1
|
Xi X, Lei F, Gao K, Li J, Liu R, Karpf AR, Bronich TK. Ligand-installed polymeric nanocarriers for combination chemotherapy of EGFR-positive ovarian cancer. J Control Release 2023; 360:872-887. [PMID: 37478915 DOI: 10.1016/j.jconrel.2023.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Combination chemotherapeutic drugs administered via a single nanocarrier for cancer treatment provides benefits in reducing dose-limiting toxicities, improving the pharmacokinetic properties of the cargo and achieving spatial-temporal synchronization of drug exposure for maximized synergistic therapeutic effects. In an attempt to develop such a multi-drug carrier, our work focuses on functional multimodal polypeptide-based polymeric nanogels (NGs). Diblock copolymers poly (ethylene glycol)-b-poly (glutamic acid) (PEG-b-PGlu) modified with phenylalanine (Phe) were successfully synthesized and characterized. Self-assembly behavior of the resulting polymers was utilized for the synthesis of NGs with hydrophobic domains in cross-linked polyion cores coated with inert PEG chains. The resulting NGs were small (ca. 70 nm in diameter) and were able to encapsulate the combination of drugs with different physicochemical properties such as cisplatin and neratinib. Drug combination-loaded NGs exerted a selective synergistic cytotoxicity towards EGFR overexpressing ovarian cancer cells. Moreover, we developed ligand-installed EGFR-targeted NGs and tested them as an EGFR-overexpressing tumor-specific delivery system. Both in vitro and in vivo, ligand-installed NGs displayed preferential associations with EGFR (+) tumor cells. Ligand-installed NGs carrying cisplatin and neratinib significantly improved the treatment response of ovarian cancer xenografts. We also confirmed the importance of simultaneous administration of the dual drug combination via a single NG system which provides more therapeutic benefit than individual drug-loaded NGs administered at equivalent doses. This work illustrates the potential of our carrier system to mediate efficient delivery of a drug combination to treat EGFR overexpressing cancers.
Collapse
Affiliation(s)
- Xinyuan Xi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Fan Lei
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Keliang Gao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Alimardan Z, Abbasi M, Hasanzadeh F, Aghaei M, Khodarahmi G, Kashfi K. Heat shock proteins and cancer: The FoxM1 connection. Biochem Pharmacol 2023; 211:115505. [PMID: 36931349 PMCID: PMC10134075 DOI: 10.1016/j.bcp.2023.115505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Heat shock proteins (Hsp) and FoxM1 have significant roles in carcinogenesis. According to their relative molecular weight, Hsps are divided into Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps. Hsp70 can play essential functions in cancer initiation and is overexpressed in several human cancers. Hsp70, in combination with cochaperones HIP and HOP, refolds partially denatured proteins and acts as a cochaperone for Hsp90. Also, Hsp70, in combination with BAG3, regulates the FoxM1 signaling pathway. FoxM1 protein is a transcription factor of the Forkhead family that is overexpressed in most human cancers and is involved in many cancers' development features, including proliferation, migration, invasion, angiogenesis, metastasis, and resistance to apoptosis. This review discusses the Hsp70, Hsp90, and FoxM1 structure and function, the known Hsp70 cochaperones, and Hsp70, Hsp90, and FoxM1 inhibitors.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmacology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmud Aghaei
- Department of Biochemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
3
|
Yeh SJ, Chen BS. Systems Medicine Design based on Systems Biology Approaches and Deep Neural Network for Gastric Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3019-3031. [PMID: 34232888 DOI: 10.1109/tcbb.2021.3095369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gastric cancer (GC) is the third leading cause of cancer death in the world. It is associated with the stimulation of microenvironment, aberrant epigenetic modification, and chronic inflammation. However, few researches discuss the GC molecular progression mechanisms from the perspective of the system level. In this study, we proposed a systems medicine design procedure to identify essential biomarkers and find corresponding drugs for GC. At first, we did big database mining to construct candidate protein-protein interaction network (PPIN) and candidate gene regulation network (GRN). Second, by leveraging the next-generation sequencing (NGS) data, we performed system modeling and applied system identification and model selection to obtain real genome-wide genetic and epigenetic networks (GWGENs). To make the real GWGENs easy to analyze, the principal network projection method was used to extract the core signaling pathways denoted by KEGG pathways. Subsequently, based on the identified biomarkers, we trained a deep neural network of drug-target interaction (DeepDTI) with supervised learning and filtered our candidate drugs considering drug regulation ability and drug sensitivity. With the proposed systematic strategy, we not only shed the light on the progression of GC but also suggested potential multiple-molecule drugs efficiently.
Collapse
|
4
|
Ma H, Liu Y, Miao Z, Cheng S, Zhu Y, Wu Y, Fan X, Yang J, Li X, Guo L. Neratinib inhibits proliferation and promotes apoptosis of acute myeloid leukemia cells by activating autophagy-dependent ferroptosis. Drug Dev Res 2022; 83:1641-1653. [PMID: 36031759 DOI: 10.1002/ddr.21983] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy with increased lethality. We focused on elucidating the role of Neratinib, a tyrosine kinase inhibitor, in the progression of AML and identify the potential mechanisms. Upon the treatment of Neratinib, autophagy suppressor 3-methyladenine (3-MA) and ferroptosis stimulator Erastin, the viability and proliferation of HL-60 cells were evaluated by cell counting kit-8 and 5-Ethynyl-20-Deoxyuridine staining assays. A flow cytometer was to observe cell cycle and apoptosis. Production of reactive oxygen species (ROS) was tested via 2,7-dichlorodihydrofluorescein diacetate assay. Additionally, malondialdehyde (MDA) content and Fe2+ activity were examined with commercial kits. LC3-II expression was examined by using immunofluoresence staining. Western blot analysis ascertained the expression of proliferation, apoptosis, ferroptosis and autophagy-associated proteins. It was noted that Neratinib notably mitigated cell viability and proliferation, cut down Ki67 and proliferating cell nuclear antigen expression. Moreover, Neratinib hindered cell cycle at G0/G1 phase whereas exacerbated apoptosis. ROS, MDA and Fe2+ activities were elevated by Neratinib, coupled with the reduced glutathione peroxidase 4, ferritin heavy chain 1 expression and enhanced acyl-CoA synthetase long-chain family member 4 expression. Furthermore, Neratinib promoted autophagy of HL-60 cells, evidenced by raised LC3-II, ATG5, Beclin1 expression and lessened p62 expression. Importantly, 3-MA eased the impacts of Neratinib on cell ferroptosis, proliferation and apoptosis, which were offset by further administration of Erastin. To conclude, Neratinib could suppress proliferation and promote apoptosis of HL-60 cells through autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Hongxia Ma
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Zhen Miao
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Shijia Cheng
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Yunan Zhu
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Yifan Wu
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xinxin Fan
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xingang Li
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Liyin Guo
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
6
|
Herman KD, Wright CG, Marriott HM, McCaughran SC, Bowden KA, Collins MO, Renshaw SA, Prince LR. The EGFR/ErbB inhibitor neratinib modifies the neutrophil phosphoproteome and promotes apoptosis and clearance by airway macrophages. Front Immunol 2022; 13:956991. [PMID: 35967296 PMCID: PMC9371615 DOI: 10.3389/fimmu.2022.956991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Dysregulated neutrophilic inflammation can be highly destructive in chronic inflammatory diseases due to prolonged neutrophil lifespan and continual release of histotoxic mediators in inflamed tissues. Therapeutic induction of neutrophil apoptosis, an immunologically silent form of cell death, may be beneficial in these diseases, provided that the apoptotic neutrophils are efficiently cleared from the tissue. Previous research in our group identified ErbB inhibitors as able to induce neutrophil apoptosis and reduce neutrophilic inflammation both in vitro and in vivo. Here, we extend that work using a clinical ErbB inhibitor, neratinib, which has the potential to be repurposed in inflammatory diseases. We show that neratinib reduces neutrophilic migration o an inflammatory site in zebrafish larvae. Neratinib upregulates efferocytosis and reduces the number of persisting neutrophil corpses in mouse models of acute, but not chronic, lung injury, suggesting that the drug may have therapeutic benefits in acute inflammatory settings. Phosphoproteomic analysis of human neutrophils shows that neratinib modifies the phosphorylation of proteins regulating apoptosis, migration, and efferocytosis. This work identifies a potential mechanism for neratinib in treating acute lung inflammation by upregulating the clearance of dead neutrophils and, through examination of the neutrophil phosphoproteome, provides important insights into the mechanisms by which this may be occurring.
Collapse
Affiliation(s)
- Kimberly D. Herman
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Bateson Centre, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Carl G. Wright
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Helen M. Marriott
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sam C. McCaughran
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Kieran A. Bowden
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Mark O. Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Bateson Centre, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Tsai MM, Lin HC, Yu MC, Lin WJ, Chu MY, Tsai CC, Cheng CY. Anticancer Effects of Helminthostachys zeylanica Ethyl acetate Extracts on Human Gastric Cancer Cells through Downregulation of the TNF-α-activated COX-2-cPLA2-PGE 2 Pathway. J Cancer 2021; 12:7052-7068. [PMID: 34729107 PMCID: PMC8558661 DOI: 10.7150/jca.64638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Gastric cancer (GC) is the second most prevalent cancer worldwide and the eighth most common cause of tumor-related death in Taiwan. Helminthostachys zeylanica, a flavonoid compound, has anti-inflammatory, immunomodulatory, and anticancer effects. We examined whether an extract of H. zeylanica (E1 and E2) has potential as a treatment for GC. Methods: We investigated the effects (pro-apoptosis, pro-autophagy, and antiproliferation ability) of H. zeylanica-E2 on cell viability in healthy gastric epithelial (GES-1) and GC cells (AGS and BGC823). H. zeylanica-E2 was toxic to GC cells but had little or no toxicity to normal cells. Results: In this study, H. zeylanica-E2 induced apoptosis through caspase 3/7, Bcl-2, Bax, cyclooxygenase-2 (COX-2), and cleaved poly (ADP-ribose) polymerase pathways in GC cells. In addition, it increased autophagy by stimulating autophagy-related protein (ATG)5, ATG7, LC3-I/LC3-II, and inhibiting COX-2 activity in GC cells. We also found that H. zeylanica-E2 exhibited antiproliferation ability through cell cycle arrest in G0/G1 and G2/M and suppressed the migration of GC cells. The anticancer effects of H. zeylanica-E2 in GC cells might be mediated partly through inhibition of tumor necrosis factor-α (TNF-α)-activated proinflammatory cytosolic phospholipase A2 (cPLA2)-COX-2-prostaglandin E2 (PGE2) pathway. Conclusions: Our results suggest that H. zeylanica-E2 has potential as a novel adjunctive agent for the treatment of GC.
Collapse
Affiliation(s)
- Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan and Department of General Surgery, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Jung Lin
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mei-Yi Chu
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ching-Ching Tsai
- Department of Nursing, College of Nursing, Chang Gung University of Science and Technology, and Department of Cardiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Pulmonary Infection and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
8
|
Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View. Cancers (Basel) 2021; 13:cancers13205216. [PMID: 34680363 PMCID: PMC8533881 DOI: 10.3390/cancers13205216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed.
Collapse
|
9
|
Gu Z, Wang L, Yao X, Long Q, Lee K, Li J, Yue D, Yang S, Liu Y, Li N, Li Y. ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma. Cell Death Dis 2020; 11:898. [PMID: 33093458 PMCID: PMC7583252 DOI: 10.1038/s41419-020-03107-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Currently, only a few available targeted drugs are considered to be effective in stomach adenocarcinoma (STAD) treatment. The PARP inhibitor olaparib is a molecularly targeted drug that continues to be investigated in BRCA-mutated tumors. However, in tumors without BRCA gene mutations, particularly in STAD, the effect and molecular mechanism of olaparib are unclear, which largely restricts the use of olaparib in STAD treatment. In this study, the in vitro results showed that olaparib specifically inhibited cell growth and migration, exerting antitumor effect in STAD cell lines. In addition, a ClC-3/SGK1 regulatory axis was identified and validated in STAD cells. We then found that the down-regulation of ClC-3/SGK1 axis attenuated olaparib-induced cell growth and migration inhibition. On the contrary, the up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced cell growth and migration inhibition, and the enhancement effect could be attenuated by SGK1 knockdown. Consistently, the whole-cell recorded chloride current activated by olaparib presented the same variation trend. Next, the clinical data showed that ClC-3 and SGK1 were highly expressed in human STAD tissues and positively correlated (r = 0.276, P = 0.009). Furthermore, high protein expression of both ClC-3 (P = 0.030) and SGK1 (P = 0.006) was associated with poor survival rate in STAD patients, and positive correlations between ClC-3/SGK1 and their downstream molecules in STAD tissues were demonstrated via the GEPIA datasets. Finally, our results suggested that olaparib inhibited the PI3K/AKT pathway in STAD cells, and up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced PI3K/AKT pathway inhibition. The animal experiments indicated that olaparib also exerted antitumor effect in vivo. Altogether, our findings illustrate that olaparib exerts antitumor effect in human STAD, and ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect. Up-regulation of the ClC-3/SGK1 axis may provide promising therapeutic potential for the clinical application of olaparib in STAD treatment.
Collapse
Affiliation(s)
- Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jieyao Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongli Yue
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuangning Yang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanfen Liu
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Cardiovascular Medicine, Qingdao No. 9 People's Hospital, Shandong, China
| | - Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Momeny M, Sankanian G, Hamzehlou S, Yousefi H, Esmaeili F, Alishahi Z, Karimi B, Zandi Z, Shamsaiegahkani S, Sabourinejad Z, Kashani B, Nasrollahzadeh A, Mousavipak SH, Mousavi SA, Ghaffari SH. Cediranib, an inhibitor of vascular endothelial growth factor receptor kinases, inhibits proliferation and invasion of prostate adenocarcinoma cells. Eur J Pharmacol 2020; 882:173298. [PMID: 32593665 DOI: 10.1016/j.ejphar.2020.173298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Prostate Cancer is the second cause of cancer-related death in men and development of metastatic castration-resistant prostate cancer (mCRPC) is the major reason for its high mortality rate. Despite various treatments, all patients succumb to resistant disease, suggesting that there is a pressing need for novel and more efficacious treatments. Members of the vascular endothelial growth factor (VEGF) family play key roles in the tumorigenesis of mCRPC, indicating that VEGF-targeted therapies may have potential anti-tumor efficacy in this malignancy. However, due to compensatory activation of other family members, clinical trials with single-targeted VEGF inhibitors were discouraging. Here, we determined the anti-neoplastic activity of Cediranib, a pan-VEGF receptor inhibitor, in the mCRPC cell lines. Anti-growth effects of Cediranib were studied by MTT and BrdU cell proliferation assays and crystal violet staining. Annexin V/PI, radiation therapy and cell motility assays were carried out to examine the effects of Cediranib on apoptosis, radio-sensitivity and cell motility. Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses were conducted to determine the molecular mechanisms underlying the anti-tumor activity of Cediranib. Cediranib decreased cell viability and induced apoptosis via inhibition of the anti-apoptotic proteins. Combination with Cediranib synergistically increased Docetaxel sensitivity and potentiated the effects of radiation therapy. Furthermore, Cediranib impaired cell motility via decrease in the expression of the epithelial-to-mesenchymal transition markers. These findings suggest that Cediranib may have anti-tumor activity in mCRPC cells and warrant further investigation on the therapeutic activity of this pan-VEGF receptor inhibitor in mCRPC.
Collapse
Affiliation(s)
- Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Ghazaleh Sankanian
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sabourinejad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nasrollahzadeh
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyedeh H Mousavipak
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed A Mousavi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang D, Wang J, Song J, Shen Q, Wang R, Lu W, Pan J, Xie C, Liu M. Guanidyl and imidazolyl integration group-modified PAMAM for gastric adenocarcinoma gene therapy. J Gene Med 2020; 22:e3240. [PMID: 32558063 DOI: 10.1002/jgm.3240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gene therapy has become a potential strategy for cancer treatment. However, the development of efficient gene vectors restricts the application for cancer gene treatment. Functionalization of polymers with functional groups can significantly improve their transfection efficacy. METHODS Guanidyl can form bidentate hydrogen with the phosphate groups and phosphate groups are present in DNA and cell membranes, thus increasing DNA condensation and cellular uptake. Imidazolyl has high buffering capacity in endosomal/lysosomal acidic environment, facilitating endosome/lysosome escape. We designed a structure-integrated group of guanidyl and imidazolyl, 2-aminoimidazole (AM), which was conjugated to PAMAM generation 2 (G2) for gene therapy of gastric adenocarcinoma. RESULTS Molecular docking results illustrated that G2-AM bound with DNA molecule effectively via multiple interactions. A quantitative luciferase assay showed that the transfection efficacy of G2-AM/pGL3 was approximately 100-fold greater than that of G2/pGL3, 90-fold greater than that of imidazolyl-modified G2 (G2-M) /pGL3 and 100-fold greater than that of G5/pGL3 without additional cytotoxicity. After introducing the pTRAIL gene into gastric adenocarcinoma cells, the apoptosis ratio of gastric adenocarcinoma cells treated with G2-AM/pTRAIL was 36.95%, which is much larger than the corresponding ratio of G2/pTRAIL (7.45%), G2-M/pTRAIL (11.33%) and G5/pTRAIL (23.2%). In a gastric adenocarcinoma xenograft model, the in vivo transfection efficacy of G2-AM/pRFP was much greater than that of G2/pRFP and G2-M/pRFP. CONCLUSIONS These results demonstrate that AM could be modified with cationic polymers for potential application in gene delivery and gastric adenocarcinoma gene therapy.
Collapse
Affiliation(s)
- Dongli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jing Wang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Qing Shen
- Hangzhou YITU Healthcare Technology Co. Ltd, Hangzhou, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jun Pan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Li B, Zhu F, He F, Huang Q, Liu X, Wu T, Zhao T, Qiu Y, Wu Z, Xue Y, Fang M. Synthesis and biological evaluations of N′-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents. Bioorg Chem 2020; 96:103592. [DOI: 10.1016/j.bioorg.2020.103592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
|
13
|
AlMazmomy AM, Al-Hayani MM, Alomari M, Bazi AG. The Use of Epidermal Growth Factor Receptor Type 2-Targeting Tyrosine Kinase Inhibitors in the Management of Epidermal Growth Factor Receptor Type 2-Positive Gastric Cancer: A Narrative Review. Cureus 2019; 11:e6295. [PMID: 31938588 PMCID: PMC6942496 DOI: 10.7759/cureus.6295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC), including gastroesophageal junction cancer (GEJC), continues to be one of the most frequently diagnosed neoplasms globally. Moreover, GC/GEJC is a principal cause of neoplasm-related fatalities. Early-stage GC/GEJC has a favorable five-year overall survival (OS) rate with surgical resection. However, the vast majority of patients present with advanced inoperable or metastatic disease with a very unfavorable five-year OS rate. Such patients are left with very limited therapeutic options, such as systemic chemotherapy, targeted therapy, and immunotherapy, all of which can be performed as monotherapy or in various combinations. The molecular profiling of GC has revealed several personalized therapeutic vulnerabilities, one of which is the expression of epidermal growth factor receptor type 2 (EGFR2, also known as HER2). HER2 overexpression or amplification is present in a fair subset of patients with GC/GEJC and has been shown to correlate with poor clinicopathological prognostic outcomes. Generally, treatment schemes to tackle HER2 in HER2-positive GC/GEJC comprise the use of anti-HER2 monoclonal antibodies or HER2-targeting tyrosine kinase inhibitors (TKIs). In this study, we engage in a narrative review of the available phase II and III literature on the efficacy and safety of HER2-targeting TKIs in the management of HER2-positive GC/GEJC.
Collapse
Affiliation(s)
- Asim M AlMazmomy
- Surgery, College of Medicine King Abdulaziz University, Rabigh, SAU
| | - Majed M Al-Hayani
- Neurology, College of Medicine King Abdulaziz University, Rabigh, SAU
| | - Mohammed Alomari
- Pediatrics, College of Medicine King Abdulaziz University, Rabigh, SAU
| | - Abdulrahman G Bazi
- Internal Medicine, College of Medicine King Abdulaziz University, Rabigh, SAU
| |
Collapse
|