1
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2025; 39:195-209. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
2
|
Long SW, Li SH, Li J, He Y, Tan B, Jing HH, Zheng W, Wu J. Identification of osteoporosis ferroptosis-related markers and potential therapeutic compounds based on bioinformatics methods and molecular docking technology. BMC Med Genomics 2024; 17:99. [PMID: 38650009 PMCID: PMC11036634 DOI: 10.1186/s12920-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
RESEARCH BACKGROUND AND PURPOSE Osteoporosis (OP) is one of the most common bone diseases worldwide, characterized by low bone mineral density and susceptibility to pathological fractures, especially in postmenopausal women and elderly men. Ferroptosis is one of the newly discovered forms of cell death regulated by genes in recent years. Many studies have shown that ferroptosis is closely related to many diseases. However, there are few studies on ferroptosis in osteoporosis, and the mechanism of ferroptosis in osteoporosis is still unclear. This study aims to identify biomarkers related to osteoporosis ferroptosis from the GEO (Gene Expression Omnibus) database through bioinformatics technology, and to mine potential therapeutic small molecule compounds through molecular docking technology, trying to provide a basis for the diagnosis and treatment of osteoporosis in the future. MATERIALS AND METHODS We downloaded the ferroptosis-related gene set from the FerrDb database ( http://www.zhounan.org/ferrdb/index.html ), downloaded the data sets GSE56815 and GSE7429 from the GEO database, and used the R software "limma" package to screen differentially expressed genes (DEGs) from GSE56815, and intersected with the ferroptosis gene set to obtain ferroptosis-related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by the R software "clusterProfiler" package. The random forest model was further screened to obtain essential ferroptosis genes. R software "corrplot" package was used for correlation analysis of essential ferroptosis genes, and the Wilcox test was used for significance analysis. The lncRNA-miRNA-mRNA-TF regulatory network was constructed using Cytoscape software. The least absolute shrinkage and selection operator (LASSO) was used to construct a disease diagnosis model, and a Receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic performance, and then GSE7429 was used to verify the reliability of the diagnosis model. Molecular docking technology was used to screen potential small molecule compounds from the Drugbank database. Finally, a rat osteoporosis model was constructed, and peripheral blood mononuclear cells were extracted for qRT-PCR detection to verify the mRNA expression levels of crucial ferroptosis genes. RESULT Six DEGs related to ferroptosis were initially screened out. GO function and KEGG pathway enrichment analysis showed that ferroptosis-related DEGs were mainly enriched in signaling pathways such as maintenance of iron ion homeostasis, copper ion binding function, and ferroptosis. The random forest model identified five key ferroptosis genes, including CP, FLT3, HAMP, HMOX1, and SLC2A3. Gene correlation analysis found a relatively low correlation between these five key ferroptosis genes. The lncRNA-miRNA-mRNA-TF regulatory network shows that BAZ1B and STAT3 may also be potential molecules. The ROC curve of the disease diagnosis model shows that the model has a good diagnostic performance. Molecular docking technology screened out three small molecule compounds, including NADH, Midostaurin, and Nintedanib small molecule compounds. qRT-PCR detection confirmed the differential expression of CP, FLT3, HAMP, HMOX1 and SLC2A3 between OP and normal control group. CONCLUSION This study identified five key ferroptosis genes (CP, FLT3, HAMP, HMOX1, and SLC2A3), they were most likely related to OP ferroptosis. In addition, we found that the small molecule compounds of NADH, Midostaurin, and Nintedanib had good docking scores with these five key ferroptosis genes. These findings may provide new clues for the early diagnosis and treatment of osteoporosis in the future.
Collapse
Affiliation(s)
- Shi-Wei Long
- General Hospital of Western Theater Command, Chengdu, China
| | - Shi-Hong Li
- Department of Orthopedic Oncology, Shanghai Sixth People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- General Hospital of Western Theater Command, Chengdu, China
| | - Jian Li
- General Hospital of Western Theater Command, Chengdu, China
| | - Yang He
- Southwest Jiao Tong University School of Medicine, Chengdu, China
| | - Bo Tan
- General Hospital of Western Theater Command, Chengdu, China
| | - Hao-Han Jing
- General Hospital of Western Theater Command, Chengdu, China
| | - Wei Zheng
- Department of Orthopedic Oncology, Shanghai Sixth People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Southwest Jiao Tong University School of Medicine, Chengdu, China.
- General Hospital of Western Theater Command, Chengdu, China.
| | - Juan Wu
- General Hospital of Western Theater Command, Chengdu, China.
| |
Collapse
|
3
|
Zhou H, Liu A, Hu M, Zheng X, Kuang W, Xie Y. A Novel HPLC Method for Quality Inspection of NRK Biosynthesized β-Nicotinamide Mononucleotide. J Chromatogr Sci 2024; 62:241-248. [PMID: 36617938 DOI: 10.1093/chromsci/bmac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
β-nicotinamide mononucleotide (NMN) has a good effect on delaying aging, repairing DNA and ameliorating metabolic disease. Biosynthesis with nicotinamide riboside kinase (NRK) takes a large part in NMN manufacture, but there is no available NMN quality standard and analytical method at present. In this study, we developed a specific high-performance liquid chromatography method for the assessment of NMN-related substances, including NMN and its potential impurities from NRK biological production and storage. Forced degradation study was performed under acid, base, oxidative, photolytic and thermal conditions. The separation of related substances was achieved on an Elite Hypersil ODS column using phosphate buffer-methanol gradient at a flow rate of 1.0 mL/min. The detection wavelength was maintained at 260 nm. The resolutions among all related substances were better than 1.5. Significant degradation was observed in basic and thermal conditions. All related substances showed good linearity with a coefficient of determination (R2) higher than 0.999. The accuracy values of all related substances were between 91.2% and 108.6%. Therefore, the validated analytical method is appropriate for inspecting the quality of NMN in its NRK biosynthetic manufacture and storage, thus further helping to unify NMN quality standards and facilitate related studies on NMN.
Collapse
Affiliation(s)
- Haoxuan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
| | - Ai Liu
- Research and Development Center, Chengdu Chuanyu Jianwei Biotechnology Co., Ltd., International Bio-town No. 18, Section 2, Bio-town Middle Road, Shuangliu District, Chengdu 610213, China
| | - Mingxing Hu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
| | - Xinyue Zheng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
| | - Weihong Kuang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yongmei Xie
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.17 People's South Road, Chengdu 610041, China
- Research and Development Center, Chengdu Chuanyu Jianwei Biotechnology Co., Ltd., International Bio-town No. 18, Section 2, Bio-town Middle Road, Shuangliu District, Chengdu 610213, China
| |
Collapse
|
4
|
Li Y, Zhang C, Li Z, Bai F, Jing Y, Ke H, Zhang S, Yan Y, Yu Y. Nicotinamide Riboside Regulates Chemotaxis to Decrease Inflammation and Ameliorate Functional Recovery Following Spinal Cord Injury in Mice. Curr Issues Mol Biol 2024; 46:1291-1307. [PMID: 38392200 PMCID: PMC10887503 DOI: 10.3390/cimb46020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Changes in intracellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in various disease states. A decrease in NAD+ levels has been noted following spinal cord injury (SCI). Nicotinamide riboside (NR) serves as the precursor of NAD+. Previous research has demonstrated the anti-inflammatory and apoptosis-reducing effects of NR supplements. However, it remains unclear whether NR exerts a similar role in mice after SCI. The objective of this study was to investigate the impact of NR on these changes in a mouse model of SCI. Four groups were considered: (1) non-SCI without NR (Sham), (2) non-SCI with NR (Sham +NR), (3) SCI without NR (SCI), and (4) SCI with NR (SCI + NR). Female C57BL/6J mice aged 6-8 weeks were intraperitoneally administered with 500 mg/kg/day NR for a duration of one week. The supplementation of NR resulted in a significant elevation of NAD+ levels in the spinal cord tissue of mice after SCI. In comparison to the SCI group, NR supplementation exhibited regulatory effects on the chemotaxis/recruitment of leukocytes, leading to reduced levels of inflammatory factors such as IL-1β, TNF-α, and IL-22 in the injured area. Moreover, NR supplementation notably enhanced the survival of neurons and synapses within the injured area, ultimately resulting in improved motor functions after SCI. Therefore, our research findings demonstrated that NR supplementation had inhibitory effects on leukocyte chemotaxis, anti-inflammatory effects, and could significantly improve the immune micro-environment after SCI, thereby promoting neuronal survival and ultimately enhancing the recovery of motor functions after SCI. NR supplementation showed promise as a potential clinical treatment strategy for SCI.
Collapse
Affiliation(s)
- Yan Li
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Zihan Li
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Fan Bai
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yingli Jing
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Shuangyue Zhang
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yitong Yan
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yan Yu
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| |
Collapse
|
5
|
Grout MM, Mitchell KB. Disulfiram-Mitigating Unintended Effects. Antibiotics (Basel) 2023; 12:antibiotics12020262. [PMID: 36830172 PMCID: PMC9952438 DOI: 10.3390/antibiotics12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Lyme disease caused by infection with a multitude of vector-borne organisms can sometimes be successfully treated in its very early stages. However, if diagnosis is delayed, this infection can become disseminated and, like another spirochetal infection syphilis, can affect multiple organ systems in the body, causing a wide variety of life-altering symptoms. Conventional antibiotic therapy may not be effective in eradicating the symptoms of the disease we know as Lyme disease. The recent literature has suggested that disulfiram (DSM) may be a potent drug in the armamentarium of physicians who treat chronic Lyme disease. The use of disulfiram in the treatment of Lyme disease started with a researcher who determined that DSM is bactericidal to spirochete. Encouraged by published case reports of apparent recovery from chronic Lyme disease, having prescribed DSM ourselves in the past for alcoholics who had a desire to stop drinking and prescribing it now for patients with chronic Lyme disease, we observed both predictable and potentially avoidable side effects not necessarily related to the ingestion of alcohol. We reviewed the published literature in PubMed and Google Scholar, using the following key words: Lyme Disease; Borrelia burgdorferi treatment; and disulfiram toxicity. This paper outlines the results of that research to help avoid some of the pitfalls inherent in this novel use of an old and established medication in the practice of clinical medicine.
Collapse
Affiliation(s)
- Martha M. Grout
- Arizona Center for Advanced Medicine, Scottsdale, AZ 85258, USA
- Correspondence: ; Tel.: +1-480-240-2600
| | | |
Collapse
|
6
|
Liao C, Zhang L, Jiang R, Hu D, Xu J, Hu K, Jiang S, Li L, Yang Y, Huang J, Tang L, Li L. Nicotinamide adenine dinucleotide attenuates acetaminophen-induced acute liver injury via activation of PARP1, Sirt1, and Nrf2 in mice. Can J Physiol Pharmacol 2022; 100:796-805. [PMID: 35983933 DOI: 10.1139/cjpp-2022-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the protective effect of nicotinamide adenine dinucleotide (NAD+) against acute liver injury (ALI) induced by acetaminophen (APAP) overdose in mice. First, serum transaminases were used to assess the protective effect of NAD+, and the data revealed that NAD+ mitigated the APAP-induced ALI in a dose-dependent manner. Then, we performed hematoxylin-eosin staining of liver tissues and found that NAD+ alleviated the abnormalities of histopathology. Meanwhile, increase in the malondialdehyde content and decrease in glutathione, superoxide dismutase (SOD), and glutathione peroxidase were identified in the APAP group, which were partially prevented by the NAD+ pretreatment. Moreover, compared with the mice treated with APAP only, the expression of poly ADP-ribose polymerase 1 (PARP1), Sirtuin1 (Sirt1), SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2), and hemoxygenase-1 was upregulated, while Kelch-like ECH-associated protein 1 and histone H2AX phosphorylated on Ser-139 were downregulated by NAD+ in NAD+ + APAP group. Conversely, NAD+ could not correct the elevated expression of phospho-Jun N-terminal kinase and phospho-extracellular signal-regulated kinase induced by APAP. Taken together, these findings suggest that NAD+ confers an anti-ALI effect to enhance the expression of PARP1 and Sirt1, and to simultaneously stimulate the Nrf2 anti-oxidant signaling pathway.
Collapse
Affiliation(s)
- Cuiting Liao
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Da Hu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Juanjuan Xu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Shifang Jiang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longhui Li
- Center of Health Management, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400000, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Tang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Identification of a novel homozygous mutation in NAXE gene associated with early-onset progressive encephalopathy by whole-exome sequencing: in silico protein structure characterization, molecular docking, and dynamic simulation. Neurogenetics 2022; 23:257-270. [DOI: 10.1007/s10048-022-00696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
|
8
|
Inhibition of NAD kinase elevates the hepatic NAD+ pool and alleviates acetaminophen-induced acute liver injury in mice. Biochem Biophys Res Commun 2022; 612:70-76. [DOI: 10.1016/j.bbrc.2022.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022]
|
9
|
Zheng Y, Xu Y, Xu W, Cao S, Yan Q, Huang X, Wen Y, Zhao Q, Du S, Lang Y, Zhao S, Wu R. CD38 Enhances TLR9 Expression and Activates NLRP3 Inflammasome after Porcine Parvovirus Infection. Viruses 2022; 14:v14061136. [PMID: 35746608 PMCID: PMC9229413 DOI: 10.3390/v14061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Porcine Parvovirus (PPV) is a single-stranded DNA virus without envelope which causes great harm in relation to porcine reproductive disorders in clinic. Cluster of Differentiation 38 (CD38) is a transmembrane protein widely existing in mammals. Its various functions make it a very popular research object, including in the viral infection field. (2) Methods: Western blotting and an EdU Cell Proliferation Kit were used to evaluate the effect of CD38-deficient cells. Relative quantitative real-time RT-PCR was used to detect the transcription levels of cytokines after PPV infection. The renilla luciferase reporter gene assay was used to verify the activation function of CD38 on downstream factors. The fluorescence probe method was used to detect the level of intracellular reactive oxygen species (ROS). (3) Results: This study found that the loss of CD38 function inhibited the up-regulated state of Toll-like Receptor 9 (TLR9), Interferon-α (IFN-α), and Myxovirus Resistance 1 (Mx1) after PPV infection. The luminescence of the group transfected with both CD38 expression plasmid and TLR9 promoter renilla luciferase reporter plasmid was significantly up-regulated compared with the control, suggesting that CD38 may activate the promoter of TLR9. In addition, CD38 deficiency not only activated the transcription of Sirtuin-1 (SIRT1), but also inhibited ROS level and the transcription of NLR Family Pyrin Domain Containing 3 (NLRP3). (4) Conclusion: (i) CD38 may participate in the TLR9/IFN-α/Mx1 pathway by activating the expression of TLR9 after PPV infected PK-15 cells; (ii) CD38 may activate the NLRP3/CASP1 pathway by increasing ROS level; (iii) CD38 deficiency activates the expression of SIRT1 and can prevent the normal proliferation of PPV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Rui Wu
- Correspondence: ; Tel.: +86-182-2757-2781
| |
Collapse
|
10
|
Zhu C, Gu H, Jin Y, Wurm D, Freidhof B, Lu Y, Chen QM. Metabolomics of oxidative stress: Nrf2 independent depletion of NAD or increases of sugar alcohols. Toxicol Appl Pharmacol 2022; 442:115949. [PMID: 35227738 DOI: 10.1016/j.taap.2022.115949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023]
Abstract
Nrf2 encodes a transcription factor best known for regulating the expression of antioxidant and detoxification genes. Recent evidence suggested that Nrf2 mediates metabolic reprogramming in cancer cells. However, the role of Nrf2 in the biochemical metabolism of cardiac cells has not been studied. Using LC-MS/MS-based metabolomics, we addressed whether knocking out the Nrf2 gene in AC16 human cardiomyocytes affects metabolic reprogramming by oxidative stress. Profiling the basal level metabolites showed an elevated pentose phosphate pathway and increased levels of sugar alcohols, sorbitol, L-arabitol, xylitol and xylonic acid, in Nrf2 KO cells. With sublethal levels of oxidative stress, depletion of NAD, an increase of GDP and elevation of sugar alcohols, sorbitol and dulcitol, were detected in parent wild type (WT) cells. Knocking out Nrf2 did not affect these changes. Biochemical assays confirmed depletion of NAD in WT and Nrf2 KO cells due to H2O2 treatment. These data support that although Nrf2 deficiency caused baseline activation of the pentose phosphate pathway and sugar alcohol synthesis, a brief exposure to none-lethal doses of H2O2 caused NAD depletion in an Nrf2 independent manner. Loss of NAD may contribute to oxidative stress associated cell degeneration as observed with aging, diabetes and heart failure.
Collapse
|
11
|
Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:nu13082658. [PMID: 34444817 PMCID: PMC8399248 DOI: 10.3390/nu13082658] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multisystem, and profoundly debilitating neuroimmune disease, probably of post-viral multifactorial etiology. Unfortunately, no accurate diagnostic or laboratory tests have been established, nor are any universally effective approved drugs currently available for its treatment. This study aimed to examine whether oral coenzyme Q10 and NADH (reduced form of nicotinamide adenine dinucleotide) co-supplementation could improve perceived fatigue, unrefreshing sleep, and health-related quality of life in ME/CFS patients. A 12-week prospective, randomized, double-blind, placebo-controlled trial was conducted in 207 patients with ME/CFS, who were randomly allocated to one of two groups to receive either 200 mg of CoQ10 and 20 mg of NADH (n = 104) or matching placebo (n = 103) once daily. Endpoints were simultaneously evaluated at baseline, and then reassessed at 4- and 8-week treatment visits and four weeks after treatment cessation, using validated patient-reported outcome measures. A significant reduction in cognitive fatigue perception and overall FIS-40 score (p < 0.001 and p = 0.022, respectively) and an improvement in HRQoL (health-related quality of life (SF-36)) (p < 0.05) from baseline were observed within the experimental group over time. Statistically significant differences were also shown for sleep duration at 4 weeks and habitual sleep efficiency at 8 weeks in follow-up visits from baseline within the experimental group (p = 0.018 and p = 0.038, respectively). Overall, these findings support the use of CoQ10 plus NADH supplementation as a potentially safe therapeutic option for reducing perceived cognitive fatigue and improving the health-related quality of life in ME/CFS patients. Future interventions are needed to corroborate these clinical benefits and also explore the underlying pathomechanisms of CoQ10 and NADH administration in ME/CFS.
Collapse
|
12
|
Mishra R, Chen BS, Richa P, Yu-Wai-Man P. Wolfram syndrome: new pathophysiological insights and therapeutic strategies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211039518. [PMID: 37181110 PMCID: PMC10032446 DOI: 10.1177/26330040211039518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 05/16/2023]
Abstract
Wolfram Syndrome (WS) is an ultra-rare, progressive neurodegenerative disease characterized by early-onset diabetes mellitus and irreversible loss of vision, secondary to optic nerve degeneration. Visual loss in WS is an important cause of registrable blindness in children and young adults and the pathological hallmark is the preferential loss of retinal ganglion cells within the inner retina. In addition to optic atrophy, affected individuals frequently develop variable combinations of neurological, endocrinological, and psychiatric complications. The majority of patients carry recessive mutations in the WFS1 (4p16.1) gene that encodes for a multimeric transmembrane protein, wolframin, embedded within the endoplasmic reticulum (ER). An increasingly recognised subgroup of patients harbor dominant WFS1 mutations that usually cause a milder phenotype, which can be limited to optic atrophy. Wolframin is a ubiquitous protein with high levels of expression in retinal, neuronal, and muscle tissues. It is a multifunctional protein that regulates a host of cellular functions, in particular the dynamic interaction with mitochondria at mitochondria-associated membranes. Wolframin has been implicated in several crucial cellular signaling pathways, including insulin signaling, calcium homeostasis, and the regulation of apoptosis and the ER stress response. There is currently no cure for WS; management remains largely supportive. This review will cover the clinical, genetic, and pathophysiological features of WS, with a specific focus on disease models and the molecular pathways that could serve as potential therapeutic targets. The current landscape of therapeutic options will also be discussed in the context of the latest evidence, including the pipeline for repurposed drugs and gene therapy. Plain language summary Wolfram syndrome - disease mechanisms and treatment options Wolfram syndrome (WS) is an ultra-rare genetic disease that causes diabetes mellitus and progressive loss of vision from early childhood. Vision is affected in WS because of damage to a specialized type of cells in the retina, known as retinal ganglion cells (RGCs), which converge at the back of the eye to form the optic nerve. The optic nerve is the fast-conducting cable that transmits visual information from the eye to the vision processing centers within the brain. As RGCs are lost, the optic nerve degenerates and it becomes pale in appearance (optic atrophy). Although diabetes mellitus and optic atrophy are the main features of WS, some patients can develop more severe problems because the brain and other organs, such as the kidneys and the bladder, are also affected. The majority of patients with WS carry spelling mistakes (mutations) in the WFS1 gene, which is located on the short arm of chromosome 4 (4p16.1). This gene is highly expressed in the eye and in the brain, and it encodes for a protein located within a compartment of the cell known as the endoplasmic reticulum. For reasons that still remain unclear, WFS1 mutations preferentially affect RGCs, accounting for the prominent visual loss in this genetic disorder. There is currently no effective treatment to halt or slow disease progression and management remains supportive, including the provision of visual aids and occupational rehabilitation. Research into WS has been limited by its relative rarity and the inability to get access to eye and brain tissues from affected patients. However, major advances in our understanding of this disease have been made recently by making use of more accessible cells from patients, such as skin cells (fibroblasts), or animal models, such as mice and zebrafish. This review summarizes the mechanisms by which WFS1 mutations affect cells, impairing their function and eventually leading to their premature loss. The possible treatment strategies to block these pathways are also discussed, with a particular focus on drug repurposing (i.e., using drugs that are already approved for other diseases) and gene therapy (i.e., replacing or repairing the defective WFS1 gene).
Collapse
Affiliation(s)
- Ratnakar Mishra
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
| | - Benson S. Chen
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
| | - Prachi Richa
- Department of Physiology, Development and
Neuroscience, University of Cambridge, Cambridge, UK
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, ED Adrian Building, Robinson Way, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University
College London, London, UK
| |
Collapse
|
13
|
Clavé G, Vasseur JJ, Smietana M. The Sulfo-Click Reaction and Dual Labeling of Nucleosides. ACTA ACUST UNITED AC 2020; 83:e120. [PMID: 33238080 DOI: 10.1002/cpnc.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article contains detailed synthetic procedures for the implementation of the sulfo-click reaction to nucleoside derivatives. First, 3'-O-TBDMS-protected nucleosides are converted to their corresponding 4'-thioacid derivatives in three steps. Then, various conjugates are synthetized via a biocompatible and chemoselective coupling procedure using sulfonyl azide partners. Finally, to illustrate the potential of the sulfo-click reaction, a nucleoside bearing two orthogonal azido groups is synthesized and engaged in one-pot dual labeling through a sulfo-click/copper-catalyzed azide-alkyne cycloaddition (CuAAC) cascade. The high efficiency of the sulfo-click reaction as applied to nucleosides opens up new possibilities in the context of bioconjugation. © 2020 Wiley Periodicals LLC. Basic Protocol 1: General protocol for the synthesis of 4'-thioacid-nucleoside derivatives Basic Protocol 2: Implementation of the sulfo-click reaction Basic Protocol 3: Synthesis of 3'-azido-4'-(carboxamido)ethane-sulfonyl azide-3'-deoxythymidine Basic Protocol 4: Detailed synthetic procedure for one-pot double-click conjugations.
Collapse
|
14
|
Wang S, Han J, Xia J, Hu Y, Shi L, Ren A, Zhu J, Zhao M. Overexpression of nicotinamide mononucleotide adenylyltransferase (nmnat) increases the growth rate, Ca 2+ concentration and cellulase production in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:7079-7091. [PMID: 32632475 DOI: 10.1007/s00253-020-10763-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Identifying new and economical means to utilize diverse lignocellulosic biomass is an urgent task. Ganoderma lucidum is a well-known edible and medicinal basidiomycete with an excellent ability to degrade a wide range of cellulosic biomass, and its nutrient use efficiency is closely related to the activity of extracellular cellulase. Intracellular nicotinamide adenine dinucleotide (NAD+) biosynthesis is controlled in response to nutritional status, and NAD+ is an essential metabolite involved in diverse cellular processes. Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a common enzyme in three NAD+ synthesis pathways. In this study, a homologous gene of nmnat was cloned from G. lucidum and two G. lucidum overexpression strains, OE::nmnat4 and OE::nmnat19, were constructed using an Agrobacterium tumefaciens-mediated transformation method. The G. lucidum nmnat overexpression strains showed obviously increased colony growth on different carbon sources, and intracellular Ca2+ concentrations in the G. lucidum OE::nmnat4 and OE::nmnat19 strains were increased by 2.04- and 2.30-fold, respectively, compared with those in the wild-type (WT) strains. In the G. lucidum OE::nmnat4 and OE::nmnat19 strains, endo-β-glucanase (CMCase) activity increased by approximately 2.8- and 3-fold, while β-glucosidase (pNPGase) activity increased by approximately 1.9- and 2.1-fold, respectively, compared with the activity in the WT strains. Furthermore, overexpression of NAD+ synthesis pathways was found to elicit cellulase production by increasing the intracellular Ca2+ concentration. In summary, this study is the first to demonstrate that increased intracellular NAD+ contents through overexpression of the nmnat gene of NAD+ synthesis pathways may increase cellulase production by increasing intracellular Ca2+ concentrations in G. lucidum. KEY POINTS: • The concentration of NAD+influences cellulase production in G. lucidum. • The concentration of NAD+influences the intracellular Ca2+concentration in G. lucidum. • The concentration of NAD+influences cellulase production by eliciting a change in intracellular Ca2+in G. lucidum.
Collapse
Affiliation(s)
- Shengli Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiale Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|