1
|
Zhao Q, Zhou GY, Niu Q, Chen JW, Li P, Tian ZY, Li DJ, Xia T, Zhang S, Wang AG. SIRT1, a target of miR-708-3p, alleviates fluoride-induced neuronal damage via remodeling mitochondrial network dynamics. J Adv Res 2024; 65:197-210. [PMID: 38036217 DOI: 10.1016/j.jare.2023.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Neurological dysfunction induced by fluoride contamination is still one of major concern worldwide. Recently, neuroprotective roles of silent information regulator 1 (SIRT1) focusing on mitochondrial function have been highlighted. However, what roles SIRT1 exerts and the underlying regulative mechanisms, remain largely uncharacterized in such neurotoxic process of fluoride. OBJECTIVES We aimed at evaluating the regulatory roles of SIRT1 in human neuroblastoma SH-SY5Y cells and Sprague-Dawley rats with fluoride treatment, and to further identify potential miRNA directly targeting SIRT1. METHODS Pharmacological suppression of SIRT1 by nicotinamide (NIC) and promotion of SIRT1 by adenovirus (Ad-SIRT1) or resveratrol (RSV) were employed to assess the effects of SIRT1 in mitochondrial dysfunction induced by fluoride. Also, miRNAs profiling and bioinformatic prediction were used to screen the miRNAs which can regulate SIRT1 directly. Further, chemical mimic or inhibitor of chosen miRNA was applied to validate the modulation of chosen miRNA. RESULTS NIC exacerbated defects in mitochondrial network dynamics and cytochrome c (Cyto C) release-driven apoptosis, contributing to fluoride-induced neuronal death. In contrast, the ameliorative effects were observed when overexpressing SIRT1 by Ad-SIRT1 in vitro or RSV in vivo. More importantly, miR-708-3p targeting SIRT1 directly was identified. And interestingly, moreover, treatment with chemically modified miR-708-3p mimic aggravated, while miR-708-3p inhibitor suppressed fluoride-caused neuronal death. Further confirmedly, overexpressing SIRT1 effectively neutralized miR-708-3p mimic-worsened fluoride neuronal death via correcting mitochondrial network dynamics. On contrary, inhibiting SIRT1 counteracted the promotive effects of miR-708-3p inhibitor against neurotoxic response by fluoride through aggravating abnormal mitochondrial network dynamics. CONCLUSION These data underscore the functional importance of SIRT1 to mitochondrial network dynamics in neurotoxic process of fluoride and further screen a novel unreported neuronal function of miR-708-3p as an upstream regulator of targeting SIRT1, which has important theoretical implications for a potential therapeutic and preventative target for treatment of neurotoxic progression by fluoride.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Guo-Yu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qiang Niu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China
| | - Jing-Wen Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China
| | - Pei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China
| | - Zhi-Yuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China
| | - Dong-Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China.
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China
| | - Ai-Guo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, Peoples Republic of China.
| |
Collapse
|
2
|
Karolczak K, Watala C. Estradiol as the Trigger of Sirtuin-1-Dependent Cell Signaling with a Potential Utility in Anti-Aging Therapies. Int J Mol Sci 2023; 24:13753. [PMID: 37762053 PMCID: PMC10530977 DOI: 10.3390/ijms241813753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Aging entails the inevitable loss of the structural and functional integrity of cells and tissues during the lifetime. It is a highly hormone-dependent process; although, the exact mechanism of hormone involvement, including sex hormones, is unclear. The marked suppression of estradiol synthesis during menopause suggests that the hormone may be crucial in maintaining cell lifespan and viability in women. Recent studies also indicate that the same may be true for men. Similar anti-aging features are attributed to sirtuin 1 (SIRT1), which may possibly be linked at the molecular level with estradiol. This finding may be valuable for understanding the aging process, its regulation, and possible prevention against unhealthy aging. The following article summarizes the initial studies published in this field with a focus on age-associated diseases, like cancer, cardiovascular disease and atherogenic metabolic shift, osteoarthritis, osteoporosis, and muscle damage, as well as neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland;
| | | |
Collapse
|
3
|
Dong S, Yang Y, He B, Xu Z, Zhou Z, Wang J, Chen C, Chen Q. Effect of Sodium Fluoride on Reproductive Function Through Regulating Reproductive Hormone Level and Circulating SIRT1 in Female Rats. Biol Trace Elem Res 2023; 201:1825-1836. [DOI: https:/doi.org/10.1007/s12011-022-03283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/04/2022] [Indexed: 02/14/2024]
|
4
|
Dong S, Yang Y, He B, Xu Z, Zhou Z, Wang J, Chen C, Chen Q. Effect of Sodium Fluoride on Reproductive Function Through Regulating Reproductive Hormone Level and Circulating SIRT1 in Female Rats. Biol Trace Elem Res 2023; 201:1825-1836. [PMID: 35538195 DOI: 10.1007/s12011-022-03283-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
Abstract
Fluorosis causes female reproductive dysfunction with reduced fertility without established pathogenesis. To clarify the mechanism, Sprague-Dawley female rats were selected with drinking water containing 0, 50 (low), 100 (moderate), and 150 mg/L (high) sodium fluoride (NaF) for a short (2 months), medium (4 months), and long term (6 months). The water consumption and body weight of female rats were recorded daily. The effect of NaF on the estrous cycle was examined by vaginal smears and recorded in different term treatments. Female and male rats were mated in a 2:1 ratio for 1 week at 2-, 4-, and 6-month treatment time for mating performance and fertility rate. Selected female rats were executed for tissue and blood collection at different treatment terms. Twenty-four-hour urine sample from each female rat was collected using the metabolic cage. The levels of steroid hormones and silent information regulator 2 homolog 1 (SIRT1) in serum were measured by appropriate ELISA kits. Body weight of the high NaF group was significantly less during short-term treatment than that of other treatment groups or control group. Urinary fluoride concentration was increased linearly with treatment time. Treatment of NaF significantly decreased steroid hormone level while increased SIRT1 level in the serum. In addition, NaF treatment significantly decreased pregnancy rate. It is concluded that NaF inhibits the secretion of hormone and estradiol (E2) release from the ovary, thereby reducing the rate of pregnant. SIRT1 may be involved in this NaF-induced reproductive dysfunction in female rats through regulating reproductive hormone, FSH, and LH secretion.
Collapse
Affiliation(s)
- Siyuan Dong
- Guipei Class s0141, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanni Yang
- Xianyang Central Hospital, Xianyang, People's Republic of China
| | - Biqi He
- Class 0128#, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhao Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chen Chen
- Endocrinology, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the People's Republic of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, No. 76, Yanta Western Road, Shaanxi, 710061, Xi'an, People's Republic of China.
| |
Collapse
|
5
|
Zhao H, Zhu Y, Zhao Y, Wang T, Li H, Yang J, Cheng X, Wang J, Wang J. Alleviating effects of selenium on fluoride-induced testosterone synthesis disorder and reproduction toxicity in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114249. [PMID: 36323150 DOI: 10.1016/j.ecoenv.2022.114249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Fluoride (F) exists widely in food, water and other natural resources, and can cause damage to the reproductive system of human and animals. Studies have shown that selenium (Se) is a necessary trace element to maintain the normal male reproductive system. However, it is not clear whether it can alleviate the damage of reproductive system induced by F. Hence, sodium fluoride (NaF) was administered singly in drinking water at 100 mg L-1 alone and co-administered by drinking with sodium selenite (Na2SeO3) at 0.5, 1.0, 2.0 mg L-1 for 10 consecutive weeks. The results demonstrated that the sperm deformity rate were increased significantly by F, however, it was improved significantly after the addition of 2.0 mg L-1 Na2SeO3. The contents of glutathione peroxidase 4 (GPX-4), selenoprotein P (SePP), pregnenolone (PREG), androstenedione (ASD), and testosterone (T) were reduced obviously in the F group, however, it was increased significantly after adding 0.5, 1.0 and 2.0 mg L-1 Na2SeO3. F decreased noticeably the mRNA and protein expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side chain lyase (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17α-hydroxylase (P450c17) and 17β-hydroxysteroid dehydrogenase (17β-HSD), which was increased obviously after the addition of 1.0 and 2.0 mg L-1 Na2SeO3. In summary, 2.0 mg L-1 Na2SeO3 can alleviate testosterone synthesis disorder induced by F via reducing oxidative stress, increasing the level of selenoprotein in testis and regulating the content of related hormones and enzyme activity during testosterone synthesis pathway.
Collapse
Affiliation(s)
- Hui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yaya Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jiarong Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Xiaofang Cheng
- Department of Basic Science, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
6
|
Yu Y, Li L, Yu W, Guan Z. Fluoride Exposure Suppresses Proliferation and Enhances Endoplasmic Reticulum Stress and Apoptosis Pathways in Hepatocytes by Downregulating Sirtuin-1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7380324. [PMID: 36046439 PMCID: PMC9420589 DOI: 10.1155/2022/7380324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the function and mechanism of Sirt-1 in fluorine-induced liver injury. Method Fluorosis rats were first established. The fluorine content, pathological structure, collagen fibers, and fibrosis in liver tissues were tested through the fluoride ion selective electrode method, H&E, Masson, and Sirius red staining; alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin 18 (IL-18), and tumor necrosis factor-α (TNF-α) levels in rat serum were also analyzed using ELISA kits. Then, the fluorosis cell model was built, which was also alleviated with NaF, Sirt-1 siRNAs, or endoplasmic reticulum stress (ERS) alleviator (4-PBA). CCK-8 also assessed cell proliferation; RT-qPCR or Western blots detect sirtuin-1 (Sirt-1), protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), and endoplasmic reticulum stress (ERS) and apoptosis-related protein levels in liver tissue. Results Our results uncovered that fluorine exposure could aggravate the pathological damage and fibrosis of rat liver tissues and increase indicators related to liver injury. And fluoride exposure also could downregulate Sirt-1 and upregulate ERS-related proteins (PERK, 78-kD glucose-regulated protein (GRP-78), and activating transcription factor 6 (ATF6)) and apoptosis-related protein (caspase-3 and C/EBP-homologous protein (CHOP)) in rat liver tissues. Besides, we proved that fluoride exposure could suppress proliferation and enhances ERS and apoptotic pathways in AML12 cells by downregulating Sirt-1. Moreover, we revealed that ERS alleviator (4-PBA) could induce proliferation and prevent ERS and apoptosis in fluorine-exposed AML12 cells. Conclusions We suggested that fluorine exposure can induce hepatocyte ERS and apoptosis through downregulation of Sirt-1.
Collapse
Affiliation(s)
- Yanlong Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ling Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
8
|
Li L, Liu Z, Quan J, Sun J, Lu J, Zhao G. Comprehensive proteomic analysis to elucidate the anti-heat stress effects of nano-selenium in rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113736. [PMID: 35689887 DOI: 10.1016/j.ecoenv.2022.113736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Because of the continuous intensification of global warming, extreme climate fluctuations, and high-density farming, cold-water rainbow trout (Oncorhynchus mykiss) are exposed to conditions of heat stress, which has severely impacted their survival and yield. Nano-selenium (nano-Se) shows higher biological activity and lower toxicity and has emerged as an ideal and ecological Se formulation. Herein rainbow trout were fed either a basal diet (control group) or basal diet plus 5 mg/kg nano-Se (treatment group). Samples were collected before (18 °C for 9 days; CG18, Se18) and after (24 °C for 8 h; CG24, Se24) heat stress. The DIA/SWATH approach was then applied to compare changes at the proteome level. We found 223 and 269 differentially abundant proteins in the CG18-CG24 and Se18-Se24 groups, respectively, which mainly included apoptosis-, heat stress-, and lipid-related proteins. In comparison with the CG18-CG24 group, the Se18-Se24 group showed higher abundance of molecular chaperone, such as Hsp70, Hsp90a.1, Hspa8, Hsp30, DNAJA4, Dnajb1, Bag2 and Ahsa1; on nano-Se supplementation, the heat stress-induced decline in the abundance of the selenoprotein MsrB2 was partially restored. Furthermore, nano-Se supplementation downregulated the abundance of lipid-related (CYP51, EBP, DHCR7, DHCR24, and APOB) and pro-apoptotic (caspase-8 and Bad) proteins. Protein-protein interaction analyses suggested that nano-Se inhibits apoptosis by upregulating the expression of Hsp70, Hsp90a.1, Hspa8, and Dnajb1; further, Hsp70/Hspa8 and MsrB2 appear to play a synergistic role in antioxidant defense under heat stress. Overall, our findings provide novel insights into nano-Se-mediated tolerance of heat stress, demonstrating that nano-Se exerts its anti-heat stress effects in rainbow trout by promoting protein repair, enhancing recovery of antioxidant enzyme activity, and alleviating lipid metabolism and apoptosis.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
9
|
Tao N, Li L, Chen Q, Sun Z, Yang Q, Cao D, Zhao X, Zeng F, Liu J. Association Between Antioxidant Nutrients, Oxidative Stress-Related Gene Polymorphism and Skeletal Fluorosis in Guizhou, China. Front Public Health 2022; 10:849173. [PMID: 35646794 PMCID: PMC9140744 DOI: 10.3389/fpubh.2022.849173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Oxidative stress plays an important role in the pathogenesis of endemic fluorosis. We analyzed associations between oxidative stress-related gene polymorphisms (PON1 rs662, CAT rs769217, rs2300182, and SOD2 rs11968525) and skeletal fluorosis, and examined potential gene–environment interactions with dietary vitamin C, vitamin E, zinc, and selenium intake. Methods A cross-sectional study was conducted in the Zhijin County, Guizhou Province of China. Skeletal fluorosis was identified according to the Chinese Diagnostic Criteria of Endemic Skeletal Fluorosis. Dietary information was assessed through face-to-face interviews by trained interviewers using a 75-item food frequency questionnaire. The genotype was detected by high throughput TaqMan-MGB RT-PCR technology. Odds ratios (ORs) and 95% CIs were calculated using an unconditional logistic regression model. Results Intake of vitamin E, zinc, and selenium was found to be inversely associated with the risk of skeletal fluorosis. The multivariable-adjusted ORs were 0.438 (95% CI: 0.268 to 0.715, P-trend < 0.001) for vitamin E, 0.490 (95% CI: 0.298 to 0.805, P-trend = 0.001) for zinc, and 0.532 (95% CI: 0.324 to 0.873, P-trend = 0.010) for selenium when comparing the highest with the lowest quartile. The relationship for vitamin C was not observed after adjustment for risk factors. Furthermore, participants with PON1 rs662 AA genotype had a significantly decreased risk of skeletal fluorosis compared with those with the GG genotype (OR = 0.438, 95% CI: 0.231 to 0.830). GG + AG genotype carriers were 2.212 times more likely to have skeletal fluorosis than AA carriers (OR = 2.212, 95% CI: 1.197 to 4.090). Compared with AA carriers, AG carriers had a 2.182 times higher risk of skeletal fluorosis (OR = 2.182, 95% CI: 1.143 to 4.163). Although we observed the risk of skeletal fluorosis was higher with a lower intake of antioxidant nutrients, the potential interactions between nutrient intake and genetic polymorphisms were not observed. Conclusion Participants with a higher intake of vitamin E, zinc, and selenium have a lower likelihood of skeletal fluorosis. In addition, the PON1 rs662 polymorphism is related to skeletal fluorosis.
Collapse
Affiliation(s)
- Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lianhong Li
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Qing Chen
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Dafang Cao
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xun Zhao
- Department of Chronic Diseases, Center for Diseases Control and Prevention of Zhijin County, Zhijin, China
| | - Fangfang Zeng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Jun Liu
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
- Fangfang Zeng
| |
Collapse
|
10
|
Chen Q, Li Z, Xu Z, Chen C, Wang J, Zhu J, Dong Z. miR-378d is Involved in the Regulation of Apoptosis and Autophagy of and E 2 Secretion from Cultured Ovarian Granular Cells Treated by Sodium Fluoride. Biol Trace Elem Res 2021; 199:4119-4128. [PMID: 33405077 DOI: 10.1007/s12011-020-02524-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022]
Abstract
Taking excessive sodium fluoride may cause female reproductive dysfunction, but underlying molecular mechanism is unclear. The ovarian granulosa cells are the key endocrine cells releasing reproductive hormones. The miRNAs in the granulosa cells play an important function in regulating reproduction. The aim of this study is to explore the role of miRNAs in granulosa cell apoptosis and autophagy, as well as estradiol (E2) release in response to excessive sodium fluoride. The ovarian granulosa cells (KGN cells) were treated in vitro by different concentrations of sodium fluoride (NaF) for 24 h. The level of estradiol (E2) in the incubation medium was measured by ELISA kits. The total RNA and protein were collected and purified from KGN cells. The expression of miRNAs was detected by the real-time PCR. The signal molecules involved in cell apoptosis and autophagy were detected by the real-time PCR and Western blotting. Six miRNAs in granulosa cells were significantly up- or downregulated by NaF and selected for real-time PCR analysis. The miR-378d was the most significantly upregulated one dose dependently by NaF. It was positively correlated to the extent of apoptosis but negatively correlated to the level of autophagy in KGN cells in response to NaF. In addition, miR-378d promoted E2 release in response to 1 and 2 mM NaF but reduced E2 release in response to 4 and 8 mM NaF treatments. It is concluded that expression of miR-378d in ovarian granulosa cells is negatively correlated to the autophagy and E2 release and positively correlated to cell apoptosis under the influence of NaF.
Collapse
Affiliation(s)
- Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Zhen Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhao Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Chen
- Endocrinology, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jiawei Wang
- Guipei class 84, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jinyuan Zhu
- Kouqiang class 73, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhaoheng Dong
- Shandong Shenghua Electronic New Materials Co., Ltd., Yantai, Shandong, China
| |
Collapse
|
11
|
Zhan X, Li J, Zhou T. Targeting Nrf2-Mediated Oxidative Stress Response Signaling Pathways as New Therapeutic Strategy for Pituitary Adenomas. Front Pharmacol 2021; 12:565748. [PMID: 33841137 PMCID: PMC8024532 DOI: 10.3389/fphar.2021.565748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress and oxidative damage are the common pathophysiological characteristics in pituitary adenomas (PAs), which have been confirmed with many omics studies in PA tissues and cell/animal experimental studies. Nuclear factor erythroid 2 p45-related factor 2 (Nrf2), the core of oxidative stress response, is an oxidative stress sensor. Nrf2 is synthesized and regulated by multiple factors, including Keap1, ERK1/2, ERK5, JNK1/2, p38 MAPK, PKC, PI3K/AKT, and ER stress, in the cytoplasm. Under the oxidative stress status, Nrf2 quickly translocates from cytoplasm into the nucleus and binds to antioxidant response element /electrophile responsive element to initiate the expressions of antioxidant genes, phases I and II metabolizing enzymes, phase III detoxifying genes, chaperone/stress response genes, and ubiquitination/proteasomal degradation proteins. Many Nrf2 or Keap1 inhibitors have been reported as potential anticancer agents for different cancers. However, Nrf2 inhibitors have not been studied as potential anticancer agents for PAs. We recommend the emphasis on in-depth studies of Nrf2 signaling and potential therapeutic agents targeting Nrf2 signaling pathways as new therapeutic strategies for PAs. Also, the use of Nrf2 inhibitors targeting Nrf2 signaling in combination with ERK inhibitors plus p38 activators or JNK activators targeting MAPK signaling pathways, or drugs targeting mitochondrial dysfunction pathway might produce better anti-tumor effects on PAs. This perspective article reviews the advances in oxidative stress and Nrf2-mediated oxidative stress response signaling pathways in pituitary tumorigenesis, and the potential of targeting Nrf2 signaling pathways as a new therapeutic strategy for PAs.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, China.,Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiajia Li
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Zhou
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|