1
|
Yang HW, Ju SP, Hsieh YT, Yang YC. Design single-stranded DNA aptamer of cluster of differentiation 47 protein by stochastic tunnelling-basin hopping-discrete molecular dynamics method. J Biomol Struct Dyn 2024; 42:3969-3982. [PMID: 37261868 DOI: 10.1080/07391102.2023.2217511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
The formation of the Cluster of Differentiation 47 (CD47, PDB code: 2JJT)/signal regulatory protein α (SIRPα) complex is very important as it protects healthy cells from immune clearance while promoting macrophage phagocytosis for tumour elimination. Although several antibodies have been developed for cancer therapy, new function-blocking aptamers are still under development. This study aims to design the aptamer AptCD47, which can block the formation of the CD47/SIRPα complex. This study employs the MARTINI coarse-grained (CG) force field and the stochastic tunnelling-basin hopping-discrete molecular dynamics (STUN-BH-DMD) method to identify the most stable AptCD47/CD47 complexes. Coarse-grained molecular dynamics (CGMD) simulations were used to obtain root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) analyses. The results demonstrate that the formation of AptCD47/CD47 complexes renders the CD47 structure more stable than the single CD47 molecule in a water environment. The minimum energy pathway (MEP) obtained by the nudged elastic band (NEB) method indicates that the binding processes of 5'-ATTCAATTCC-3' and 5'-AGTGCAATCT-3' to CD47 are barrierless, which is much lower than the binding barrier of SIRPα to CD47 of about 14.23 kcal/mol. Therefore, these two AptCD47/CD47 complexes can create a high spatial binding barrier for SIRPα, preventing the formation of a stable CD47/SIRPα complex. The proposed numerical process with the MARTINI CG force field can be used to design CD47 aptamers that efficiently block SIRPα from binding to CD47.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City, Taiwan
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Te Hsieh
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yung-Cheng Yang
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Guo Y, Chen X, Yu X, Wan J, Cao X. Prediction and validation of monoclonal antibodies separation in aqueous two-phase system using molecular dynamic simulation. J Chromatogr A 2023; 1694:463921. [PMID: 36940643 DOI: 10.1016/j.chroma.2023.463921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
In order to predict how mAbs partition in 20% ethylene oxide/80% propylene oxide (v/v) random copolymer (EO20PO80)/water aqueous two-phase system (ATPS), a molecular dynamic simulation model was developed using Gromacs and then validated by experiments. The ATPS was applied with seven kinds of salt, including buffer salt and strong dissociation salt that were commonly employed in the purification of protein. Na2SO4 was shown to have the best effects on lowering EO20PO80 content in the aqueous phase and enhancing recovery. The content of EO20PO80 in the sample solution was decreased to 0.62%±0.25% and the recovery of rituximab increased to 97.88%±0.95% by adding 300 mM Na2SO4 into back extraction ATPS. The viability determined by ELISA was 95.57% at the same time. A strategy for constructing a prediction model for the distribution of mAbs in ATPS was proposed in consideration of this finding. Partition of trastuzumab in ATPS was predicted by the model created using this method and the prediction result was further validated by experiments. The recovery of trastuzumab reached 95.63%±2.86% under the ideal extraction conditions suggested by the prediction model.
Collapse
Affiliation(s)
- Yibo Guo
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P.R. China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| |
Collapse
|
3
|
Mondeali M, Etemadi A, Barkhordari K, Mobini Kesheh M, Shavandi S, Bahavar A, Tabatabaie FH, Mahmoudi Gomari M, Modarressi MH. The role of S477N mutation in the molecular behavior of SARS-CoV-2 spike protein: An in-silico perspective. J Cell Biochem 2023; 124:308-319. [PMID: 36609701 DOI: 10.1002/jcb.30367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
The attachment of SARA-CoV-2 happens between ACE2 and the receptor binding domain (RBD) on the spike protein. Mutations in this domain can affect the binding affinity of the spike protein for ACE2. S477N, one of the most common mutations reported in the recent variants, is located in the RBD. Today's computational approaches in biology, especially during the SARS-CoV-2 pandemic, assist researchers in predicting a protein's behavior in contact with other proteins in more detail. In this study, we investigated the interactions of the S477N-hACE2 in silico to find the impact of this mutation on its binding affinity for ACE2 and immunity responses using dynamics simulation, protein-protein docking, and immunoinformatics methods. Our computational analysis revealed an increased binding affinity of N477 for ACE2. Four new hydrogen and hydrophobic bonds in the mutant RBD-ACE2 were formed (with S19 and Q24 of ACE2), which do not exist in the wild type. Also, the protein spike structure in this mutation was associated with an increase in stabilization and a decrease in its fluctuations at the atomic level. N477 mutation can be considered as the cause of increased escape from the immune system through MHC-II.
Collapse
Affiliation(s)
- Mozhgan Mondeali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Etemadi
- Medical Biotechnology Department, School of Advanced Technologies in MedicineSchool of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khabat Barkhordari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Shavandi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhang B, Liu J, Wen H, Jiang F, Wang E, Zhang T. Structural requirements and interaction mechanisms of ACE inhibitory peptides: molecular simulation and thermodynamics studies on LAPYK and its modified peptides. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Jena NR, Pant S, Srivastava HK. Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2. J Biomol Struct Dyn 2022; 40:6381-6397. [PMID: 33565387 PMCID: PMC7885727 DOI: 10.1080/07391102.2021.1883112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
The recent outbreak of the SARS-CoV-2 infection has affected the lives and economy of more than 200 countries. The unavailability of virus-specific drugs has created an opportunity to identify potential therapeutic agents that can control the rapid transmission of this pandemic. Here, the mechanisms of the inhibition of the RNA-dependent RNA polymerase (RdRp), responsible for the replication of the virus in host cells, are examined by different ligands, such as Remdesivir (RDV), Remdesivir monophosphate (RMP), and several artificially expanded genetic information systems (AEGISs) including their different sequences by employing molecular docking, MD simulations, and MM/GBSA techniques. It is found that the binding of RDV to RdRp may block the RNA binding site. However, RMP would acquire a partially flipped conformation and may allow the viral RNA to enter into the binding site. The internal dynamics of RNA and RdRp may help RMP to regain its original position, where it may inhibit the RNA-chain elongation reaction. Remarkably, AEGISs are found to obstruct the binding site of RNA. It is shown that dPdZ, a two-nucleotide sequence containing P and Z would bind to RdRp very strongly and may occupy the positions of two nucleotides in the RNA strand, thereby denying access of the substrate-binding site to the viral RNA. Thus, it is proposed that the AEGISs may act as novel therapeutic candidates against the SARS-CoV-2. However, in vivo evaluations of their potencies and toxicities are needed before using them against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, Madhya Pradesh, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati, Assam, India
| |
Collapse
|
6
|
Rostami N, Choupani E, Hernandez Y, Arab SS, Jazayeri SM, Gomari MM. SARS-CoV-2 spike evolutionary behaviors; simulation of N501Y mutation outcomes in terms of immunogenicity and structural characteristic. J Cell Biochem 2021; 123:417-430. [PMID: 34783057 PMCID: PMC8657535 DOI: 10.1002/jcb.30181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022]
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), a large number of mutations in its genome have been reported. Some of the mutations occur in noncoding regions without affecting the pathobiology of the virus, while mutations in coding regions are significant. One of the regions where a mutation can occur, affecting the function of the virus is at the receptor‐binding domain (RBD) of the spike protein. RBD interacts with angiotensin‐converting enzyme 2 (ACE2) and facilitates the entry of the virus into the host cells. There is a lot of focus on RBD mutations, especially the displacement of N501Y which is observed in the UK/Kent, South Africa, and Brazilian lineages of SARS‐CoV‐2. Our group utilizes computational biology approaches such as immunoinformatics, protein–protein interaction analysis, molecular dynamics, free energy computation, and tertiary structure analysis to disclose the consequences of N501Y mutation at the molecular level. Surprisingly, we discovered that this mutation reduces the immunogenicity of the spike protein; also, displacement of Asn with Tyr reduces protein compactness and significantly increases the stability of the spike protein and its affinity to ACE2. Moreover, following the N501Y mutation secondary structure and folding of the spike protein changed dramatically.
Collapse
Affiliation(s)
- Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaeren Hernandez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Seyed S Arab
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed M Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Abramenko N, Vellieux F, Tesařová P, Kejík Z, Kaplánek R, Lacina L, Dvořánková B, Rösel D, Brábek J, Tesař A, Jakubek M, Smetana K. Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences. Int J Mol Sci 2021; 22:6551. [PMID: 34207220 PMCID: PMC8233910 DOI: 10.3390/ijms22126551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
| | - Petra Tesařová
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic;
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniel Rösel
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Jan Brábek
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Adam Tesař
- Department of Neurology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic;
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| |
Collapse
|
8
|
Md Nayeem S, Sohail EM, Srihari NV, Indira P, Srinivasa Reddy M. Target SARS-CoV-2: theoretical exploration on clinical suitability of certain drugs. J Biomol Struct Dyn 2021; 40:8905-8912. [PMID: 33988066 PMCID: PMC8127163 DOI: 10.1080/07391102.2021.1924262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
We propose a unique theoretical methodology because of the global high priority rating to search for the repurposed drugs that outfit clinical suitability to SARS-CoV-2. The approach is based on the exploration of structural analysis, computation of biothermodynamics, interactions and the prediction of entropy sign successively via molecular dynamics. We tested this methodology for Favipiravir/Dolutegravir drugs on the apo form of SARS-CoV-2 main protease. This theoretical exploration not only suggested the presence of strong interactions between (SARS-CoV-2 + Favipiravir/Dolutegravir) but also emphasized the clinical suitability of Favipiravir over Dolutegravir to treat SARS-CoV-2 main protease. The supremacy of Favipiravir over Doultegravir is well supported by the results of global clinical trials on SARS-CoV-2 infection. Thus, this work will pave the way for incremental advancement towards future design and development of more specific inhibitors to treat SARS-CoV-2 infection in humans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sk. Md Nayeem
- Department of Physics, K.R.K. Govt. Degree College, Addanki, AP, India
| | | | - N. V. Srihari
- Department of Physics, K.R.K. Govt. Degree College, Addanki, AP, India
| | - P. Indira
- Department of Physics, K.R.K. Govt. Degree College, Addanki, AP, India
| | - M. Srinivasa Reddy
- Department of Chemistry, T.R.R. Govt. Degree College, Kandukur, AP, India
| |
Collapse
|