1
|
Zamorina TA, Ivashkina OI, Toropova KA, Anokhin KV. Inhibition of Protein Synthesis Attenuates Formation of Traumatic Memory and Normalizes Fear-Induced c-Fos Expression in a Mouse Model of Posttraumatic Stress Disorder. Int J Mol Sci 2024; 25:6544. [PMID: 38928250 PMCID: PMC11204086 DOI: 10.3390/ijms25126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.
Collapse
Affiliation(s)
- Tatyana A. Zamorina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Faculty of Biology, Department of Higher Nervous Activity, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga I. Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ksenia A. Toropova
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Konstantin V. Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
3
|
Teleuca AE, Alemà GS, Casolini P, Barberis I, Ciabattoni F, Orlando R, Di Menna L, Iacovelli L, Scioli MR, Nicoletti F, Zuena AR. Changes in mGlu5 Receptor Signaling Are Associated with Associative Learning and Memory Extinction in Mice. Life (Basel) 2022; 12:life12030463. [PMID: 35330215 PMCID: PMC8955168 DOI: 10.3390/life12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Using an in vivo method for the assessment of polyphosphoinositide (PI) hydrolysis, we examine whether spatial learning and memory extinction cause changes in mGlu5 metabotropic glutamate receptor signaling in the hippocampus and prefrontal cortex. We use the following five groups of mice: (i) naive mice; (ii) control mice exposed to the same environment as learner mice; (iii) leaner mice, trained for four days in a water maze; (iv) mice in which memory extinction was induced by six trials without the platform; (v) mice that spontaneously lost memory. The mGlu5 receptor-mediated PI hydrolysis was significantly reduced in the dorsal hippocampus of learner mice as compared to naive and control mice. The mGlu5 receptor signaling was also reduced in the ventral hippocampus and prefrontal cortex of learner mice, but only with respect to naive mice. Memory extinction was associated with a large up-regulation of mGlu5 receptor-mediated PI hydrolysis in the three brain regions and with increases in mGlu5 receptor and phospholipase-Cβ protein levels in the ventral and dorsal hippocampus, respectively. These findings support a role for mGlu5 receptors in mechanisms underlying spatial learning and suggest that mGlu5 receptors are candidate drug targets for disorders in which cognitive functions are impaired or aversive memories are inappropriately retained.
Collapse
Affiliation(s)
- Ana Elena Teleuca
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Giovanni Sebastiano Alemà
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Paola Casolini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Ilaria Barberis
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Francesco Ciabattoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.D.M.); (M.R.S.)
| | - Luisa Di Menna
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.D.M.); (M.R.S.)
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.D.M.); (M.R.S.)
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
- Correspondence: ; Tel./Fax: +39-06-49912513
| |
Collapse
|
4
|
TrkA-cholinergic signaling modulates fear encoding and extinction learning in PTSD-like behavior. Transl Psychiatry 2022; 12:111. [PMID: 35301275 PMCID: PMC8931170 DOI: 10.1038/s41398-022-01869-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have suggested that the use of cognitive enhancers as adjuncts to exposure-based therapy in individuals suffering from post-traumatic stress disorder (PTSD) may be beneficial. Brain cholinergic signaling through basal forebrain projections to the hippocampus is an established pathway mediating fear response and cognitive flexibility. Here we employed a genetic strategy to enhance cholinergic activity through increased signaling of the NGF receptor TrkA. This strategy leads to increased levels of the marker of cholinergic activation, acetylcholine synthesizing enzyme choline acetyltransferase, in forebrain cholinergic regions and their projection areas such as the hippocampus. Mice with increased cholinergic activity do not display any neurobehavioral abnormalities except a selective attenuation of fear response and lower fear expression in extinction trials. Reduction in fear response is rescued by the GABA antagonist picrotoxin in mutant mice, and, in wild-type mice, is mimicked by the GABA agonist midazolam suggesting that GABA can modulate cholinergic functions on fear circuitries. Importantly, mutant mice also show a reduction in fear processing under stress conditions in a single prolonged stress (SPS) model of PTSD-like behavior, and augmentation of cholinergic signaling by the drug donepezil in wild-type mice promotes extinction learning in a similar SPS model of PTSD-like behavior. Donepezil is already in clinical use for the treatment of dementia suggesting a new translational application of this drug for improving exposure-based psychotherapy in PTSD patients.
Collapse
|
5
|
Taugher RJ, Wunsch AM, Wang GZ, Chan AC, Dlouhy BJ, Wemmie JA. Post-acquisition CO 2 Inhalation Enhances Fear Memory and Depends on ASIC1A. Front Behav Neurosci 2021; 15:767426. [PMID: 34776896 PMCID: PMC8585996 DOI: 10.3389/fnbeh.2021.767426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
A growing body of evidence suggests that memories of fearful events may be altered after initial acquisition or learning. Although much of this work has been done in rodents using Pavlovian fear conditioning, it may have important implications for fear memories in humans such as in post-traumatic stress disorder (PTSD). A recent study suggested that cued fear memories, made labile by memory retrieval, were made additionally labile and thus more vulnerable to subsequent modification when mice inhaled 10% carbon dioxide (CO2) during retrieval. In light of this finding, we hypothesized that 10% CO2 inhalation soon after fear acquisition might affect memory recall 24 h later. We found that both cue and context fear memory were increased by CO2 exposure after fear acquisition. The effect of CO2 was time-dependent, as CO2 inhalation administered 1 or 4 h after cued fear acquisition increased fear memory, whereas CO2 inhalation 4 h before or 24 h after cued fear acquisition did not increase fear memory. The ability of CO2 exposure following acquisition to enhance fear memory was not a general consequence of stress, as restraining mice after acquisition did not alter cued fear memory. The memory-enhancing action of CO2 may be relatively specific to fear conditioning as novel object recognition was impaired by post-training CO2 inhalation. To explore the molecular underpinnings of these effects, we tested if they depended on the acid-sensing ion channel-1a (ASIC1A), a proton-gated cation channel that mediates other effects of CO2, likely via its ability to sense acidosis induced during CO2 inhalation. We found that CO2 inhalation did not alter cued or context fear memory in Asic1a–/– mice, suggesting that this phenomenon critically depends on ASIC1A. These results suggest that brain acidosis around the time of a traumatic event may enhance memory of the trauma, and may thus constitute an important risk factor for developing PTSD. Moreover, preventing peritraumatic acidosis might reduce risk of PTSD.
Collapse
Affiliation(s)
- Rebecca J Taugher
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Amanda M Wunsch
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Grace Z Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Aubrey C Chan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Brian J Dlouhy
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, University of Iowa, Iowa City, IA, United States.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Chair of Psychiatry and Neuroscience, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
6
|
Akhtar A, Pilkhwal Sah S. Advances in the pharmacotherapeutic management of post-traumatic stress disorder. Expert Opin Pharmacother 2021; 22:1919-1930. [PMID: 34124975 DOI: 10.1080/14656566.2021.1935871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Post-traumatic stress disorder (PTSD), a mental disorder, is associated with anxiety, depression, and social awkwardness resulting from past traumatic episodes like natural disasters, accidents, terrorist attacks, war, rape, and sexual violence. It affects primarily the amygdala, cortex, and hippocampus where neurochemical changes result in altered behavior. PTSD patients display impaired fear extinction, and past events keep haunting them. The topic presents relevant sections like PTSD pharmacotherapy, associated challenges, and the novel targets and drugs for future research and therapy.Areas covered: The authors discuss the current pharmacotherapy like SSRIs, NDRIs, SNRIs, anticonvulsants, antidepressants, and benzodiazepines, used to attenuate the associated symptoms. However, the primary focus being the novel and potential targets which can be explored better to understand possible future research and advanced therapy in PTSD. For the same, an account of both preclinical and clinical studies has been covered.Expert opinion: Excessive adverse effects, limited efficacy, and lower patient compliance are some of the major challenges with conventional drugs. Moreover, they correct only fewer symptoms without halting the disease progression. Several agents are investigated in different preclinical and clinical phases, which can potentially overcome the pitfalls and limitations associated with conventional therapies.
Collapse
Affiliation(s)
- Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
7
|
Lu B, Zeng W, Li Z, Wen J. Risk factors of post-traumatic stress disorder 10 years after Wenchuan earthquake: a population-based case-control study. Epidemiol Psychiatr Sci 2021; 30:e25. [PMID: 33729117 PMCID: PMC8061289 DOI: 10.1017/s2045796021000123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS To investigate the prevalence of post-traumatic stress disorder (PTSD) symptoms in the hard-hit areas 10 years after the Wenchuan earthquake, and explore the risk factors of long-term PTSD among Wenchuan earthquake survivors. METHODS A matched case-control study was conducted. The involving participants were from the hard-hit areas 10 years after the Wenchuan earthquake. The collected information includes demographic characteristics, socioeconomic status, behaviour habits, earthquake exposure, perceived social support, physical health and mental health. Mental health status was measured using the PTSD Checklist-Civilian Version (PCL-C). Respondents with PCL-C score ⩾38 were classified as cases, and then the cases and controls were matched based on age (±3 years) and community location according to a ratio of 1:3. RESULTS We obtained 86 cases and 258 controls. After controlling for confounding factors, it was found that lower income (OR 2.42; 95% CI 1.16-5.03), chronic diseases (OR 3.00; 95% CI 1.31-6.88) and death of immediate families in the earthquake (OR 7.30; 95% CI 2.36-22.57) were significantly associated with long-term PTSD symptoms. CONCLUSION Even 10 years after the Wenchuan earthquake, the survivors in the hard-hit areas still suffered from severe mental trauma. Low income, chronic diseases and death of immediate families in the earthquakes are significantly associated with long-term PTSD symptoms. Interventions by local governments and health institutions to address these risk factors should be undertaken to promote the health of survivors.
Collapse
Affiliation(s)
- Bingqing Lu
- Institute of Hospital Management, West China Hospital, Sichuan University, Chengdu610041, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610041, China
| | - Wenqi Zeng
- Institute of Hospital Management, West China Hospital, Sichuan University, Chengdu610041, China
| | - Zhuyue Li
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu610041, China
| | - Jin Wen
- Institute of Hospital Management, West China Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
8
|
Lycopene ameliorates PTSD-like behaviors in mice and rebalances the neuroinflammatory response and oxidative stress in the brain. Physiol Behav 2020; 224:113026. [DOI: 10.1016/j.physbeh.2020.113026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
|