1
|
Wang YX, Ding ZJ, Wang QL, Zhao CC, Liu SQ, Du SL, Zhou S, Zheng LY, Gao M, Shen CC, Chen XD. CRISPR-Cas9 screening identified novel subtypes of cutaneous melanoma based on essential cancer genes. Arch Dermatol Res 2024; 317:86. [PMID: 39644349 DOI: 10.1007/s00403-024-03633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Our primary objective was to identify genes critical for cutaneous melanoma (CM) and related typing, based on essential genes, to generate novel insights for clinical management and immunotherapy of patients with CM. We analyzed RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and sequencing data of 29 CM cell line from Cancer Cell Line Encyclopedia (CCLE) databases. Combined with DepMap database, 406 CM essential cancer genes were finally obtained. Based on the expression of essential genes in cancer, the patients included in TCGA and Gene Expression Omnibus (GEO) databases were divided into three different molecular subtypes (C1, C2, and C3) by the NMF algorithm. Data analysis from TCGA and GEO datasets revealed that subtype C3 had the poorest prognosis, while subtype C1 exhibited the best prognosis. Combined with the CIBERSORT, ESTIMATE and ssGSEA algorithm, patients with different molecular subtypes can be divided into two immune subtypes (hot and cold). We found that subtype C1 was characterized by hot tumors, in contrast to subtypes C2 and C3, which were characterized by cold tumors. Then, we used univariate Cox regression, LASSO, and multifactor Cox regression analysis to select risk genes and constructed a prognostic model based on eight genes: RABIF, CDCA8, FOXM1, SPRR2E, AIP, CAP1, CTSW, and IFITM3. All patients were divided into two risk subtypes (high and low ) according to the median of risk scores. We found that most hot tumor subtypes were found in the low-risk subtypes and most patients with this subtype survived for longer. Ultimately, we selected RABIF, which exhibits the highest risk coefficient, for histological and cytological verification. The results showed that RABIF was overexpressed in melanoma. Inhibition of RABIF expression could suppress the proliferation and invasion of melanoma cells and promote the apoptosis of melanoma cells. In conclusion, we used CRISPR-Cas9 screening to verify the association between molecular subtypes (C1, C2, and C3), immune subtypes (hot and cold), and risk subtypes (high and low) in patients with CM, particularly in distinguishing survival and prognosis. These findings can be used to guide clinical management and immunotherapy of patients with CM.
Collapse
Affiliation(s)
- Yi-Xiao Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Zhang-Jun Ding
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China
- Department of Dermatology, Dongtai People's Hospital, Yancheng, 224001, Jiangsu Province, China
| | - Qian-Ling Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Cai-Chou Zhao
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Si-Qi Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Shu-Li Du
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Shan Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Li-Yun Zheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Min Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Cong-Cong Shen
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Xiao-Dong Chen
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
da Silva VRF, da Silva GB, Manica D, Deolindo CTP, Bagatini MD, Kempka AP. Phytotherapeutic potential of Campomanesia xanthocarpa (Mart.) O. Berg: antitumor effects in vitro and in silico, with emphasis on SK-MEL-28 melanoma cells-a study on leaf and fruit infusions. In Silico Pharmacol 2024; 12:105. [PMID: 39569036 PMCID: PMC11574240 DOI: 10.1007/s40203-024-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The study investigated the efficacy of Campomanesia xanthocarpa infusions on human melanoma cells (SK-MEL-28). The phytochemical profile revealed 18 phenolic compounds in the leaf infusion and 9 in the fruit infusion. After 24 h of treatment, the infusions demonstrated antineoplastic effects, reducing cell viability at all tested concentrations for the leaf infusion. For the fruit infusion, a significant reduction in cell viability was observed specifically at the 800 μg/mL concentration. Fluorescence microscopy and mitochondrial membrane potential results indicated that the leaf infusion was more effective in reducing cell viability and mitochondrial function in SK-MEL-28 cells, possibly due to its greater variety of phenolic compounds compared to the fruit infusion. The leaf infusion also induced higher production of intracellular reactive oxygen species compared to the fruit infusion. Protein sulfhydryl levels were reduced for the leaf infusion. Epigallocatechin gallate, Isoquercitrin, Rutin, Kaempferol-3-O-rutinoside, Chlorogenic acid, and Ellagic acid were identified as the main compounds with activity against SK-MEL-28 cells. Molecular docking analysis underscored factors such as affinity, cavity size, binding mode, and contact residues with specific compounds chosen for their favorable properties in targeting BRAF, CDK4, CDK6, MEK1, and MEK2. The variability in binding affinities may directly influence the compounds' ability to inhibit different signaling pathways related to cancer cell growth and proliferation. The results suggest that phenolic compounds from C. xanthocarpa extracts have therapeutic potential and could contribute to melanoma therapies. Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00286-1.
Collapse
Affiliation(s)
- Vanessa Ruana Ferreira da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Carolina Turnes Pasini Deolindo
- Ministry of AgricultureLivestock, and Food Supply, Federal Agricultural Defense Laboratory, São José, SC Brazil
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC Brazil
| | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC 89870-000 Brazil
| |
Collapse
|
3
|
Sitthisuk P, Innajak S, Poorahong W, Samosorn S, Dolsophon K, Watanapokasin R. Effect of Acacia concinna Extract on Apoptosis Induction Associated with Endoplasmic Reticulum Stress and Modulated Intracellular Signaling Pathway in Human Colon HCT116 Cancer Cells. Nutrients 2024; 16:3764. [PMID: 39519596 PMCID: PMC11547357 DOI: 10.3390/nu16213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) stands as one of the most prevalent cancer types and among the most frequent causes of cancer-related death globally. Acacia concinna (AC) is a medicinal and edible plant that exhibits a multitude of biological properties, including anticancer properties. This study aimed to investigate the impact of the AC extract on apoptosis induction and the underlying mechanisms associated with this effect in KRAS-mutated human colon HCT116 cells. METHODS The effect of AC extract on cell cytotoxicity was evaluated using MTT assay. Nuclear morphological changes were visualized with Hoechst 33342 staining, while mitochondrial membrane potential (MMP) was assessed via JC-1 staining. Flow cytometry was employed for cell cycle analysis, and intracellular ROS levels were determined using DCFH-DA staining. RESULTS The results showed that HCT116 cells exposed to AC extract showed reduced cell growth and prompted apoptosis, as indicated by an increase in chromatin condensation, apoptotic bodies, the sub-G1 apoptotic cell population, and disrupted MMP. Expression levels of apoptosis mediator proteins determined by Western blot analysis showed an increase in pro-apoptotic proteins (Bak and Bax) while decreasing anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1), leading to caspase-7 activation and PARP inactivation. AC extract was also found to enhance intracellular reactive oxygen species (ROS) levels and stimulate endoplasmic reticulum (ER) stress. Furthermore, AC extract increases the phosphorylation of ERK1/2, p38, and c-Jun while downregulating PI3K, Akt, β-catenin, and their downstream target proteins. CONCLUSIONS These results demonstrate that AC extract could inhibit cancer cell growth via ROS-induced ER stress associated with apoptosis and regulate the MAPK, PI3K/Akt, and Wnt/β-catenin signaling pathways in HCT116 cells. Therefore, AC extract may be a novel candidate for natural anticancer resources for colon cancer treatment.
Collapse
Affiliation(s)
- Pornnapa Sitthisuk
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| | - Sukanda Innajak
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| | - Watcharaporn Poorahong
- Department of Biochemistry, Faculty of Medicine, Bangkok Thonburi University, Bangkok 10170, Thailand;
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (S.S.); (K.D.)
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (S.S.); (K.D.)
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| |
Collapse
|
4
|
Yang Z, Wei Y, Fu Y, Wang X, Shen W, Shi A, Zhang H, Li H, Song X, Wang J, Jin M, Zheng H, Tao J, Wang Y. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe 2+ accumulation. Anim Reprod Sci 2024; 270:107605. [PMID: 39362062 DOI: 10.1016/j.anireprosci.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Bovine embryos by in vitro fertilization have become the primary source of commercial embryo transfers globally. However, the developmental capacity of in vitro maturation (IVM) oocytes is considerably lower than that of in vivo maturation (IVO) oocytes, owing to the production of reactive oxygen species (ROS) via mitochondrial metabolism, which was higher in IVM oocytes than in IVO oocytes. To avoid the negative effects of ROS on embryo quality, folic acid (FA) was supplemented directly into the IVM medium to antagonize ROS production, however, the mechanisms remain unknown. In the present study, five levels of FA (0, 25, 50, 100, and 200 µM) were supplemented into the bovine oocyte culture medium. The maturation, cleavage, and blastocyst formation rates increased by 8.95 %, 6.94 %, and 4.36 %, respectively, in the 50 µM group compared to the 0 µM group. Moreover, 7904 differential genes were identified between 0 µM and 50 µM groups by transcriptome sequencing, and they were mainly enriched in 8 pathways. The glutathione, ROS, and Fe2+ levels in oocytes were found to be associated with ferroptosis. Our results revealed that 50 µM FA promoted the IVM of bovine oocytes and affected the expression of genes involved in the ferroptosis pathway. The downregulation of TFR1 and STEAP3 led to a decrease in intracellular Fe2+ accumulation, and the upregulation of GCL increased oocyte GSH levels, thereby reducing the production of ROS in the ferroptosis pathway. Our study provides a new insight into the molecular mechanisms by which FA promotes bovine oocyte development in vitro.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaochang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yu Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wenjuan Shen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Han Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Heqiang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mengdong Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hao Zheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Borczak B, Szewczyk A, Domagała D, Kapusta-Duch J, Leszczyńska T, Kotuła M, Grulova D. Potential Antidiabetic, Antioxidative and Antiproliferative Properties of Functional Wheat Flour Muffins Enriched with White Clover Flowers ( Trifolium repens L.). Int J Mol Sci 2024; 25:9909. [PMID: 39337397 PMCID: PMC11432339 DOI: 10.3390/ijms25189909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of the study was to evaluate the functional properties of muffins fortified with white clover flowers (Trifolium repens L.), which were added to the dough in the following amounts: (i) 0% (control); (ii) 2.5%; (iii) 5.5%; (iv) 7.5%; and (v) 10%. The organoleptic properties were assessed by a panel of consumers. Additionally, the following parameters were also tested: basic chemical composition, total polyphenols, the antioxidant activity together with antiproliferative effects on the A375 melanoma cell line, starch nutritional fractions and the in vitro glycemic index. As a result, replacing wheat flour with white clover flour significantly affected the color, aroma and taste of the muffins. The content of proteins, fats, total ash, dietary fiber, resistant starch (RS), slowly digestible starch (SDS),total polyphenols and antioxidant activity increased statistically significantly with the elevated amount of white clover flour added to the dough. At the same time, the content of free glucose (FG), rapidly available glucose (RAG) and rapidly digestible starch (RDS), the value of the in vitro glycemic index and the viability of melanoma cancer cells decreased significantly. The muffins enriched with white clover flowers might constitute an interesting proposition and extension of the existing assortment of confectionery products.
Collapse
Affiliation(s)
- Barbara Borczak
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Agnieszka Szewczyk
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Krakow, Poland
| | - Dominik Domagała
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Joanna Kapusta-Duch
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Marta Kotuła
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Daniela Grulova
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17th November St. 1, 080 01 Presov, Slovakia
| |
Collapse
|
6
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Li X, He X, Lin B, Li L, Deng Q, Wang C, Zhang J, Chen Y, Zhao J, Li X, Li Y, Xi Q, Zhang R. Quercetin Limits Tumor Immune Escape through PDK1/CD47 Axis in Melanoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:541-563. [PMID: 38490807 DOI: 10.1142/s0192415x2450023x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Quercetin (3,3[Formula: see text],4[Formula: see text],5,7-pentahydroxyflavone) is a bioactive plant-derived flavonoid, abundant in fruits and vegetables, that can effectively inhibit the growth of many types of tumors without toxicity. Nevertheless, the effect of quercetin on melanoma immunology has yet to be determined. This study aimed to investigate the role and mechanism of the antitumor immunity action of quercetin in melanoma through both in vivo and in vitro methods. Our research revealed that quercetin has the ability to boost antitumor immunity by modulating the tumor immune microenvironment through increasing the percentages of M1 macrophages, CD8[Formula: see text] T lymphocytes, and CD4[Formula: see text] T lymphocytes and promoting the secretion of IL-2 and IFN-[Formula: see text] from CD8[Formula: see text] T cells, consequently suppressing the growth of melanoma. Furthermore, we revealed that quercetin can inhibit cell proliferation and migration of B16 cells in a dose-dependent manner. In addition, down-regulating PDK1 can inhibit the mRNA and protein expression levels of CD47. In the rescue experiment, we overexpressed PDK1 and found that the protein and mRNA expression levels of CD47 increased correspondingly, while the addition of quercetin reversed this effect. Moreover, quercetin could stimulate the proliferation and enhance the function of CD8[Formula: see text] T cells. Therefore, our results identified a novel mechanism through which CD47 is regulated by quercetin to promote phagocytosis, and elucidated the regulation of quercetin on macrophages and CD8[Formula: see text] T cells in the tumor immune microenvironment. The use of quercetin as a therapeutic drug holds potential benefits for immunotherapy, enhancing the efficacy of existing treatments for melanoma.
Collapse
Affiliation(s)
- Xin Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xue He
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Lin
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Li Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qifeng Deng
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin 300203, P. R. China
| | - Jing Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ying Chen
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jingyi Zhao
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xinrui Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Yan Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qing Xi
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, P. R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Ye XS, Tian WJ, Wang GH, Hu LJ, Leng CL, Sun BL, Liu W, Shu XJ, Chen HF. Four undescribed coumarin derivatives, with ten amides from the roots of Ficus hirta and their cytotoxic activities. Bioorg Chem 2024; 144:107116. [PMID: 38237391 DOI: 10.1016/j.bioorg.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Four undescribed coumarin derivatives, ficusalt A (1) and ficusalt B (2), a pair of racemic coumarins, (±) ficudimer A (3a/3b), along with ten known amides, were isolated from the roots of Ficus hirta. Their structures were elucidated by several spectroscopic data analyses, including HRESIMS, NMR, and X-ray single-crystal diffraction. The cytotoxic activities of all compounds against HeLa, HepG2, MCF-7, and H460 cell lines were detected using the MTT assay. Among these, 5 showed the highest activity against HeLa cells. Subsequently, the apoptotic, anti-invasive, and anti-migration effects of 5 on HeLa cells were determined by flow cytometer, transwell invasion assay, and wound-healing assay, respectively. The result suggested that 5 distinctly induced the apoptosis in HeLa cells and inhibited their invasion and migration. Further studies on anticancer mechanisms were conducted using Western blotting. As a result, 5 increased the cleavage of PARP and the expression of pro-apoptotic protein Bax. Moreover, 5 notably upregulated the phosphorylation of p38 and JNK, whereas inhibited the expression of p-ERK and p-AKT. Our results demonstrated that 5 could be a potential leading compound for further application in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xian-Sheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Wen-Jing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guang-Hui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Juan Hu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chang-Long Leng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Bin-Lian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xi-Ji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Hai-Feng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Lv M, Ding R, Ma P, Feng Y, Zeng S, Zhang Y, Shen W, Guan W, Xiangyu E, Zeng H, Yu J. Network Pharmacology Analysis on the Mechanism of Xihuangwan in Treating Rectal Cancer and Radiation Enteritis. Curr Pharm Des 2024; 30:683-701. [PMID: 38415445 DOI: 10.2174/0113816128287232240213105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Recent studies have shown that XihuangWan (XHW) is a kind of Chinese medicine with significant anti-tumor and anti-inflammatory activities. However, its mechanism for preventing and treating radiation proctitis in rectal cancer patients during radiotherapy remains unclear. METHODS This study employed the network pharmacology to establish a "drug-active ingredient-target genedisease" network via using TCMSP, SymMap, GeneCard, and OMIM databases. The PPI network was conducted by the String tool. The core targets of XHW in the treatment of rectal cancer and radiation enteritis were identified by topological analysis, and the functional annotation analysis and pathway enrichment analysis were performed. RESULTS A total of 61 active ingredients of XHW ingredients, 4607 rectal cancer-related genes, 5803 radiation enteritis-related genes, and 68 common targets of XHW in the treatment of rectal cancer and radiation enteritis were obtained. PTGS1 and NR3C2, as identified potential targets, were significantly associated with OS of colorectal cancer patients. GO and KEGG enrichment analysis showed that bioinformatics annotation of these common genes was mainly involved in DNA-binding transcription factor, PI3K/Akt, TNF, HIF-1 signaling pathway, and colorectal cancer pathway. CONCLUSION The active ingredients of XHW, mainly including Quercetin, Ellagic acid, and Stigmasterol, might act on common targets of rectal cancer and radiation enteritis, such as PTGS1, NR3C2, IL-6, EGFR, HIF-1A, CASP3, BCL2, ESR1, MYC, and PPARG, and regulate multiple signaling pathways like PI3K-Akt, TNF, and HIF-1 to inhibit tumor proliferation, tumor angiogenesis, inflammatory responses, and oxidative stress, thereby achieving prevention and treatment of radiation enteritis in rectal cancer patients during radiotherapy. It provided an important reference for further elucidating the anti-inflammation and anti-tumor mechanism and clinical application of XHW.
Collapse
Affiliation(s)
- Minghe Lv
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Rong Ding
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
- Department of Oncology, Chinese Medicine Hospital of Wujin, Changzhou 213100, China
| | - Peizhen Ma
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Yue Feng
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Su Zeng
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Yang Zhang
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Wenhao Shen
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Wenhui Guan
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - E Xiangyu
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Hongwei Zeng
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| | - Jingping Yu
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai 201203, China
| |
Collapse
|
10
|
Kamal R, Paul P, Thakur S, Singh SK, Awasthi A. Quercetin in Oncology: A Phytochemical with Immense Therapeutic Potential. Curr Drug Targets 2024; 25:740-751. [PMID: 38988154 DOI: 10.2174/0113894501292466240627050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Quercetin is a natural flavonoid with various pharmacological actions such as anti-inflammatory, antioxidant, antimicrobial, anticancer, antiviral, antidiabetic, cardioprotective, neuroprotective, and antiviral activities. Looking at these enormous potentials, researchers have explored how they can be used to manage numerous cancers. It's been studied for cancer management due to its anti-angiogenesis, anti-metastatic, and antiproliferative mechanisms. Despite having these proven pharmacological activities, the clinical use of quercetin is limited due to its first-- pass metabolism, poor solubility, and bioavailability. To address these shortcomings, researchers have fabricated various nanocarriers-based formulations to fight cancer. The present review overshadows the pharmacological potential, mechanisms, and application of nanoformulations against different cancers. Teaser: Explore the potential of Quercetin, a natural flavonoid with diverse pharmacological activities, and its nanoformulations in managing various cancers.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Priyanka Paul
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
11
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Mechanistic prospective and pharmacological attributes of quercetin in attenuation of different types of arthritis. 3 Biotech 2023; 13:362. [PMID: 37840879 PMCID: PMC10570262 DOI: 10.1007/s13205-023-03787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Arthritis is a frequent autoimmune disease with undefined etiology and pathogenesis. Scientific community constantly fascinating quercetin (QUR), as it is the best-known flavonoid among others for curative and preventive properties against a wide range of diseases. Due to its multifaceted activities, the implementation of QUR against various types of arthritis namely, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA) and psoriotic arthritis (PsA) has greatly increased in recent years. Many research evidenced that QUR regulates a wide range of pathways for instance NF-κB, MAK, Wnt/β-catenine, Notch, etc., that are majorly associated with the inflammatory mechanisms. Besides, the bioavailability of QUR is a major constrain to its therapeutic potential, and drug delivery techniques have experienced significant development to overcome the problem of its limited application. Hence, this review compiled the cutting-edge experiments on versatile effects of QUR on inflammatory diseases like RA, OA, GA and PsA, sources and bioavailability, therapeutic challenges, pharmacokinetics, clinical studies as well as toxicological impacts. The use of QUR in a health context would offer a tearing and potential therapeutic method, supporting the advancement of public health, particularly, of arthritic patients worldwide.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - S. Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| |
Collapse
|
12
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Kim B, Cho SD, Nam JS, Choi C, Che JH, Jung JY. Piperlongumine induces apoptosis and autophagy via the PI3K/Akt/mTOR pathway in KB human cervical cancer cells. Food Chem Toxicol 2023; 180:114051. [PMID: 37734464 DOI: 10.1016/j.fct.2023.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Natural products are continuously being researched to develop safe and effective treatment options for cervical cancer, the fourth most common cancer in women. Piperlongumine (PL), an amide alkaloid mainly present in long pepper, exhibits neuroprotective and anti-cancer properties. However, the specific effect of PL in cervical cancer and the relationship between the anti-cancer pathway and autophagy remain unclear. Therefore, we aimed to investigate PL-induced apoptosis in KB human cervical cancer cells and the relationship between apoptosis and autophagy therein. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and wound-healing assays showed that PL treatment suppressed KB cell viability and proliferation. Apoptosis was identified through 4',6-diamidino-2-phenylindole and annexin V-propidium iodide staining, increased cleaved-poly (ADP-ribose) polymerase and Bcl-2 associated X levels, and decreased B cell lymphoma 2 levels. Acridine orange staining and increased microtubule-associated protein 1A/1B-light chain 3-II and Beclin-1 levels confirmed autophagy. We determined that KB cell-related autophagy exerted cytoprotective effects using the autophagy inhibitors 3-methyladenine and hydroxychloroquine. PL treatment promoted apoptosis by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in KB cells; inhibiting the pathway using PI3K inhibitors increased autophagy. We suggest that PL is a potential natural anticancer agent for cervical cancer treatment.
Collapse
Affiliation(s)
- Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Eun-Young Choi
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Su-Ji Jeon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Sang-Woo Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Jun-Mo Moon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Changsun Choi
- School of Food Science and Technology, Chung-ang University, Ansung, 17546, Republic of Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource Development, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan, 32439, Republic of Korea.
| |
Collapse
|
13
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
14
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
15
|
Salgado MTSF, Fernandes E Silva E, Nascimento MAD, Lopes AC, Paiva LSD, Votto APDS. Potential Therapeutic Targets of Quercetin in the Cutaneous Melanoma Model and Its Cellular Regulation Pathways: A Systematic Review. Nutr Cancer 2023; 75:1687-1709. [PMID: 37553896 DOI: 10.1080/01635581.2023.2241698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.
Collapse
Affiliation(s)
- Mariana Teixeira Santos Figueiredo Salgado
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| | | | - Mariana Amaral do Nascimento
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| |
Collapse
|
16
|
Hasan AA, Kalinina E, Nuzhina J, Volodina Y, Shtil A, Tatarskiy V. Potentiation of Cisplatin Cytotoxicity in Resistant Ovarian Cancer SKOV3/Cisplatin Cells by Quercetin Pre-Treatment. Int J Mol Sci 2023; 24:10960. [PMID: 37446140 DOI: 10.3390/ijms241310960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Previously, we demonstrated that the overexpression of antioxidant enzymes (SOD-1, SOD-2, Gpx-1, CAT, and HO-1), transcription factor NFE2L2, and the signaling pathway (PI3K/Akt/mTOR) contribute to the cisplatin resistance of SKOV-3/CDDP ovarian cells, and treatment with quercetin (QU) alone has been shown to inhibit the expression of these genes. The aim of this study was to expand the previous data by examining the efficiency of reversing cisplatin resistance and investigating the underlying mechanism of pre-treatment with QU followed by cisplatin in the same ovarian cancer cells. The pre-incubation of SKOV-3/CDDP cells with quercetin at an optimum dose prior to treatment with cisplatin exhibited a significant cytotoxic effect. Furthermore, a long incubation with only QU for 48 h caused cell cycle arrest at the G1/S phase, while a QU pre-treatment induced sub-G1 phase cell accumulation (apoptosis) in a time-dependent manner. An in-depth study of the mechanism of the actions revealed that QU pre-treatment acted as a pro-oxidant that induced ROS production by inhibiting the thioredoxin antioxidant system Trx/TrxR. Moreover, QU pre-treatment showed activation of the mitochondrial apoptotic pathway (cleaved caspases 9, 7, and 3 and cleaved PARP) through downregulation of the signaling pathway (mTOR/STAT3) in SKOV-3/CDDP cells. This study provides further new data for the mechanism by which the QU pre-treatment re-sensitizes SKOV-3/CDDP cells to cisplatin.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Julia Nuzhina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Science, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yulia Volodina
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia
| | - Alexander Shtil
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Science, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
17
|
Sorbi C, Belluti S, Atene CG, Marocchi F, Linciano P, Roy N, Paradiso E, Casarini L, Ronsisvalle S, Zanocco-Marani T, Brasili L, Lanfrancone L, Imbriano C, Di Rocco G, Franchini S. BS148 Reduces the Aggressiveness of Metastatic Melanoma via Sigma-2 Receptor Targeting. Int J Mol Sci 2023; 24:ijms24119684. [PMID: 37298633 DOI: 10.3390/ijms24119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer.
Collapse
Affiliation(s)
- Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Giacinto Atene
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Federica Marocchi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, 41126 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, 41126 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Livio Brasili
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
18
|
Lin S, Simal-Gandara J, Cao H, Xiao J. The stability and degradation products of polyhydroxy flavonols in boiling water. Curr Res Food Sci 2023; 6:100509. [PMID: 37229311 PMCID: PMC10205440 DOI: 10.1016/j.crfs.2023.100509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Polyhydroxy flavonols readily degraded during thermal processing. In this study, the UPLC-Q-tof-MS/MS was applied to explore the stability of dietary polyhydroxy flavonols, myricetin, kaempferol, galangin, fisetin, myricitrin, quercitrin and rutin, in boiling water. The decomposition of flavonols was mainly caused by the heterocyclic ring C opening to form simpler aromatic compounds. The degradation products mainly included 1,3,5-benzenetriol, 3,4,5-trihydroxybenzoic acid, 2,4,6-trihydroxybenzoic acid and 2,4,6-trihydroxybenzaldehyde, etc. Compared with myricetin with a pyrogallol-type structure on the ring B, the glycoside in myricitrin slightly affects the stability. However, the glycosides in rutin and quercitrin dramatically improved the stability in water. During the boiling process, flavonols underwent a series of chemical reactions, such as hydroxylation, dehydroxylation, deglycosidation, deprotonation, and C-ring cleavage.
Collapse
Affiliation(s)
- Shiye Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| |
Collapse
|
19
|
Huang YK, Chang KC, Li CY, Lieu AS, Lin CL. AKR1B1 Represses Glioma Cell Proliferation through p38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways. Curr Issues Mol Biol 2023; 45:3391-3405. [PMID: 37185746 PMCID: PMC10136867 DOI: 10.3390/cimb45040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1's inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
20
|
Homayoonfal M, Gilasi H, Asemi Z, Mahabady MK, Asemi R, Yousefi B. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development. Cell Signal 2023; 107:110667. [PMID: 37023996 DOI: 10.1016/j.cellsig.2023.110667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
In recent decades, various investigations have indicated that natural compounds have great potential in the prevention and treatment of different chronic disorders including different types of cancer. As a bioactive flavonoid, Quercetin (Qu) is a dietary ingredient enjoying high pharmacological values and health-promoting effects due to its antioxidant and anti-inflammatory characterization. Conclusive in vitro and in vivo evidence has revealed that Qu has great potential in cancer prevention and development. Qu exerts its anticancer influences by altering various cellular processes such as apoptosis, autophagy, angiogenesis, metastasis, cell cycle, and proliferation. In this way, Qu by targeting numerous signaling pathways as well as non-coding RNAs regulates several cellular mechanisms to suppress cancer occurrence and promotion. This review aimed to summarize the impact of Qu on the molecular pathways and non-coding RNAs in modulating various cancer-associated cellular mechanisms.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Gilasi
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Čižmárová B, Hubková B, Tomečková V, Birková A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int J Mol Sci 2023; 24:ijms24076324. [PMID: 37047297 PMCID: PMC10094312 DOI: 10.3390/ijms24076324] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Phytochemicals represent a large and diverse group of naturally occurring compounds, bioactive nutrients, or phytonutrients produced by plants, widely found in fruits, vegetables, whole grains products, legumes, beans, herbs, seeds, nuts, tea, and dark chocolate. They are classified according to their chemical structures and functional properties. Flavonoids belong to the phenolic class of phytochemicals with potential solid pharmacological effects as modulators of multiple signal transduction pathways. Their beneficial effect on the human body is associated with their antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic properties. Flavonoids are also widely used in various nutritional, pharmaceutical, medical, and cosmetic applications. In our review, we discuss the positive effect of flavonoids on chronic skin diseases such as vitiligo, psoriasis, acne, and atopic dermatitis.
Collapse
|
22
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
23
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
24
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
25
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
26
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
27
|
Bonuccelli G, Sotgia F, Lisanti MP. Identification of natural products and FDA-approved drugs for targeting cancer stem cell (CSC) propagation. Aging (Albany NY) 2022; 14:9466-9483. [PMID: 36455875 PMCID: PMC9792210 DOI: 10.18632/aging.204412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Here, we report the identification of key compounds that effectively inhibit the anchorage-independent growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have therapeutic potential.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
28
|
Asgharian P, Tazekand AP, Hosseini K, Forouhandeh H, Ghasemnejad T, Ranjbar M, Hasan M, Kumar M, Beirami SM, Tarhriz V, Soofiyani SR, Kozhamzharova L, Sharifi-Rad J, Calina D, Cho WC. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int 2022; 22:257. [PMID: 35971151 PMCID: PMC9380290 DOI: 10.1186/s12935-022-02677-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, the cancer-related disease has had a high mortality rate and incidence worldwide, despite clinical advances in cancer treatment. The drugs used for cancer therapy, have high side effects in addition to the high cost. Subsequently, to reduce these side effects, many studies have suggested the use of natural bioactive compounds. Among these, which have recently attracted the attention of many researchers, quercetin has such properties. Quercetin, a plant flavonoid found in fresh fruits, vegetables and citrus fruits, has anti-cancer properties by inhibiting tumor proliferation, invasion, and tumor metastasis. Several studies have demonstrated the anti-cancer mechanism of quercetin, and these mechanisms are controlled through several signalling pathways within the cancer cell. Pathways involved in this process include apoptotic, p53, NF-κB, MAPK, JAK/STAT, PI3K/AKT, and Wnt/β-catenin pathways. In addition to regulating these pathways, quercetin controls the activity of oncogenic and tumor suppressor ncRNAs. Therefore, in this comprehensive review, we summarized the regulation of these signalling pathways by quercetin. The modulatory role of quercetin in the expression of various miRNAs has also been discussed. Understanding the basic anti-cancer mechanisms of these herbal compounds can help prevent and manage many types of cancer.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazekand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal, 462038 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai, 400019 India
| | - Sohrab Minaei Beirami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Tang M, Zeng Y, Peng W, Xie X, Yang Y, Ji B, Li F. Pharmacological Aspects of Natural Quercetin in Rheumatoid Arthritis. Drug Des Devel Ther 2022; 16:2043-2053. [PMID: 35791403 PMCID: PMC9250769 DOI: 10.2147/dddt.s364759] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/12/2022] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to severe joint damage, disability and mortality. Quercetin (QUE) is a natural flavonoid that is ubiquitous in fruits and vegetables. This article reviews the effect of QUE on articular and extra-articular manifestations of RA in vitro and in vivo. In general, for articular manifestations, QUE inhibited synovial membrane inflammation by reducing inflammatory cytokines and mediators, decreasing oxidative stress, inhibiting proliferation, migration and invasion, and promoting apoptosis of fibroblast-like synoviocytes (FLS), regulated autoimmune response through modulating Th17/Treg imbalance and Th17 cells differentiation, reducing autoantibodies levels and regulating ectonucleoside triphosphate diphosphohydrolase (E-NTPDase)/ectoadenosine deaminase (E-ADA) activities, reduced bony damage via lowering matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa B ligand (RANKL) expression and osteoclasts formation. For extra-articular manifestations, QUE could reverse the neurodegenerative processes of the enteric nervous system (ENS) and exhibited cytoprotective, genoprotective and hepatoprotective effects. In addition, we also summarize some contradictory experimental results and explore the possibility for these differences to form a sound basis for the clinical application of QUE for RA.
Collapse
Affiliation(s)
- Mengshi Tang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yan Zeng
- Department of Rheumatology, Yueyang Central Hospital, Yueyang, 414000, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Xi Xie
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yongyu Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Biting Ji
- Shanghai Jing'an District Dental Disease Prevention and Control Institute, Shanghai, 200040, People's Republic of China
| | - Fen Li
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| |
Collapse
|
30
|
Chang L, Kong A, Guo Y, Zhang J, Sun Y, Chen P, Wang X. Quercetin ameliorates salivary gland apoptosis and inflammation in primary Sjögren's syndrome through regulation of the leptin/OB-R signaling. Drug Dev Res 2022; 83:1351-1361. [PMID: 35749642 DOI: 10.1002/ddr.21964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 11/11/2022]
Abstract
Dry mouth is the main manifestation of Sjögren syndrome (SS). Quercetin has been reported to alleviate radiation-induced salivary gland damage, yet the effect of quercetin on SS-caused salivary gland damage remains unclear. This study aimed to investigate the effects of quercetin on SS-induced salivary gland damage and the mechanism underlying its therapeutic potential in SS. Here, NOD/Ltj mice were used to spontaneously mimic SS-induced salivary gland inflammation in vivo and salivary gland epithelial cells (SGECs) were stimulated by interferon-γ (IFN-γ) to mimic cell inflammation in vitro. Results showed that quercetin significantly reduced loss of saliva flow, salivary gland damage, cell apoptosis, and inflammatory response in NOD/Ltj mice. Quercetin treatment also significantly reduced the increased serum leptin (LP) levels in NOD/Ltj mice. Furthermore, quercetin blocked the increases in the expression of obesity receptor (OB-R) and its downstream Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling in the salivary glands. In vitro experiments confirmed that quercetin could protect SGECs from IFN-γ-induced cell apoptosis and inflammation through the LP/OB-R-activated JAK2/STAT3 signaling. Hence, quercetin might protect against SS-induced salivary gland damage by relieving cell apoptosis and inflammation by inhibiting the LP/OB-R signaling, providing a new perspective for treating SS-induced dry mouth.
Collapse
Affiliation(s)
- Lihua Chang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Aibin Kong
- Department of Nephropathy and Rheumatology, People's Hospital of Tacheng Prefecture, Tacheng, People's Republic of China
| | - Yun Guo
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jing Zhang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yue Sun
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Penglu Chen
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaofei Wang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Ferrara F, Benedusi M, Sguizzato M, Cortesi R, Baldisserotto A, Buzzi R, Valacchi G, Esposito E. Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics 2022; 14:1038. [PMID: 35631628 PMCID: PMC9147749 DOI: 10.3390/pharmaceutics14051038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
The present study is aimed to design ethosomes and transethosomes for topical administration of quercetin. To overcome quercetin low bioavailability, scarce solubility and poor permeability that hamper its pharmaceutical use, the drug was loaded in ethosomes and transethosomes based on different concentrations of phosphatidylcholine. Vesicle morphology was studied by cryogenic transmission electron microscopy, while size distribution and quercetin entrapment capacity were evaluated up to 3 months, respectively, by photon correlation spectroscopy and high-performance liquid chromatography. The antioxidant property was studied by photochemiluminescence test. Quercetin release and permeation was investigated in vitro, using Franz cells associated to different membranes. In vitro assays were conducted on human keratinocytes and melanoma cells to study the behavior of quercetin-loaded nano-vesicular forms with respect to cell migration and proliferation. The results evidenced that both phosphatidylcholine concentration and quercetin affected the vesicle size. Quercetin entrapment capacity, antioxidant activity and size stability were controlled using transethosomes produced by the highest amount of phosphatidylcholine. In vitro permeation studies revealed an enhancement of quercetin permeation in the case of transethosomes with respect to ethosomes. Notably, scratch wound and migration assays suggested the potential of quercetin loaded-transethosomes as adjuvant strategy for skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Plants for Human Health Institute, Department of Animal Science, NC Research Campus Kannapolis, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| |
Collapse
|
32
|
Saputra OA, Apriansyah F, Puspitasari MP, Hanifah S, Prakoso A, Wibowo FR. Antioxidant activity and
controlled‐release
feature of Quercetin loaded
amines‐functionalized
magnetically porous cellulose. J Appl Polym Sci 2022. [DOI: 10.1002/app.51744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ozi Adi Saputra
- Master Program of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Fiqri Apriansyah
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Melani Puji Puspitasari
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Syifa Hanifah
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Agung Prakoso
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Fajar Rakhman Wibowo
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| |
Collapse
|
33
|
A comparative study of liposomes and chitosomes for topical quercetin antioxidant therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Zhang Y, Peng J, Du H, Zhang N, Fang X. Identification and Validation of Immune- and Stemness-Related Prognostic Signature of Melanoma. Front Cell Dev Biol 2021; 9:755284. [PMID: 34805163 PMCID: PMC8602573 DOI: 10.3389/fcell.2021.755284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: Our aim was to construct a signature that accurately predicted the prognostic and immune response of melanoma. Methods: First, the weighted co-expression network analysis (WGCNA) algorithm was used to identify the hub genes related to clinical phenotypes of melanoma in the cancer genome atlas (TCGA) database. Nest, the least absolute shrinkage and selection operator (LASSO) analysis was used to dimensionality reduction of these hub genes and constructed a prognostic signature to predict the prognosis and immunosuppressive response of melanoma. Result: Through in-depth analysis, we constructed a 5-mRNA prognostic signature and verified its prognostic value in internal (TCGA-SKCM, n = 452) and external independent datasets (GSE53118, n = 79). Based on this signature, the tumor immune microenvironment (TME) of melanoma was characterized, and the result was found that patients in the high-risk group had lower CD8 T cell infiltration and immune checkpoint expression (PD-1, PD-L1, CTLA4), as well as higher M0/M2 macrophage infiltration. Our results also found the risk score based on a 5-mRNA signature was significantly associated with tumor mutational burden (TMB) and tumor stem cell markers (CD20, CD38, ABCB5, CD44, etc.). Lastly, we built a nomogram for clinician prediction for the prognosis of patients with melanoma. Conclusion: Our findings indicated that the 5-mRNA signature has an important predictive value for the overall survival of melanoma. By analyzing the tumor immune microenvironment and tumor stem cell marker between different groups, a new method is provided for the stratified diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Dermatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China.,Department of Dermatology, Yichang Central People's Hospital, Yichang, China
| | - Jing Peng
- Department of Dermatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China.,Department of Dermatology, Yichang Central People's Hospital, Yichang, China
| | - Heng Du
- Department of Dermatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China.,Department of Dermatology, Yichang Central People's Hospital, Yichang, China
| | - Niannian Zhang
- Department of Dermatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China.,Department of Dermatology, Yichang Central People's Hospital, Yichang, China
| | - Xianfeng Fang
- Department of Dermatology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China.,Department of Dermatology, Yichang Central People's Hospital, Yichang, China
| |
Collapse
|
35
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
36
|
Jing L, Lin J, Yang Y, Tao L, Li Y, Liu Z, Zhao Q, Diao A. Quercetin inhibiting the PD-1/PD-L1 interaction for immune-enhancing cancer chemopreventive agent. Phytother Res 2021; 35:6441-6451. [PMID: 34560814 DOI: 10.1002/ptr.7297] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022]
Abstract
Targeting the PD-1/PD-L1 immune checkpoints has achieved significant positive results in the treatment of multiple cancers. Quercetin is one of the most abundant dietary flavonoids found in various vegetables and fruits, and has a wide range of biological activities including immunomodulation. Here we report that quercetin dihydrate was screened and shown to inhibit the PD-1/PD-L1 interaction. Treatment with quercetin dihydrate promoted the killing activity of T cells on MDA-MB-231 and NCI-H460 cancer cells. Experiments using the xenograft mouse model showed that the growth rate of tumor volumes and masses in the quercetin dihydrate-treated mice were decreased. Immunohistochemistry of the tumors showed that CD8, GZMB, and IFN-γ were increased in the quercetin dihydrate-treated mice. These results suggest that quercetin dihydrate attenuates the inhibitory effect of PD-L1 on T cells by inhibiting the PD-1/PD-L1 interaction, which has an exciting potential to be used as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Lei Jing
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Jieru Lin
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Yang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Li Tao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyin Li
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenxing Liu
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Zhao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Aipo Diao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
37
|
Chen X, Xu P, Zhang H, Su X, Guo L, Zhou X, Wang J, Huang P, Zhang Q, Sun R. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro. Oncol Lett 2021; 22:754. [PMID: 34539858 PMCID: PMC8436358 DOI: 10.3892/ol.2021.13015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the present study, due to the complex and numerous targets of Sarcandrae Herb (also known as Zhong Jie Feng), network pharmacology was performed to analyze its therapeutic effect on 2 cervical cancer cell lines, which could assist with the development of novel therapies. The results suggested that the natural flavonoid quercetin (Que), the effective antitumor ingredient in SH, which is widely present in a variety of plants, may depend on the target, EGFR. Previous studies have shown that EGFR serves a crucial role in the occurrence and development of cervical cancer, but its downstream molecules and regulatory mechanisms remain unknown. The anti-cervical cancer cell properties of Que, which are present in ubiquitous plants, were examined in vitro to identify the association between Que and its underlying pathway using MTT assays, flow cytometry, western blot analysis and Transwell assays. It was found that Que reduced cervical cancer cell viability, promoted G2/M phase cell cycle arrest and cell apoptosis, as well as inhibited cell migration and invasion. The Tyr1068 phosphorylation site of EGFR and the corresponding ERK target were also examined and the 2 kinases were markedly activated by Que. Furthermore, the EGFR inhibitor, afatinib and the ERK inhibitor, U0126 blocked the increase of EGFR and ERK phosphorylation, and resulted in a notable enhancement of apoptosis and cell cycle arrest. Therefore, to the best of our knowledge, the current results provided the first evidence that EGFR and ERK activation induced by Que could resist Que-induced anticancer activities. On this basis, the present study determined the role of EGFR and the underlying signaling pathways involved in the anti-cervical cancer malignant behavior induced by Que and identified the negative regulatory association.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pengli Xu
- Collaborative Innovation Center, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200030, P.R. China
| | - Xiaosan Su
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Lihua Guo
- Department of Oncology, Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xuhong Zhou
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Junliang Wang
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tokyo 163-8001, Japan
| | - Qingzhi Zhang
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruifen Sun
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
38
|
Pop TD, Diaconeasa Z. Recent Advances in Phenolic Metabolites and Skin Cancer. Int J Mol Sci 2021; 22:9707. [PMID: 34575899 PMCID: PMC8471058 DOI: 10.3390/ijms22189707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Skin cancer represents any tumor development from the cutaneous structures within the epidermis, dermis or subcutaneous tissue, and is considered to be the most prevalent type of cancer. Compared to other types of cancer, skin cancer is proven to have a positive growth rate of prevalence and mortality. There are available various treatments, including chemotherapy, immunotherapy, radiotherapy and targeted therapy, but because of the multidrug resistance development, a low success has been registered. By this, the importance of studying naturally occurring compounds that are both safe and effective in the chemoprevention of skin cancer is emphasized. This review focuses on melanoma because it is the deadliest form of skin cancer, with a significantly increasing incidence in the last decades. As chemopreventive agents, we present polyphenols and their antioxidant activity, anti-inflammatory effect, their ability to balance the cell cycle and to induce apoptosis and their various other effects on skin melanoma. Besides chemoprevention, studies suggest that polyphenols can have treating abilities in some conditions. The limitations of using polyphenols are also pointed out, which are related to their poor bioavailability and stability, but as the technology is well developed, it is possible to augment the efficacy of polyphenols in the case of melanoma.
Collapse
Affiliation(s)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
39
|
Mechanism Prediction of Astragalus membranaceus against Cisplatin-Induced Kidney Damage by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9516726. [PMID: 34457031 PMCID: PMC8390139 DOI: 10.1155/2021/9516726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Background Cisplatin is a frequently used and effective chemotherapy drug in clinical practice, but severe side effects limit its use, among which nephrotoxicity is considered the most serious and prolonged damage to the body. Astragalus membranaceus (AM) is a well-known herbal medicine, and modern pharmacological studies have confirmed its antioxidant, immunomodulatory, and antiapoptotic effects. Clinical studies have shown that AM and its active components can attenuate cisplatin-induced kidney damage, but the molecular mechanism has not been fully expounded. Materials and Methods First, the components and targets information of AM were collected from the TCMSP, and the relevant targets of cisplatin-induced kidney damage were accessed from the GeneCards and OMIM databases. Then, the core targets were selected by the Venn diagram and network topology analysis, which was followed by GO and KEGG pathway enrichment analysis. Finally, we construct a component-target-pathway network. Furthermore, molecular docking was carried out to identify the binding activity between active components and key targets. Results A total of 20 active components and 200 targets of AM and 646 targets related to cisplatin-induced kidney damage were obtained. 91 intersection targets were found between AM and cisplatin-induced kidney damage. Then, 16 core targets were identified, such as MAPK1, TNF-α, and p53. Furthermore, GO and KEGG pathway enrichment analysis suggested that MAPK, Toll-like receptor, and PI3K-Akt signaling pathways may be of significance in the treatment of cisplatin-induced kidney damage by AM. Molecular docking indicated that quercetin and kaempferol had high binding affinities with many core targets. Conclusion In summary, the active components, key targets, and signaling pathways of AM in the treatment of cisplatin-induced kidney damage were predicted in this study, which contributed to the development and application of AM.
Collapse
|
40
|
Liposomes Loaded with Unsaponifiable Matter from Amaranthus hypochondriacus as a Source of Squalene and Carrying Soybean Lunasin Inhibited Melanoma Cells. NANOMATERIALS 2021; 11:nano11081960. [PMID: 34443791 PMCID: PMC8397957 DOI: 10.3390/nano11081960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Amaranthus hypochondriacus is a source of molecules with reported health benefits such as antioxidant activity and cancer prevention. The objective of this research was to optimize the conditions for preparing a liposome formulation using amaranth unsaponifiable matter as a source of squalene in order to minimize the particle size and to maximize the encapsulation efficiency of liposomes for carrying and delivering soybean lunasin into melanoma cell lines. Amaranth oil was extracted using supercritical dioxide carbon extraction (55.2 MPa pressure, 80 °C temperature, solvent (CO2)-to-feed (oil) ratio of 20). The extracted oil from amaranth was used to obtain the unsaponifiable enriched content of squalene, which was incorporated into liposomes. A Box–Behnken response surface methodology design was used to optimize the liposome formulation containing the unsaponifiable matter, once liposomes were optimized. Soybean lunasin was loaded into the liposomes and tested on A-375 and B16-F10 melanoma cells. The squalene concentration in the extracted oil was 36.64 ± 0.64 g/ 100 g of oil. The particle size in liposomes was between 115.8 and 163.1 nm; the squalene encapsulation efficiency ranged from 33.14% to 76.08%. The optimized liposome formulation contained 15.27 mg of phospholipids and 1.1 mg of unsaponifiable matter. Cell viability was affected by the liposome formulation with a half-maximum inhibitory concentration (IC50) equivalent to 225 μM in B16-F10 and 215 μM in A-375. The liposomes formulated with lunasin achieved 82.14 ± 3.34% lunasin encapsulation efficiency and improved efficacy by decreasing lunasin IC50 by 31.81% in B16-F10 and by 41.89% in A-375 compared with unencapsulated lunasin.
Collapse
|
41
|
Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N. New Insights Toward Nanostructured Drug Delivery of Plant-Derived Polyphenol Compounds: Cancer Treatment and Gene Expression Profiles. Curr Cancer Drug Targets 2021; 21:689-701. [PMID: 34036921 DOI: 10.2174/1568009621666210525152802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of cancer has led to the expansion of traditional medicine objectives for developing novel drug delivery systems. A wide range of plant-derived polyphenol bioactive substances have been investigated in order to explore anti-cancer effects of these natural compounds and to promote effective treatment of cancer through apoptosis induction. In this regard, plant-derived polyphenol compounds including curcumin, silibinin, quercetin, and resveratrol have been the subject of intense interest for anti-cancer applications due to their ability in regulating apoptotic genes. However, some limitations of pure polyphenol compounds, such as poor bioavailability, short-term stability, low-cellular uptake, and insufficient solubility, have restricted their efficiency. Nanoscale formulations of bioactive agents have provided a novel platform to address these limitations. This paper reviews recent advances in nanoformulation approaches of polyphenolic drugs, and their effects on improving the delivery of chemotherapy agents to cancer cells.
Collapse
Affiliation(s)
- Keyvan Khazei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology Faculty of Medicine, Istanbul Aydin University, Istanbul. Turkey
| | - Zeynep Turk
- Center for Applied and Theoretical Research on Higher Education, İstanbul Aydın University, Istanbul. Turkey
| | - Nosratollah Zarghami
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Thompson EL, Hu JJ, Niedernhofer LJ. The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma. Cancers (Basel) 2021; 13:2241. [PMID: 34066966 PMCID: PMC8125319 DOI: 10.3390/cancers13092241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
BRAF is the most common gene mutated in malignant melanoma, and predominately it is a missense mutation of codon 600 in the kinase domain. This oncogenic BRAF missense mutation results in constitutive activation of the mitogen-activate protein kinase (MAPK) pro-survival pathway. Several BRAF inhibitors (BRAFi) have been developed to specifically inhibit BRAFV600 mutations that improve melanoma survival, but resistance and secondary cancer often occur. Causal mechanisms of BRAFi-induced secondary cancer and resistance have been identified through upregulation of MAPK and alternate pro-survival pathways. In addition, overriding of cellular senescence is observed throughout the progression of disease from benign nevi to malignant melanoma. In this review, we discuss melanoma BRAF mutations, the genetic mechanism of BRAFi resistance, and the evidence supporting the role of senescent cells in melanoma disease progression, drug resistance and secondary cancer. We further highlight the potential benefit of targeting senescent cells with senotherapeutics as adjuvant therapy in combating melanoma.
Collapse
Affiliation(s)
- Elizabeth L. Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiayi J. Hu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
43
|
Lee HS, Kim EN, Kim GR, Jeong GS. Persimmon leaf extract protects mice from atopic dermatitis by inhibiting T cell activation via regulation of the JNK pathway. Phytother Res 2021; 35:2545-2556. [PMID: 33401337 DOI: 10.1002/ptr.6985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022]
Abstract
Persimmon leaf extracts (PLE) have been widely used as a traditional medicine in East Asian countries. The effects of persimmon leaves, including antioxidant, antiinflammatory, hypotensive, and anti-allergy effects, have been investigated; however, there is little evidence on the inhibition of T cell activation in vitro and effects on T cell-related diseases, such as atopic dermatitis (AD), in vivo by persimmon leaves. PLE (50 μg/mL) effectively attenuated the mRNA levels of IL-2 in Jurkat T cells stimulated with PMA/A23187 and Staphylococcus enterotoxin E-loaded Raji B cells without causing cytotoxicity. In Jurkat T cells stimulated with PMA/A23187, treatment with 50 μg/mL PLE blocked the translocation of p65 and IκBα degradation. Moreover, the JNK signaling pathway in Jurkat T cells stimulated with PMA/A23187 was affected by treatment with PLE. The oral administration of PLE markedly attenuated AD manifestations in mice, including ear thickness, IgE levels, and lymph node sizes. These results indicate PLE significantly blocked T cell activation via NF-κB signaling and the JNK pathway. This suggests underlying mechanisms of PLE involving the control of effector cytokines produced by activated T cells in ear tissue and lymph nodes, as well as the infiltration of mast cells and the therapeutic potential of AD.
Collapse
Affiliation(s)
- Hyun-Su Lee
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Ga-Ram Kim
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
44
|
Wei TF, Zhao L, Huang P, Hu FL, Jiao JY, Xiang KL, Wang ZZ, Qu JL, Shang D. Qing-Yi Decoction in the Treatment of Acute Pancreatitis: An Integrated Approach Based on Chemical Profile, Network Pharmacology, Molecular Docking and Experimental Evaluation. Front Pharmacol 2021; 12:590994. [PMID: 33995005 PMCID: PMC8117095 DOI: 10.3389/fphar.2021.590994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Qing-Yi Decoction (QYD) is a classic precompounded prescription with satisfactory clinical efficacy on acute pancreatitis (AP). However, the chemical profile and overall molecular mechanism of QYD in treating AP have not been clarified. Methods: In the present study, a rapid, simple, sensitive and reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-based chemical profile was first established. An integration strategy of network pharmacology analysis and molecular docking based identified ingredients was further performed to screen out the potential targets and pathways involved in the treatment of QYD on AP. Finally, SD rats with acute pancreatitis were constructed to verify the predicted results through a western blot experiment. Results: A total of 110 compounds, including flavonoids, phenolic acids, alkaloids, monoterpenes, iridoids, triterpenes, phenylethanoid glycosides, anthraquinones and other miscellaneous compounds were identified, respectively. Eleven important components, 47 key targets and 15 related pathways based on network pharmacology analysis were obtained. Molecular docking simulation indicated that ERK1/2, c-Fos and p65 might play an essential role in QYD against AP. Finally, the western blot experiments showed that QYD could up-regulate the expression level of ERK1/2 and c-Fos, while down-regulate the expression level of p65. Conclusion: This study predicted and validated that QYD may treat AP by inhibiting inflammation and promoting apoptosis, which provides directions for further experimental studies.
Collapse
Affiliation(s)
- Tian-Fu Wei
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Liang Zhao
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng Huang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Feng-Lin Hu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Ju-Ying Jiao
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Kai-Lai Xiang
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Zhou Wang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia-Lin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
45
|
Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J Nutr Biochem 2021; 93:108634. [PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abdi Wira Septama
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia; Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor
| |
Collapse
|
46
|
Bu X, Xia W, Wang X, Lu S, Gao Y. Butylphthalide inhibits nerve cell apoptosis in cerebral infarction rats via the JNK/p38 MAPK signaling pathway. Exp Ther Med 2021; 21:565. [PMID: 33850537 PMCID: PMC8027748 DOI: 10.3892/etm.2021.9997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the influence of butylphthalide on nerve cell apoptosis in rats with cerebral infarction through the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) signaling pathway. A total of 36 Sprague-Dawley rats were randomly divided into sham-operation group (n=12), model group (n=12) and butylphthalide group (n=12). Additionally, qPCR was performed to measure the mRNA expression of Bax and Bcl-2, and a TUNEL assay was conducted to investigate the cell apoptosis. Compared with the sham-operation group, the model group and the butylphthalide group had notably increased Zea-Longa scores (P<0.05), while the butylphthalide group exhibited a markedly decreased Zea-Longa score, compared with the model group (P<0.05). The positive expression of Bax was markedly higher (P<0.05), while that of Bcl-2 was notably lower in the model group and the butylphthalide group (P<0.05), compared with those in the sham-operation group. Furthermore, the positive expression of Bax was notably decreased (P<0.05), while that of Bcl-2 was markedly increased in the butylphthalide group in comparison with those in model group (P<0.05). The model group and the butylphthalide group had markedly higher relative protein expression levels of p-JNK and p-p38 MAPK than the sham-operation group (P<0.05), and the butylphthalide group displayed notably lower relative protein expression levels of p-JNK and p-p38 MAPK than the model group (P<0.05). The relative mRNA expression level of Bax was markedly increased (P<0.05), while that of Bcl-2 was notably decreased in the model group and the butylphthalide group (P<0.05), compared with those in the sham-operation group. Compared with those in the model group, the relative mRNA expression level of Bax decreased markedly (P<0.05), and that of Bcl-2 increased notably in the butylphthalide group (P<0.05). The apoptotic rate was markedly higher in the model group and the butylphthalide group than that in the sham-operation group (P<0.05), but it was notably lower in the butylphthalide group than that in the model group (P<0.05). In conclusion, butylphthalide may inhibit nerve cell apoptosis in rats with cerebral infarction to exert a protective effect, which may be associated with the JNK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiangye Bu
- Department of Geratology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiaonan Wang
- Department of Geratology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Shan Lu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Yue Gao
- Department of Geratology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
47
|
Ye XS, Tian WJ, Liu XZ, Zhou M, Zeng DQ, Lin T, Wang GH, Yao XS, Chen HF. Lignans and phenylpropanoids from the roots of Ficus hirta and their cytotoxic activities. Nat Prod Res 2021; 36:3840-3849. [PMID: 33648391 DOI: 10.1080/14786419.2021.1892099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
One undescribed lignan, one new natural product, along with fourteen known compounds, were isolated from the roots of Ficus hirta. The structures of the isolates were elucidated by comprehensive spectroscopic technologies, including UV, IR, HRESIMS, and NMR. The absolute configuration of 1 was determined by comparison of experimental and calculated ECD data. The cytotoxicity of all the compounds against HeLa and HepG2 cell lines was evaluated and compound 7 showed considerable cytotoxic effect towards HepG2 cells. Also, the apoptotic effect of 7 on HepG2 cells and the effect of 7 on the key proteins (p-JNK and p-p38) in MAPK (Mitogen-activated protein kinases) pathways were studied by flow cytometry and western blotting experiment. As a result, compound 7 induced the apoptosis of HepG2 cells, and dose-dependently increased the phosphorylation of JNK and p38. Thus, 7 might trigger HepG2 cells apoptosis via JNK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xian-Sheng Ye
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Wen-Jing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Xiang-Zhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - De-Quan Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Guang-Hui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Xin-Sheng Yao
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China.,Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, People's Republic of China
| | - Hai-Feng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
48
|
Zhang L, Meng S, Yan B, Chen J, Zhou L, Shan L, Wang Y. Anti-Proliferative, Pro-Apoptotic, Anti-Migrative and Tumor-Inhibitory Effects and Pleiotropic Mechanism of Theaflavin on B16F10 Melanoma Cells. Onco Targets Ther 2021; 14:1291-1304. [PMID: 33658796 PMCID: PMC7920628 DOI: 10.2147/ott.s286350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Theaflavin (TF) is a primary pigment of tea, exhibiting anti-proliferative, pro-apoptotic and anti-metastatic activities on cancer cell lines. However, it is unknown whether TF is effective in treating melanoma cells. Methods To determine the effects of TF on melanoma cells, we conducted in vitro assays of cell viability, DAPI staining, wound healing, transwell, and flow cytometry as well as in vivo experiments on B16F10-bearing mouse model. Real-time PCR (qPCR) and Western blot (WB) were conducted to explore the molecular actions of TF. Results The cell viability assay showed that TF exerted inhibitory effect on B16F10 cells in a dose-dependent manner from 40 to 400 μg/mL, with IC50 values ranging from 223.8±7.1 to 103.7±7.0 μg/mL. Moreover, TF induced early and late apoptosis and inhibited migration/invasion of B16F10 cells in a dose-dependent manner, indicating its pro-apoptotic and anti-migrative effects. In vivo, TF significantly inhibited B16F10 tumor size in mice model from 40 to 120 mg/kg, which exerted higher effect than that of cisplatin. The molecular data showed that TF significantly up-regulated the mRNA expressions of pro-apoptotic genes (Bax, Casp3, Casp8, c-fos, c-Jun, and c-Myc), up-regulated the protein expressions of apoptosis-related p53 and JNK signaling molecules (ASK1, phosphorylated Chk1/2, cleaved caspase 3, phosphorylated JNK, c-JUN, cleaved PARP, and phosphorylated p53), and down-regulated the protein expressions of proliferation-related MEK/ERK and PI3K/AKT signaling molecules (phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated PI3K, and phosphorylated AKT) as well as the expressions of MMP2 and MMP9. Conclusion It can be concluded that TB exhibited anti-proliferative, pro-apoptotic, anti-migrative, and tumor-inhibitory effects on melanoma cells through pleiotropic actions on the above pathways. This study provides new evidence of anti-melanoma efficacy and mechanism of TF, contributing to the development of TF-derived natural products for melanoma therapy.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, People's Republic of China
| | - Shijie Meng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Bo Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jie Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ying Wang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
49
|
Dhanaraj T, Mohan M, Arunakaran J. Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch Biochem Biophys 2021; 701:108795. [PMID: 33577840 DOI: 10.1016/j.abb.2021.108795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most deadly gynaecology related cancer due to its high metastasizing ability. Quercetin is the most abundant flavonoids received increased interest due to its anti-cancer properties. Although the anticancer property of quercetin is very well known, its anti-metastatic effect on metastatic ovarian cancer cells and their underlying molecular mechanism remains to be elucidated. Quercetin treatment at 50 μM and 75 μM concentration inhibit human metastatic ovarian cancer PA-1 cell survival and proliferation via inactivating PI3k/Akt, Ras/Raf pathways and EGFR expression. It also alters the expression of N-cadherin in PA-1 cells. Quercetin also decreases the secretion of gelatinase enzyme, proteolytic activity of MMP-2/-9, and both MMPs gene expression in metastatic ovarian cancer PA-1 cells. In addition to this quercetin inhibits the migration of PA-1 cells. Treatment of quercetin with PA-1 cells also downregulates the tight junctional molecules such as Claudin-4 and Claudin-11 while upregulates the expression of occludin. It is further validated by cell adhesion assay in which quercetin reduces the adhesion of PA-1 ovarian cancer cells. Results suggest that quercetin inhibits cell survival, proliferation, migration, and adhesion which plays crucial role in ovarian cancer metastasis. Hence, it could be a valuable therapeutic drug for the treatment and prevention of metastatic ovarian cancer.
Collapse
Affiliation(s)
- Teekaraman Dhanaraj
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai - 600 113, Tamil Nadu, India
| | - Manju Mohan
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai - 600 113, Tamil Nadu, India
| | - Jagadeesan Arunakaran
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai - 600 113, Tamil Nadu, India.
| |
Collapse
|
50
|
Doneda E, Bianchi SE, Pittol V, Kreutz T, Scholl JN, Ibañez IL, Bracalente C, Durán H, Figueiró F, Klamt F, Bassani VL. 3-O-Methylquercetin from Achyrocline satureioides-cytotoxic activity against A375-derived human melanoma cell lines and its incorporation into cyclodextrins-hydrogels for topical administration. Drug Deliv Transl Res 2021; 11:2151-2168. [PMID: 33410099 DOI: 10.1007/s13346-020-00882-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
3-O-Methylquercetin (3OMQ), a natural 3-O-methylflavonoid, was isolated from Achyrocline satureioides and purified using the high-performance counter current chromatography (HPCCC) on a semi-preparative scale. High-purity 3OMQ (98%) was obtained with excellent recovery (81.8% (w/w)) and good yield (190 mg/100 g of plant). Isolated 3OMQ was evaluated against the A375 human amelanotic melanoma cancer cell line and A375-derived with different degrees of aggressiveness (A375-A7, A375-G10, and A375-PCDNA3). The results showed that 3OMQ reduced the cell viability of all strains, demonstrating time- and dose-dependent responses. 3OMQ was used to obtain hydrogels for the topical treatment of melanoma. Thus, 3OMQ was incorporated into hypromellose hydrogels with/without different cyclodextrins (CDs). The 3OMQ formulations showed permeation/retention in all skin layers, namely stratum corneum, epidermis, and dermis. A significant amount of 3OMQ was found in the replication site of the melanoma cells (epidermis and dermis). Altogether, these results demonstrate that 3OMQ can be isolated from Achyrocline satureioides by HPCCC on a semi-preparative scale and exhibit cytotoxic activity against melanoma cells. Its incorporation into an HPMC hydrogel containing HP-β-CD yielded a formulation with excellent technological and biopharmaceutical characteristics for evaluating the topical management of melanoma.
Collapse
Affiliation(s)
- Eduarda Doneda
- Laboratório de Desenvolvimento Galênico, Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 90610-000, Porto Alegre, RS, 2752-607, Brazil
| | - Sara Elis Bianchi
- Laboratório de Desenvolvimento Galênico, Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 90610-000, Porto Alegre, RS, 2752-607, Brazil.
| | - Vanessa Pittol
- Laboratório de Desenvolvimento Galênico, Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 90610-000, Porto Alegre, RS, 2752-607, Brazil
| | - Tainá Kreutz
- Laboratório de Desenvolvimento Galênico, Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 90610-000, Porto Alegre, RS, 2752-607, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 90035-003, Anexo, Porto Alegre, RS, 2600, Brazil
| | - Irene L Ibañez
- Instituto de Nanociencia Y Nanotecnología Nodo Constituyentes, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET) Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, CNEA, Argentina
| | - Candelaria Bracalente
- Instituto de Nanociencia Y Nanotecnología Nodo Constituyentes, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET) Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, CNEA, Argentina
| | - Hebe Durán
- Instituto de Nanociencia Y Nanotecnología Nodo Constituyentes, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET) Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, CNEA, Argentina.,Universidad Nacional de San Martin, Escuela de Ciencia Y Tecnología, Campus Miguelete, B1650KNA, Villa Lynch, Buenos Aires, Argentina
| | - Fabrício Figueiró
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 90035-003, Anexo, Porto Alegre, RS, 2600, Brazil.,Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 90035-003, Anexo, Porto Alegre, RS, 2600, Brazil
| | - Fábio Klamt
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 90035-003, Anexo, Porto Alegre, RS, 2600, Brazil.,Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 90035-003, Anexo, Porto Alegre, RS, 2600, Brazil
| | - Valquiria Linck Bassani
- Laboratório de Desenvolvimento Galênico, Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 90610-000, Porto Alegre, RS, 2752-607, Brazil.
| |
Collapse
|