1
|
Manskikh VN. Organ Frame Elements or Free Intercellular Gel-Like Matrix as Necessary Conditions for Building Organ Structures during Regeneration. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:269-278. [PMID: 38622095 DOI: 10.1134/s000629792402007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 04/17/2024]
Abstract
Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after injury by introducing stem cells into them. However, this procedure does not lead to full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows to conclude that the most important condition for the repair of histological structures of an organ (in the presence of stem cells) is preservation of the collagen frame structures in it, which serve as "guide rails" for proliferating and differentiating cells. An alternative condition for complete reconstruction of organ structures is the presence of a free "morphogenetic space" containing a gel-like matrix of the embryonic-type connective tissue, which exists during embryonal development of organs in mammals or during complete regeneration in amphibians. Approaches aimed at preserving frame structures or creating a "morphogenetic space" could radically improve the results of organ regeneration using both local and exogenous stem cells.
Collapse
Affiliation(s)
- Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Wang B, Wang Y, Wang J, Jin C, Zhou R, Guo J, Zhang H, Wang M. Multiparametric Magnetic Resonance Investigations on Acute and Long-Term Kidney Injury. J Magn Reson Imaging 2024; 59:43-57. [PMID: 37246343 DOI: 10.1002/jmri.28784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality. The prediction of the progression of AKI to long-term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long-term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long-term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post-processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real-time noninvasive monitoring of pathological development and progression of AKI to long-term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level-dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long-term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long-term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Kusirisin P, Thanapongsatorn P, Chaikomon K, Lumlertgul N, Yimsangyad K, Leewongworasingh A, Sirivongrangson P, Peerapornratana S, Chaijamorn W, Avihingsanon Y, Srisawat N. The Role of Erythropoietin Levels in Predicting Long-Term Outcomes following Severe Acute Kidney Injury. Blood Purif 2023; 52:793-801. [PMID: 37643588 DOI: 10.1159/000531954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Acute kidney injury (AKI) survivors are at an increased risk of chronic kidney disease, end-stage kidney disease, and mortality. Little is known about the effect of erythropoietin (EPO), a kidney-producing hormone, in post-AKI setting. We aimed to investigate the role of EPO as a predictor of long-term outcomes in post-severe AKI survivors. METHODS We performed a retrospective analysis of post-AKI cohort conducted between August 2018 and December 2021. Adults who survived severe AKI stages 2-3 were enrolled. Serum EPO was obtained at 1 month after hospital discharge. We explored whether EPO level could predict long-term kidney outcomes at 12 months including mortality, kidney replacement therapy, doubling serum creatinine, and major adverse kidney events at 365 days. RESULTS One hundred and twelve patients were enrolled. Median EPO level was significantly higher in non-survivors than survivors (28.9 [interquartile range: 16.2-50.7] versus 11.6 mU/mL [7.5-22.3], p = 0.003). The best EPO level cut-off was 16.2 mU/mL (sensitivity 77.8%, specificity 62.1%). Serum EPO predicted 12-month mortality with an area under the curve (AUC) of 0.69. Combining clinical model using age, baseline, and discharge kidney function with serum EPO improved prediction with AUC of 0.74. Multivariable analysis demonstrated that high-level of EPO group had significantly higher mortality compared with low-level EPO group (15.2% vs. 3.0%, p = 0.020). Hematocrit was significantly lower in high-level EPO group compared with low-level EPO group at 12 months (33.4 ± 1.1% vs. 36.0 ± 0.9%, p = 0.038). CONCLUSIONS Plasma EPO appears to be a useful marker for predicting long-term outcome in post-severe AKI survivors.
Collapse
Affiliation(s)
- Prit Kusirisin
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Nuttha Lumlertgul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Khanittha Yimsangyad
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Akarathep Leewongworasingh
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Sadudee Peerapornratana
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattachai Srisawat
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
4
|
Filler G, Sharma AP. Impaired kidney function >90 days determines long-term kidney outcomes. Pediatr Transplant 2022; 26:e14301. [PMID: 35503743 DOI: 10.1111/petr.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Guido Filler
- Department of Paediatrics and Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Medicine and Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,The Lilibeth Caberto Kidney Clinical Research Unit, Western University, London, Ontario, Canada
| | - Ajay P Sharma
- Department of Paediatrics and Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
IL-6 accelerates renal fibrosis after acute kidney injury via DNMT1-dependent FOXO3a methylation and activation of Wnt/β-catenin pathway. Int Immunopharmacol 2022; 109:108746. [DOI: 10.1016/j.intimp.2022.108746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023]
|
6
|
Fang ZE, Wang C, Niu M, Liu T, Ren L, Li Q, Li Z, Wei Z, Lin L, Mu W, Gao Y, Xiao X, Bai Z. Integration of Transcriptomic and Metabolomic Data to Compare the Hepatotoxicity of Neonatal and Adult Mice Exposed to Aristolochic Acid I. Front Genet 2022; 13:840961. [PMID: 35401701 PMCID: PMC8992794 DOI: 10.3389/fgene.2022.840961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Aristolochic acid (AA) is a group of structurally related compounds what have been used to treat various diseases in recent decades. Aristolochic acid I (AAI), an important ingredient, has been associated with tumorigenesis. Recently, some studies indicated that AAI could induce liver injury in mice of different age, but comprehensive mechanisms of AAI-induced differences in liver injury in various age groups have not yet been elucidated. This study aims to evaluate the causal relationship between AAI-induced liver injury and age based on neonatal mice and adult mice. A survival experiment indicated that all neonatal mice survived. Moreover, the adult mice in the high-dose AAI group all died, whereas half of the adult mice in the low-dose AAI group died. In observation experiments, AAI induced more severe liver injury in neonatal mice than adult mice under long-term than short-term exposure. Furthermore, integrated metabolomics and transcriptomics indicated that AAI disturbing steroid hormone biosynthesis, arachidonic acid metabolism, the drug metabolism-cytochrome P450 pathway and glycerophospholipid metabolism induced neonatal mice liver injury. The important role of age in AAI-induced liver injury was illustrated in our study. This study also lays a solid foundation for scientific supervision of AA safety.
Collapse
Affiliation(s)
- Zhi-E Fang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunyu Wang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lutong Ren
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaohe Xiao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Liu CL, Tain YL, Lin YC, Hsu CN. Prediction and Clinically Important Factors of Acute Kidney Injury Non-recovery. Front Med (Lausanne) 2022; 8:789874. [PMID: 35111778 PMCID: PMC8801583 DOI: 10.3389/fmed.2021.789874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This study aimed to identify phenotypic clinical features associated with acute kidney injury (AKI) to predict non-recovery from AKI at hospital discharge using electronic health record data. METHODS Data for hospitalized patients in the AKI Recovery Evaluation Study were derived from a large healthcare delivery system in Taiwan between January 2011 and December 2017. Living patients with AKI non-recovery were used to derive and validate multiple predictive models. In total, 64 candidates variables, such as demographic characteristics, comorbidities, healthcare services utilization, laboratory values, and nephrotoxic medication use, were measured within 1 year before the index admission and during hospitalization for AKI. RESULTS Among the top 20 important features in the predictive model, 8 features had a positive effect on AKI non-recovery prediction: AKI during hospitalization, serum creatinine (SCr) level at admission, receipt of dialysis during hospitalization, baseline comorbidity of cancer, AKI at admission, baseline lymphocyte count, baseline potassium, and low-density lipoprotein cholesterol levels. The predicted AKI non-recovery risk model using the eXtreme Gradient Boosting (XGBoost) algorithm achieved an area under the receiver operating characteristic (AUROC) curve statistic of 0.807, discrimination with a sensitivity of 0.724, and a specificity of 0.738 in the temporal validation cohort. CONCLUSION The machine learning model approach can accurately predict AKI non-recovery using routinely collected health data in clinical practice. These results suggest that multifactorial risk factors are involved in AKI non-recovery, requiring patient-centered risk assessments and promotion of post-discharge AKI care to prevent AKI complications.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Industrial Engineering and Management, National Yang Min Chiao Tung University, Hsinchu, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Yun-Chun Lin
- Department of Industrial Engineering and Management, National Yang Min Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Novel PHD2/HDACs hybrid inhibitors protect against cisplatin-induced acute kidney injury. Eur J Med Chem 2022; 230:114115. [PMID: 35033824 DOI: 10.1016/j.ejmech.2022.114115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/21/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is associated with high morbidity and mortality. Cisplatin is a common chemotherapeutic, but its nephrotoxicity-driven AKI limits its clinical application. Currently, there are no specific and satisfactory therapies in the clinic for AKI. Inhibitors of hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PHD2) or histone deacetylase (HDACs) had shown renoprotective effects against AKI in preclinical studies. This study aimed to develop a novel therapeutic to prevent AKI progression by targeting PHD2 and HDACs simultaneously. We designed and synthesized a series of PHD2/HDACs hybrid inhibitors. The initial drug activity screening identified a candidate compound 31c, which exhibited potent inhibitory activities against PHD2 and HDAC1/2/6. Cellular analyses further showed that 31c did not affect cisplatin's antitumor activity in cancer cells but strongly protected cisplatin-induced toxicity on HK-2 cells. In vivo studies with the cisplatin-induced AKI mouse model demonstrated that 31c remarkably alleviated kidney dysfunction with suppressed plasma BUN/SCr and increased EPO levels. The potent renoprotective effects of 31c on AKI were confirmed by significant improvements in pathological kidney conditions in the mouse model. These results suggest that the novel PHD2/HDACs hybrid inhibitor, 31c, has a clinical potential as the renoprotective agent for the treatment/prevention of cisplatin-induced AKI for various cancers.
Collapse
|
9
|
Wang B, Wang Y, Li L, Guo J, Wu PY, Zhang H, Zhang H. Diffusion kurtosis imaging and arterial spin labeling for the noninvasive evaluation of persistent post-contrast acute kidney injury. Magn Reson Imaging 2021; 87:47-55. [PMID: 34968702 DOI: 10.1016/j.mri.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/01/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We investigated whether diffusion kurtosis imaging (DKI) and arterial spin labeling (ASL) facilitated the assessment of serial alterations in persistent post-contrast acute kidney injury (PC-AKI). MATERIALS AND METHODS We randomly divided 24 rats into four PC-AKI groups (days 1, 3, 7, and 13, n = 6/group), with an additional six control animals. We conducted functional magnetic resonance imaging (MRI), diffusion kurtosis imaging (DKI), and arterial spin-labeling (ASL) analyses. Mean kurtosis (MK), axial kurtosis (Ka), mean diffusivity (MD), fractional anisotropy (FA), radial kurtosis (Kr), and renal blood flow (RBF) maps were normalized to baseline (prior to contrast injection) to calculate adjusted △RBF, △MK, △Ka, △MD, △FA, and △Kr values. We also investigated urinary neutrophil gelatinase associated lipocalin (NGAL), serum cystatin C (CysC), aquaporin-2 (AQP2), hypoxia-inducible factor-1 (HIF-1α), and histological indices. RESULTS In the inner stripe of the outer medulla, when compared with controls, decreased △FA and △MD levels were observed on days 1, 3, and 7, and a distinct elevation in △MK and △Kr on days 1-13, and a persistent decrease in △RBF on days 1-13, and a prominent increase in △Ka on days 7 and 13 in PC-AKI animals (all p < 0.05). △Ka and △MK were positively correlated with AQP-2 (r = 0.8086, p < 0.0001 and r = 0.7314, p < 0.0001, respectively), and △RBF was highly correlated with HIF-1α (r = -0.7592, p < 0.0001). Moreover, both CysC and NGAL were significantly elevated in PC-AKI animals when compared with controls from days 1-13 (all p < 0.05). Renal histological data indicated severe tubular and glomerular injury at days 1-13 in all PC-AKI groups. CONCLUSION ASL and DKI may be noninvasively and longitudinally used to detect PC-AKI and predict further outcomes.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Lina Li
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing 100000, China
| | - Pu-Yeh Wu
- GE Healthcare, MR Research China, Beijing 100000, China
| | - Hui Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| | - Hong Zhang
- The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
10
|
Gupta K, Pandey S, Bagang N, Mehra K, Singh G. Trimetazidine an emerging paradigm in renal therapeutics: Preclinical and clinical insights. Eur J Pharmacol 2021; 913:174624. [PMID: 34774496 DOI: 10.1016/j.ejphar.2021.174624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Trimetazidine (TMZ) is a well-known anti-ischemic agent used for the treatment of angina pectoris. In the past decades, the efficacy of this drug has been tested in a wide range of kidney injuries, including drug-induced nephrotoxicity (DIN), radio-contrast agent-induced nephropathy, and surgically induced renal ischemic injury. TMZhas renoprotective effects by attenuating oxidative stress, inflammatory cytokine release, maintaining oxygen and energy balance. Moreover, TMZ administration prevented kidney graft rejection in the porcine model by suppressing the infiltration of mononuclear cells, preserving mitochondrial functions, and maintaining Ca+ homeostasis. In DIN and diabetic kidney diseases,TMZ treatment prevents renal injury by inactivating immune cells, attenuating renal fibrosis, inflammation, apoptosis, and histological abnormalities. Interestingly, the clinical therapeutic efficacy of TMZ has also been documented in pre-existing kidney disease patients undergoing contrast exposure for diagnostic intervention. However, the mechanistic insights into the TMZ mediated renoprotective effects in other forms of renal injuries, including type-2 diabetes, drug-induced nephrotoxicity, and hypertension-induced chronic kidney diseases, remain uninvestigated and incomplete. Moreover, the clinical utility of TMZ as a renoprotective agent in radio-contrast-induced nephrotoxicity needs to be tested in a large patient population. Nevertheless, the available pieces of evidence suggest that TMZ is a promising and emerging renal therapy for the treatment and management of kidney diseases of variable etiologies. This review discusses the various pre-clinical and clinical findings and provides mechanistic insights into the TMZ mediated beneficial effects in various kidney diseases.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | - Sneha Pandey
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Newly Bagang
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Kamalpreet Mehra
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | | |
Collapse
|
11
|
Li Z, Li N. Epigenetic Modification Drives Acute Kidney Injury-to-Chronic Kidney Disease Progression. Nephron Clin Pract 2021; 145:737-747. [PMID: 34419948 DOI: 10.1159/000517073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical critical disease. Due to its high morbidity, increasing risk of complications, high mortality rate, and high medical costs, it has become a global concern for human health problems. Initially, researchers believed that kidneys have a strong ability to regenerate and repair, but studies over the past 20 years have found that kidneys damaged by AKI are often incomplete or even unable to repair. Even when serum creatinine returns to baseline levels, renal structural damage persists for a long time, leading to the development of chronic kidney disease (CKD). The mechanism of AKI-to-CKD transition has not been fully elucidated. As an important regulator of gene expression, epigenetic modifications, such as histone modification, DNA methylation, and noncoding RNAs, may play an important role in this process. Alterations in epigenetic modification are induced by hypoxia, thus promoting the expression of inflammatory factor-related genes and collagen secretion. This review elaborated the role of epigenetic modifications in AKI-to-CKD progression, the diagnostic value of epigenetic modifications biomarkers in AKI chronic outcome, and the potential role of targeting epigenetic modifications in the prevention and treatment of AKI to CKD, in order to provide ideas for the subsequent establishment of targeted therapeutic strategies to prevent the progression of renal tubular-interstitial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
12
|
Jiang M, Bai M, Xu S, Wang T, Lei J, Xu M, Huang S, Jia Z, Zhang A. Blocking AURKA with MK-5108 attenuates renal fibrosis in chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166227. [PMID: 34311081 DOI: 10.1016/j.bbadis.2021.166227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/25/2022]
Abstract
Renal fibrosis, a common feature of chronic kidney disease (CKD), is characterized by excessive deposition of extracellular matrix (ECM) leading to scar formation in the renal parenchyma. Active epithelial-mesenchymal communication (EMC), and the proliferation and activation of fibroblasts are implicated in the causation of renal fibrosis. Aurora-A kinase (AURKA) is a serine/threonine kinase required for the process of mitosis. Dysregulation of AURKA has been demonstrated in the context of various cancers. However, the role of AURKA in CKD-associated fibrosis has not been elucidated. MK-5108, a potent and highly selective AURKA inhibitor, was shown to exhibit anti-cancer activity in recent preclinical and clinical studies. In the present study, we investigated the role of MK-5108 in renal fibrosis employing animal and cell models. In vivo, AURKA was highly expressed in fibrotic kidneys of CKD patients and in mouse kidneys with unilateral ureteral obstruction (UUO). Post treatment with MK-5108 at the 3rd day after UUO remarkably alleviated renal fibrosis, possibly by inhibiting the proliferation and activation of fibroblasts and suppressing the phenotypic transition of renal cells. Moreover, the enhanced inflammatory factors in obstructive kidneys were also repressed. In vitro, MK-5108 treatment inhibited the pro-fibrotic response in renal cells induced by transforming growth factor-β1. Finally, overexpression of AURKA in renal fibroblasts promoted fibrotic response, while silencing AURKA showed anti-fibrotic effect, further confirming the pro-fibrotic role of AURKA. In this study, inhibition of AURKA by MK-5108 markedly attenuated renal fibrosis. MK-5108 is a potential therapeutic agent for treatment of renal fibrosis in CKD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Ting Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Juan Lei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Man Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, China.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, China.
| |
Collapse
|
13
|
Abstract
Elabela, also known as Toddler or Apela, is a recently discovered hormonal peptide containing 32 amino acids. Elabela is a ligand of the apelin receptor (APJ). APJ is a G protein-coupled receptor widely expressed throughout body, and together with its cognate ligand, apelin, it plays an important role in various physiological processes including cardiovascular functions, angiogenesis and fluid homeostasis. Elabela also participates in embryonic development and pathophysiological processes in adulthood. Elabela is highly expressed in undifferentiated embryonic stem cells and regulates endoderm differentiation and cardiovascular system development. During differentiation, Elabela is highly expressed in pluripotent stem cells and in adult renal collecting ducts and loops, where it functions to maintain water and sodium homeostasis. Other studies have also shown that Elabela plays a crucial role in the pathogenesis of kidney diseases. This review addresses the role of Elabela in kidney diseases including renal ischemia/reperfusion injury, hypertensive nephropathy, diabetic nephropathy, and cardiorenal syndrome.
Collapse
|
14
|
Hu J, Qiao J, Yu Q, Liu B, Zhen J, Liu Y, Ma Q, Li Y, Wang Q, Wang C, Lv Z. Role of SIK1 in the transition of acute kidney injury into chronic kidney disease. J Transl Med 2021; 19:69. [PMID: 33588892 PMCID: PMC7885408 DOI: 10.1186/s12967-021-02717-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/23/2021] [Indexed: 12/20/2022] Open
Abstract
Background Acute kidney injury (AKI), with a high morbidity and mortality, is recognized as a risk factor for chronic kidney disease (CKD). AKI-CKD transition has been regarded as one of the most pressing unmet needs in renal diseases. Recently, studies have showed that salt inducible kinase 1 (SIK1) plays a role in epithelial-mesenchymal transition (EMT) and inflammation, which are the hallmarks of AKI-CKD transition. However, whether SIK1 is involved in AKI-CKD transition and by what mechanism it regulates AKI-CKD transition remains unknown. Methods We firstly detected the expression of SIK1 in kidney tissues of AKI patients and AKI mice by immunohistochemistry staining, and then we established Aristolochic acid (AA)-induced AKI-CKD transition model in C57BL/6 mice and HK2 cells. Subsequently, we performed immunohistochemistry staining, ELISA, real-time PCR, Western blot, immunofluorescence staining and Transwell assay to explore the role and underlying mechanism of SIK1 on AKI-CKD transition. Results The expression of SIK1 was down-regulated in AKI patients, AKI mice, AA-induced AKI-CKD transition mice, and HK2 cells. Functional analysis revealed that overexpression of SIK1 alleviated AA-induced AKI-CKD transition and HK2 cells injury in vivo and in vitro. Mechanistically, we demonstrated that SIK1 mediated AA-induced AKI-CKD transition by regulating WNT/β-catenin signaling, the canonical pathway involved in EMT, inflammation and renal fibrosis. In addition, we discovered that inhibition of WNT/β-catenin pathway and its downstream transcription factor Twist1 ameliorated HK2 cells injury, delaying the progression of AKI-CKD transition. Conclusions Our study demonstrated, for the first time, a protective role of SIK1 in AKI-CKD transition by regulating WNT/β-catenin signaling pathway and its downstream transcription factor Twist1, which will provide novel insights into the prevention and treatment AKI-CKD transition in the future.
Collapse
Affiliation(s)
- Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jiao Qiao
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yue Liu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiqi Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanmei Li
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qianhui Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Cheng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Uddin MJ, Dorotea D, Pak ES, Ha H. Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury. Biomol Ther (Seoul) 2020; 28:213-221. [PMID: 32336052 PMCID: PMC7216742 DOI: 10.4062/biomolther.2019.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|