement of H2S and its sulfur-containing derivatives in the induction of mitochondrial stress response, suggesting a novel possibility of mitohormesis through which this gaseous signaling molecule may promote the healthspan and lifespan of an organism.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Thao Duy Huynh
- Lab of Biomaterial, Department of Histology, Embryology, and Genetics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 72500, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Zhang JY, Ma S, Liu X, Du Y, Zhu X, Liu Y, Wu X. Activating transcription factor 6 regulates cystathionine to increase autophagy and restore memory in Alzheimer’ s disease model mice. Biochem Biophys Res Commun 2022; 615:109-115. [DOI: 10.1016/j.bbrc.2022.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/18/2022]
|
12
|
Lu ZY, Guo CL, Yang B, Yao Y, Yang ZJ, Gong YX, Yang JY, Dong WY, Yang J, Yang HB, Liu HM, Li B. Hydrogen Sulfide Diminishes Activation of Adventitial Fibroblasts Through the Inhibition of Mitochondrial Fission. J Cardiovasc Pharmacol 2022; 79:925-934. [PMID: 35234738 PMCID: PMC9162271 DOI: 10.1097/fjc.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Activation of adventitial fibroblasts (AFs) on vascular injury contributes to vascular remodeling. Hydrogen sulfide (H2S), a gaseous signal molecule, modulates various cardiovascular functions. The aim of this study was to explore whether exogenous H2S ameliorates transforming growth factor-β1 (TGF-β1)-induced activation of AFs and, if so, to determine the underlying molecular mechanisms. Immunofluorescent staining and western blot were used to determine the expression of collagen I and α-smooth muscle actin. The proliferation and migration of AFs were performed by using cell counting Kit-8 and transwell assay, respectively. The mitochondrial morphology was assessed by using MitoTracker Red staining. The activation of signaling pathway was evaluated by western blot. The mitochondrial reactive oxygen species and mitochondrial membrane potential were determined by MitoSOX and JC-1 (5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide) staining. Our study demonstrated exogenous H2S treatment dramatically suppressed TGF-β1-induced AF proliferation, migration, and phenotypic transition by blockage of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and regulated mitochondrial reactive oxygen species generation. Moreover, exogenous H2S reversed TGF-β1-induced mitochondrial fission and AF activation by modulating Rho-associated protein kinase 1-dependent phosphorylation of Drp1. In conclusion, our results suggested that exogenous H2S attenuates TGF-β1-induced AF activation through suppression of Drp1-mediated mitochondrial fission in a Rho-associated protein kinase 1-dependent fashion.
Collapse
Affiliation(s)
- Zhao-Yang Lu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Chun-Ling Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Bin Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Yao Yao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Zhuo-Jing Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Yu-Xin Gong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Jing-Yao Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
| | - Wen-Yuan Dong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Jun Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| | - Hai-Bing Yang
- Department of Cardiology, Yingshang First Hospital, Fuyang, China; and
| | - Hui-Min Liu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China;
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China;
| |
Collapse
|
13
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
14
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
15
|
Gao S, Tang YY, Jiang L, Lan F, Li X, Zhang P, Zou W, Chen YJ, Tang XQ. H 2S Attenuates Sleep Deprivation-Induced Cognitive Impairment by Reducing Excessive Autophagy via Hippocampal Sirt-1 in WISTAR RATS. Neurochem Res 2021; 46:1941-1952. [PMID: 33914232 DOI: 10.1007/s11064-021-03314-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is widespread in society causing serious damage to cognitive function. Hydrogen sulfide (H2S), the third gas signal molecule, plays important regulatory role in learning and memory functions. Inhibition of excessive autophagy and upregulation of silent information regulator 1 (Sirt-1) have been reported to prevent cognitive dysfunction. Therefore, this present work was to address whether H2S attenuates the cognitive impairment induced by SD in Wistar rats and whether the underlying mechanisms involve in inhibition of excessive autophagy and upregulation of Sirt-1. After treatment with SD for 72 h, the cognitive function of Wistar rats was evaluated by Y-maze, new object recognition, object location, and Morris water maze tests. The results shown that SD-caused cognitive impairment was reversed by treatment with NaHS (a donor of H2S). NaHS also prevented SD-induced hippocampal excessive autophagy, as evidenced by the decrease in autophagosomes, the down-regulation of Beclin1, and the up-regulation of p62 in the hippocampus of SD-exposed Wistar rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the inhibitory roles of NaHS in SD-induced cognitive impairment and excessive hippocampal autophagy in Wistar rats. Taken together, our results suggested that H2S improves the cognitive function of SD-exposed rats by inhibiting excessive hippocampal autophagy in a hippocampal Sirt-1-dependent way.
Collapse
Affiliation(s)
- Shan Gao
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yi-Yun Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Li Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Fang Lan
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ping Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China.
| | - Wei Zou
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yong-Jun Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China.
| |
Collapse
|
16
|
Jiang R, Wei H. Beneficial effects of octreotide in alcohol-induced neuropathic pain. Role of H 2S, BDNF, TNF-α and Nrf2. Acta Cir Bras 2021; 36:e360408. [PMID: 34076065 PMCID: PMC8184257 DOI: 10.1590/acb360408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To explore the role and molecular mechanisms of neuroprotective effects of
octreotide in alcohol-induced neuropathic pain. Methods Male Wistar rats were employed and were administered a chronic ethanol diet
containing 5% v/v alcohol for 28 days. The development of neuropathic pain
was assessed using von Frey hair (mechanical allodynia), pinprick
(mechanical hyperalgesia) and cold acetone drop tests (cold allodynia). The
antinociceptive effects of octreotide (20 and 40 µg·kg–1) were
assessed by its administration for 28 days in ethanol-treated rats. ANA-12
(0.25 and 0.50 mg·kg–1), brain-derived neurotrophic factor (BDNF)
receptor blocker, was coadministered with octreotide. The sciatic nerve was
isolated to assess the biochemical changes including hydrogen sulfide
(H2S), cystathionine β synthase (CBS), cystathionine γ lyase
(CSE), tumor necrosis factor-α (TNF-α), BDNF and nuclear factor erythroid
2-related factor 2 (Nrf2). Results Octreotide significantly attenuated chronic ethanol-induced neuropathic pain
and it also restored the levels of H2S, CBS, CSE, BDNF, Nrf2 and
decreased TNF-α levels. ANA-12 abolished the effects of octreotide on pain,
TNF-α, BDNF, Nrf2 without any significant effects on H2S, CBS,
CSE. Conclusions Octreotide may attenuate the behavioral manifestations of alcoholic
neuropathic pain, which may be due to an increase in H2S, CBS,
CSE, BDNF, Nrf2 and a decrease in neuroinflammation.
Collapse
|
17
|
Tang QY, Li M, Chen L, Jiang JM, Gao SL, Xiao F, Zou W, Zhang P, Chen YJ. Adiponectin Mediates the Protection of H 2S Against Chronic Restraint Stress-Induced Cognitive Impairment via Attenuating Hippocampal Damage. Front Behav Neurosci 2021; 15:623644. [PMID: 34025367 PMCID: PMC8131522 DOI: 10.3389/fnbeh.2021.623644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence shows that chronic restraint stress (CRS) can induce cognitive dysfunction, which involves in hippocampal damage. Our recent research reveals that hydrogen sulfide (H2S), a novel gasotransmitter, protects against CRS-induced cognitive impairment, but the underlying mechanism remains unclear. Adiponectin, the most abundant plasma adipokine, has been shown to elicit neuroprotective property and attenuate cognitive impairment. Hence, the present work was aimed to explore whether adiponectin mediates the protective effect of H2S on CRS-induced cognitive impairment by inhibiting hippocampal damage. Results found that administration of Anti-Acrp30, a neutralizing antibody of adiponectin, obviously reverses sodium hydrosulfide (NaHS, an exogenous H2S donor)-induced the inhibition on CRS-induced cognitive impairment according to Y-maze test, Novel object recognition (NOR) test, and Morris water maze (MWM) test. In addition, Anti-Acrp30 blocked the protective effect of NaHS on hippocampal apoptosis in rats-subjected with CRS as evidenced by the pathological changes in hippocampus tissues in hematoxylin and eosin (HE) staining and the increases in the amount of the condensed and stained to yellowish-brown or brownish yellow neuron nucleuses in terminal deoxynucleotidyl transferase transfer-mediated dUTP nick end-labeling (TUNEL) staining as well as the expression of hippocampal pro-apoptotic protein (Bax), and a decrease in the expression of hippocampal anti-apoptotic protein (Bcl-2). Furthermore, Anti-Acrp30 mitigated the inhibitory effect of NaHS on CRS-induced oxidative stress as illustrated by the up-regulation of malondialdehyde (MDA) content and the down-regulation of superoxide dismutase (SOD) activity and glutathione (GSH) level in the hippocampus. Moreover, Anti-Acrp30 eliminated NaHS-induced the reduction of endoplasmic reticulum (ER) stress-related proteins including binding immunoglobulin protein (BIP), C/EBP homologous protein (CHOP), and Cleaved Caspase-12 expressions in the hippocampus of rats-exposed to CRS. Taken together, these results indicated that adiponectin mediates the protection of H2S against CRS-induced cognitive impairment through ameliorating hippocampal damage.
Collapse
Affiliation(s)
- Qiong-Yan Tang
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Min Li
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Lei Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Jia-Mei Jiang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Sheng-Lan Gao
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Fan Xiao
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
18
|
Disbrow E, Stokes KY, Ledbetter C, Patterson J, Kelley R, Pardue S, Reekes T, Larmeu L, Batra V, Yuan S, Cvek U, Trutschl M, Kilgore P, Alexander JS, Kevil CG. Plasma hydrogen sulfide: A biomarker of Alzheimer's disease and related dementias. Alzheimers Dement 2021; 17:1391-1402. [PMID: 33710769 PMCID: PMC8451930 DOI: 10.1002/alz.12305] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
While heart disease remains a common cause of mortality, cerebrovascular disease also increases with age, and has been implicated in Alzheimer's disease and related dementias (ADRD). We have described hydrogen sulfide (H2S), a signaling molecule important in vascular homeostasis, as a biomarker of cardiovascular disease. We hypothesize that plasma H2S and its metabolites also relate to vascular and cognitive dysfunction in ADRD. We used analytical biochemical methods to measure plasma H2S metabolites and MRI to evaluate indicators of microvascular disease in ADRD. Levels of total H2S and specific metabolites were increased in ADRD versus controls. Cognition and microvascular disease indices were correlated with H2S levels. Total plasma sulfide was the strongest indicator of ADRD, and partially drove the relationship between cognitive dysfunction and white matter lesion volume, an indicator of microvascular disease. Our findings show that H2S is dysregulated in dementia, providing a potential biomarker for diagnosis and intervention.
Collapse
Affiliation(s)
- Elizabeth Disbrow
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Pharmacology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Karen Y Stokes
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christina Ledbetter
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Neurosurgery, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - James Patterson
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Roger Kelley
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Sibile Pardue
- Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Tyler Reekes
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Pharmacology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Lana Larmeu
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Neurosurgery, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Vinita Batra
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Shuai Yuan
- Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Urska Cvek
- Dept. of Computer Science, Laboratory for Advanced Biomedical Informatics, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - Marjan Trutschl
- Dept. of Computer Science, Laboratory for Advanced Biomedical Informatics, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - Phillip Kilgore
- Dept. of Computer Science, Laboratory for Advanced Biomedical Informatics, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - J Steven Alexander
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Pathology and Translational Pathobiology, Department of Pathology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
19
|
He J, Chen Z, Kang X, Wu L, Jiang JM, Liu SM, Wei HJ, Chen YJ, Zou W, Wang CY, Zhang P. SIRT1 Mediates H 2S-Ameliorated Diabetes-Associated Cognitive Dysfunction in Rats: Possible Involvement of Inhibiting Hippocampal Endoplasmic Reticulum Stress and Synaptic Dysfunction. Neurochem Res 2021; 46:611-623. [PMID: 33534060 DOI: 10.1007/s11064-020-03196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Diabetes-associated cognitive dysfunction (DACD) characterized by hippocampal injury increases the risk of major cerebrovascular events and death. Endoplasmic reticulum (ER) stress and synaptic dysfunction play vital roles in the pathological process. At present, no specific treatment exists for the prevention and/or the therapy of DACD. We have recently reported that hydrogen sulfide (H2S) exhibits therapeutic potential for DACD, but the underlying mechanism has not been fully elucidated. Silent information regulator 1 (SIRT1) has been shown to play a role in regulating the progression of diabetes and is also indispensable for memory formation and cognitive performance. Hence, the present study was performed to explore whether SIRT1 mediates the protective effect of H2S on streptozotocin (STZ)-induced cognitive deficits, an in vivo rat model of DACD, via inhibiting hippocampal ER stress and synaptic dysfunction. The results showed that administration of NaHS (an exogenous H2S donor) increased the expression of SIRT1 in the hippocampus of STZ-induced diabetic rats. Then, results proved that sirtinol, a special blocker of SIRT1, abrogated the inhibition of NaHS on STZ-induced cognitive deficits, as appraised by Morris water maze test, Y-maze test, and Novel object recognition behavioral test. In addition, administration of NaHS eliminated STZ-induced ER stress as evidenced by the decreases in the expressions of ER stress-related proteins including glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 in the hippocampus, while these effects of NaHS were also reverted by sirtinol. Furthermore, the NaHS-induced up-regulation of hippocampal synapse-related protein (synapsin-1, SYN1) expression in STZ-induced diabetic rats was also abolished by sirtinol. Taken together, these results demonstrated that SIRT1 mediates the protection of H2S against cognitive dysfunction in STZ-diabetic rats partly via inhibiting hippocampal ER stress and synaptic dysfunction.
Collapse
Affiliation(s)
- Juan He
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhuo Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, Yiyang Center Hospital, Yiyang, 413000, Hunan, People's Republic of China
| | - Xuan Kang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Lin Wu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jia-Mei Jiang
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Su-Mei Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Hai-Jun Wei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yong-Jun Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China.
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
20
|
Paganelli F, Mottola G, Fromonot J, Marlinge M, Deharo P, Guieu R, Ruf J. Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int J Mol Sci 2021; 22:1690. [PMID: 33567540 PMCID: PMC7914561 DOI: 10.3390/ijms22041690] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
The influence of hyperhomocysteinemia (HHCy) on cardiovascular disease (CVD) remains unclear. HHCy is associated with inflammation and atherosclerosis, and it is an independent risk factor for CVD, stroke and myocardial infarction. However, homocysteine (HCy)-lowering therapy does not affect the inflammatory state of CVD patients, and it has little influence on cardiovascular risk. The HCy degradation product hydrogen sulfide (H2S) is a cardioprotector. Previous research proposed a positive role of H2S in the cardiovascular system, and we discuss some recent data suggesting that HHCy worsens CVD by increasing the production of H2S, which decreases the expression of adenosine A2A receptors on the surface of immune and cardiovascular cells to cause inflammation and ischemia, respectively.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Department of Cardiology, North Hospital, F-13015 Marseille, France
| | - Giovanna Mottola
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Julien Fromonot
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Marion Marlinge
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Pierre Deharo
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Department of Cardiology, Timone Hospital, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
| |
Collapse
|
21
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Chmielewska K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Derivatives of Cholinesterase Inhibitors. Curr Neuropharmacol 2021; 19:1323-1344. [PMID: 33342413 PMCID: PMC8719290 DOI: 10.2174/1570159x19666201218103434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work is to review tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account, we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant, decreasing β-amyloid plaque aggregation, nitric oxide production, pro-inflammatory cytokines release, monoamine oxidase-B activity, cytotoxicity and oxidative stress in vitro and in animal model that classify these hybrids as potential multifunctional therapeutic agents for Alzheimer's disease. Moreover, herein, we have described the cholinergic hypothesis, mechanisms of neurodegeneration and current pharmacotherapy of Alzheimer's disease based on the restoration of cholinergic function through blocking enzymes that break down acetylcholine.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
22
|
Wang M, Tang JJ, Wang LX, Yu J, Zhang L, Qiao C. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson's disease. Neural Regen Res 2021; 16:1353-1358. [PMID: 33318417 PMCID: PMC8284305 DOI: 10.4103/1673-5374.301026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is regarded to be a protectant against diseases of the central nervous system and cardiovascular system. However, the mechanism by which H2S elicits neuroprotective effects in the progression of Parkinson's disease (PD) remains unclear. To investigate the role of H2S in delaying the pathological process of PD, we used the most common sodium hydrosulfide (NaHS) as an H2S donor and established a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) in the present study. Our results show that H2S reduced neuronal loss during the progression of PD. Notably, we found that H2S exhibited protective effects on dopaminergic neurons. Excitingly, H2S also increased the proliferation of neural stem cells in the subventricular zone. Next, we evaluated whether the neuroprotective effects of H2S on dopaminergic neurons in PD are dependent on adult nerve regeneration by treating primary adult neural stem cells cultured ex vivo with 1-methyl-4-phenylpyridine. Our results show that H2S could prevent nerve injury induced by 1-methyl-4-phenylpyridine, promote the growth of neurospheres, and promote neurogenesis by regulating Akt/glycogen synthase kinase-3β/β-catenin pathways in adult neural stem cells. These findings confirm that H2S can increase neurogenesis in an adult mouse model of PD by regulating the Akt/glycogen synthase kinase-3β/β-catenin signaling pathway. This study was approved by the Animal Care and Use Committee of Nanjing Medical University, China (IACUC Approval No. 1601153-3).
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juan-Juan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Xiao Wang
- Laboratory of Neurological Diseases, Department of Neurology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jun Yu
- Laboratory of Reproductive Medicine, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Qiao
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
23
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
24
|
Yang CC, Hsiao LD, Yang CM. Galangin Inhibits LPS-Induced MMP-9 Expression via Suppressing Protein Kinase-Dependent AP-1 and FoxO1 Activation in Rat Brain Astrocytes. J Inflamm Res 2020; 13:945-960. [PMID: 33244253 PMCID: PMC7685391 DOI: 10.2147/jir.s276925] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Neuroinflammation, characterized by the increased expression of inflammatory proteins such as matrix metalloproteinases (MMPs), plays a critical role in neurodegenerative disorders. Lipopolysaccharide (LPS) has been shown to upregulate MMP-9 expression through the activation of various transcription factors, including activator protein 1 (AP-1) and forkhead box protein O1 (FoxO1). The flavonoid 3,5,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one (galangin) has been demonstrated to possess antioxidant and anti-inflammatory properties in various types of cells. Here, we investigated the mechanisms underlying the inhibitory effect of galangin on LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Methods Pharmacological inhibitors and siRNAs were employed to explore the effects of galangin on LPS-challenged RBA-1 cells. Gelatin zymography, Western blotting, real-time PCR, and a luciferase reporter assay were used to detect MMP-9 activity, protein expression, mRNA levels, and promoter activity, respectively. The protein kinases involved in the LPS-induced MMP-9 expression were determined by Western blot. A chromatin immunoprecipitation (ChIP) assay was employed to evaluate the activity of c-Jun at the MMP-9 promoter. Results Galangin treatment attenuated the LPS-mediated induction of MMP-9 protein and mRNA expression, as well as the activity at the MMP-9 promoter. In addition, galangin exerted its inhibitory effects on MMP-9 expression through suppressing the LPS-stimulated activation of proline-rich tyrosine kinase (Pyk2), platelet-derived growth factor receptor beta (PDGFRβ), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and mitogen-activated protein kinases (MAPKs). Pretreatment with galangin attenuated the LPS-induced phosphorylation of c-Jun and FoxO1. LPS-induced cell migration was also suppressed by galangin pretreatment. Conclusion Galangin attenuates the LPS-induced inflammatory responses, including the induction of MMP-9 expression and cell migration, via inhibiting Pyk2/PDGFRβ/PI3K/Akt/mTOR/JNK1/JNK2 and p44/p42 MAPK cascade-dependent AP-1 and FoxO1 activities. These results provide new insights into the mechanisms through which galangin mitigates LPS-induced inflammatory responses, and suggest novel strategies for the management of LPS-related brain diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Program for Biotch Pharmaceutical Industry, China Medical University, Taichung 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
25
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
26
|
Wang Y, Yu R, Wu L, Yang G. Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide 2020; 103:9-19. [PMID: 32682981 DOI: 10.1016/j.niox.2020.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Recent advances in the biomedical importance of H2S have help us understand various cellular functions and pathophysiological processes from a new aspect. Specially, H2S has been demonstrated to play multiple roles in regulating cell behaviors, including cell survival, cell differentiation, cell senescence, cell hypertrophy, cell atrophy, cell metaplasia, and cell death, etc. H2S contributes to cell behavior changes via various mechanisms, such as histone modification, DNA methylation, non-coding RNA changes, DNA damage repair, transcription factor activity, and post-translational modification of proteins by S-sulfhydration, etc. In this review, we summarized the recent research progress on H2S signaling in control of cell behaviors and discussed the ways of H2S regulation of gene expressions. Given the key roles of H2S in both health and diseases, a better understanding of the regulation of H2S on cell behavior change and the underlying molecular mechanisms will help us to develop novel and more effective strategies for clinical therapy.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ruihuan Yu
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; School of Human Kinetics, Laurentian University, Sudbury, Canada; Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
27
|
Lazarević M, Battaglia G, Jevtić B, Đedović N, Bruno V, Cavalli E, Miljković Đ, Nicoletti F, Momčilović M, Fagone P. Upregulation of Tolerogenic Pathways by the Hydrogen Sulfide Donor GYY4137 and Impaired Expression of H 2S-Producing Enzymes in Multiple Sclerosis. Antioxidants (Basel) 2020; 9:E608. [PMID: 32664399 PMCID: PMC7402185 DOI: 10.3390/antiox9070608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to examine the in vitro effects of the slow-releasing H2S donor GYY4137 on the immune cells involved in the pathogenesis of the central nervous system (CNS) autoimmune disease, multiple sclerosis (MS). GYY4137 specifically potentiated TGF-β expression and production in dendritic cells and significantly reduced IFN-γ and IL-17 production in the lymph node and spinal cord T cells obtained from mice immunized with CNS antigens. Both the proportion of FoxP3+ regulatory CD4+ T cells in the lymph node cells, and the percentage of IL-17+ CD4+ T cells in the spinal cord cells were reduced upon culturing with GYY4137. Interestingly, the peripheral blood mononuclear cells obtained from the MS patients had a lower expression of the H2S-producing enzyme, 3-mercaptopyruvate-sulfurtransferase (MPST), in comparison to those obtained from healthy donors. A significant inverse correlation between the expression of MPST and several pro-inflammatory factors was also observed. Further studies on the relevance of the observed results for the pathogenesis and therapy of MS are warranted.
Collapse
Affiliation(s)
- Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Giuseppe Battaglia
- Department of Physiology and Pharmacology, Sapienza University, Piazzale A. Moro, 5, 00185 Rome, Italy
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Neda Đedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Valeria Bruno
- Department of Physiology and Pharmacology, Sapienza University, Piazzale A. Moro, 5, 00185 Rome, Italy
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| |
Collapse
|
28
|
Duan H, Li L, Shen S, Ma Y, Yin X, Liu Z, Yuan C, Wang Y, Zhang J. Hydrogen Sulfide Reduces Cognitive Impairment in Rats After Subarachnoid Hemorrhage by Ameliorating Neuroinflammation Mediated by the TLR4/NF-κB Pathway in Microglia. Front Cell Neurosci 2020; 14:210. [PMID: 32754015 PMCID: PMC7381317 DOI: 10.3389/fncel.2020.00210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background and Aims: Cognitive impairment is one of the major complications of subarachnoid hemorrhage (SAH) and is closely associated with neuroinflammation. Hydrogen sulfide (H2S) has been shown to have an anti-inflammatory effect and reduce cognitive impairment in neurodegenerative diseases, but its effects in SAH have been little studied. This study aimed to investigate the effects of H2S on cognitive impairment after SAH and the possible underlying mechanisms. Methods: Forty-eight male Sprague–Dawley (SD) rats were randomly divided into three groups: a sham group, a SAH group, and a SAH + NaHS (an H2S donor) group. The endovascular perforation technique was used to establish the experimental SAH model. NaHS was administered intraperitoneally. An active avoidance test (AAT) was performed to investigate cognitive function. The expression of TNF-α, toll-like receptor 4 (TLR4), and NF-κB p65 in the hippocampus was measured by Western blot and immunohistochemistry. The types of cells expressing TNF-α were detected by double immunofluorescence staining. Results: Compared to that in the sham group, the learning and memory ability of rats in the SAH group was damaged. Furthermore, the expression of TNF-α, TLR4, and NF-κB p65 in the hippocampus was elevated in the SAH group (p < 0.05). TNF-α was mainly expressed in activated microglia, which was consistent with the expression of TLR4. Treatment with NaHS significantly decreased the cognitive impairment of rats after SAH and simultaneously reduced the expression of TNF-α, TLR4, and NF-κB p65 and alleviated the nuclear translocation of NF-κB p65 (p < 0.05). Conclusions: The neuroinflammation reaction in microglia contributes to cognitive impairment after SAH. H2S reduced the cognitive impairment of rats after SAH by ameliorating neuroinflammation in microglia, potentially via the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Hongzhou Duan
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Liang Li
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Shengli Shen
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Yuanyuan Ma
- Laboratory Animal Center, Peking University First Hospital, Beijing, China
| | - Xiangdong Yin
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Zhen Liu
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Changwei Yuan
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Yingjin Wang
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Jiayong Zhang
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
29
|
Kamoun PP. Mental retardation in Down syndrome: Two ways to treat. Med Hypotheses 2019; 131:109289. [DOI: 10.1016/j.mehy.2019.109289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023]
|
30
|
Zheng Q, Pan L, Ji Y. H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res 2019; 34:94-102. [PMID: 32305963 DOI: 10.7555/jbr.33.20190071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hydrogen sulfide (H 2S) is an important messenger for its strong anti-inflammatory effects, which may be involved in multiple cardiovascular diseases. In our previous study, we revealed that H 2S attenuated diabetes-accelerated atherosclerosis through suppressing oxidative stress. Here we report that GYY4137, a H 2S donor, reduced the plaque formation of aortic roots and the levels of both intercellular cell adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) in diabetes-accelerated atherosclerotic cells and mouse models. The inflammatory factors of TNF-α, IL-1β, IL-6, and MCP1 were also significantly reduced by GYY4137. Mechanically, GYY4137 suppressed the activation of pyrin domain containing protein 3 (NLRP3) inflammasome in diabetes-accelerated atherosclerosis conditions. Upon knockdown of NLRP3, the increase of ICAM1 and VCAM1 caused by high glucose and oxLDL could be reversed, indicating that H 2S protected the endothelium by inhibiting the activity of NLRP3 inflammasome. In conclusion, our study indicates that GYY4137 effectively protects against the development of diabetes-accelerated atherosclerosis by inhibiting inflammasome activation.
Collapse
Affiliation(s)
- Qiao Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lihong Pan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|