1
|
Kaspute G, Ramanavicius A, Prentice U. Natural drug delivery systems for the treatment of neurodegenerative diseases. Mol Biol Rep 2025; 52:217. [PMID: 39928236 DOI: 10.1007/s11033-025-10286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
Today, herbal drugs are prominent in the pharmaceutical industry due to their well-known therapeutic and side effects. Plant-based compounds often face limitations such as poor solubility, low bioavailability, and instability in physiological environments, restricting their therapeutic efficacy and delivery. Nanotechnology-based solutions, including nanoparticle formulations and advanced delivery systems like liposomes and transfersomes, address these issues by enhancing solubility, stability, bioavailability, and targeted delivery, thereby optimizing the therapeutic potential of phytoactive compounds. Neuroinflammation can be a cause of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, or amyotrophic lateral sclerosis. Consequently, there is a need for the optimal delivery of a pharmacological anti-inflammatory agents to the CNS. Thus, the non-invasive administration of a stable compound at a therapeutic concentration is needed to assure molecule crossing through the blood-brain barrier. Natural resources have more structural diversity and novelty than synthetic compounds, e.g. plant-derived drug products have higher molecular weights, incorporate more oxygen atoms, and are more complex. As a result, plant-derived products have unique features which can be used to effectively modulate neuroinflammation. Therefore, this review aims to identify herbal molecules capable of targeting neuroinflammation and present novel strategies for their efficient delivery.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
2
|
Feng S, Liu L, Cheng Y, Zhou M, Zhu H, Zhao X, Chen Z, Kan S, Fu X, Hu W, Zhu R. Icariin promotes functional recovery in rats after spinal cord injury by inhibiting YAP and regulating PPM1B ubiquitination to inhibiting the activation of reactive astrocytes. Front Pharmacol 2024; 15:1434652. [PMID: 39439899 PMCID: PMC11493691 DOI: 10.3389/fphar.2024.1434652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Objective The limited ability to regenerate axons after spinal cord injury (SCI) is influenced by factors such as astrocyte activation, reactive proliferation, and glial scar formation. The TGF-β/Smad (transforming growth factor-β/mothers against decapentaplegic homolog) pathway, associated with astrocytic scarring, plays a crucial role in recovery post-injury. This study aims to investigate how icariin (ICA) interacts with reactive astrocytes in the treatment of spinal cord injury. Methods A rat SCI model was constructed, and the recovery of motor function was observed after treatment with ICA.HE staining, LFB staining, immunofluorescence staining, and Western blotting were employed to assess ICA's ability to inhibit astrocyte proliferation in rats following spinal cord injury by modulating YAP, as well as to evaluate the reparative effects of ICA on the injured spinal cord tissue. Primary astrocytes were isolated and cultured. Immunoprecipitation-Western Blot (IP-WB) ubiquitination and cytoplasm-nuclear separation were employed to assess PPM1B ubiquitination and nuclear translocation. Results The CatWalk XT gait analysis, BBB (Basso, Beattie, and Bresnahan) score, electrophysiological measurements, HE staining, and LFB staining collectively demonstrated that ICA promotes motor function and tissue recovery following spinal cord injury in rats. Immunofluorescence staining and Western Blot analyses revealed that ICA inhibits astrocyte proliferation in rats post-spinal cord injury by suppressing YAP activity. Furthermore, the activation of YAP by XMU-MP-1 was shown to compromise the efficacy of ICA in these rats after spinal cord injury. Additional immunofluorescence staining and Western Blot experiments confirmed that ICA inhibits TGFβ1-induced astrocyte activation through the regulation of YAP. The knockdown of PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) in astrocytes was found to inhibit TGFβ signaling. Additionally, YAP was shown to regulate PPM1B ubiquitination and nuclear translocation through immunoprecipitation-Western blot analysis, along with the segregation of cytoplasm and nucleus. Conclusion Icariin promotes functional recovery in rats after spinal cord injury by inhibiting YAP and regulating PPM1B ubiquitination to inhibiting the activation of reactive astrocytes.
Collapse
Affiliation(s)
- Sa Feng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Linyan Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yuelin Cheng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Haoqiang Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xinyan Zhao
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Ziyu Chen
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
3
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Agircan D, Parlak TM, Tufan O, Demircioglu M, Dik B. Neuroprotective Effects of Bexarotene and Icariin in a Diabetic Rat Model. Cureus 2024; 16:e68238. [PMID: 39347352 PMCID: PMC11439453 DOI: 10.7759/cureus.68238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM), a chronic metabolic disorder affecting over 400 million people globally, is increasingly recognized for its detrimental impact on the central nervous system. T2DM is linked to neurodegenerative diseases like Alzheimer's and vascular dementia. This study investigates the neuroprotective effects of bexarotene and icariin in a T2DM rat model, focusing on brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and neurofilament-light chain (NfL) levels. Methods Before the study, rats underwent fasting blood glucose tests, lipid profile assessments, and general health evaluations, followed by a high-fat diet for two weeks and a single streptozotocin dose (35 mg/kg). Rats with fasting blood glucose levels ≥250 mg/dl were classified as diabetes mellitus (DM) and continued on the high-fat diet throughout the experiment. Forty-seven male Wistar Albino rats were divided into six groups: a healthy control group, a DM control group, a DM group treated with bexarotene, a DM group treated with icariin, and two DM groups treated with combinations of low and high doses of bexarotene and icariin. After the 45-day treatment, blood samples were collected under thiopental sodium anesthesia, with HbA1c (glycosylated hemoglobin) and hematological parameters analyzed within eight hours, and serum stored at -80°C for further analysis. The animals were then euthanized, and brain tissues were harvested, frozen, and stored at -80°C until further examination. Brain tissues were analyzed for BDNF, GFAP, and NfL levels using ELISA (enzyme-linked immunosorbent assay). For comparing multiple groups, the Kruskal-Wallis test was applied to nonparametric data, and one-way ANOVA was used for parametric data, followed by Bonferroni's post hoc test for pairwise comparisons. Statistical significance was determined with two-tailed tests at p < 0.05. Results Significant changes in GFAP levels were observed across groups (p < 0.001). The DM control group showed the highest GFAP levels, while treatment groups exhibited reductions. The DM control group also showed the highest BDNF levels, while treatment groups exhibited reductions. The DM control group showed the lowest NfL levels, while treatment groups exhibited increments. Conclusion This study highlights the neuroprotective potential of bexarotene and icariin in a diabetic rat model, evidenced by significant changes in GFAP levels. The lack of significant changes in BDNF and NfL suggests that longer study durations may be necessary to observe these effects. Future research should include extended study periods, larger sample sizes, varied dosages, and comprehensive behavioral assessments to better understand the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Dilek Agircan
- Department of Neurology, Faculty of Medicine, Harran University, Sanlıurfa, TUR
| | - Tugba Melike Parlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| | - Oznur Tufan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| | - Muhammed Demircioglu
- Department of Histology and Embryology, Institute of Health Sciences, Dicle University, Diyarbakir, TUR
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, TUR
| |
Collapse
|
5
|
Zhang DX, Jia SY, Xiao K, Zhang MM, Yu ZF, Liu JZ, Zhang W, Zhang LM, Xing BR, Zhou TT, Li XM, Zhao XC, An P. Icariin mitigates anxiety-like behaviors induced by hemorrhagic shock and resuscitation via inhibiting of astrocytic activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155507. [PMID: 38552430 DOI: 10.1016/j.phymed.2024.155507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, China
| | - Ke Xiao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ming-Ming Zhang
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhi-Fang Yu
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Bao-Rui Xing
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Li Y, Wei Z, Su L. Anti-aging effects of icariin and the underlying mechanisms: A mini-review. Aging Med (Milton) 2024; 7:90-95. [PMID: 38571677 PMCID: PMC10985774 DOI: 10.1002/agm2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 04/05/2024] Open
Abstract
Aging is an extremely intricate and progressive phenomenon that is implicated in many physiological and pathological conditions. Icariin (ICA) is the main active ingredient of Epimedium and has exhibited multiple bioactivities, such as anti-tumor, neuroprotective, antioxidant, anti-inflammatory, and anti-aging properties. ICA could extend healthspan in both invertebrate and vertebrate models. In this review, the roles of ICA in protection from declined reproductive function, neurodegeneration, osteoporosis, aging intestinal microecology, and senescence of cardiovascular system will be summarized. Furthermore, the underlying mechanisms of ICA-mediated anti-aging effects will be introduced. Finally, we will discuss some key aspects that constrain the usage of ICA in clinical practice and the corresponding strategies to solve these issues.
Collapse
Affiliation(s)
- Ying Li
- Department of HematologyChangchun Central HospitalChangchunChina
| | - Zhi‐Feng Wei
- Department of HematologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Hematology Precision MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Long Su
- Department of HematologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Hematology Precision MedicineThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
7
|
Huong NT, Son NT. Icaritin: A phytomolecule with enormous pharmacological values. PHYTOCHEMISTRY 2023:113772. [PMID: 37356700 DOI: 10.1016/j.phytochem.2023.113772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
8
|
Zheng L, Wu S, Jin H, Wu J, Wang X, Cao Y, Zhou Z, Jiang Y, Li L, Yang X, Shen Q, Guo S, Shen Y, Li C, Ji L. Molecular mechanisms and therapeutic potential of icariin in the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154890. [PMID: 37229892 DOI: 10.1016/j.phymed.2023.154890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Icariin (ICA) is the main active component of Epimedium, a traditional Chinese medicine (TCM), known to enhance cognitive function in Alzheimer's disease (AD). This study aims to investigate and summarize the mechanisms through which ICA treats AD. METHODS The PubMed and CNKI databases were utilized to review the advancements in ICA's role in AD prevention and treatment by analyzing literature published between January 2005 and April 2023. To further illustrate ICA's impact on AD development, tables, and images are included to summarize the relationships between various mechanisms. RESULTS The study reveals that ICA ameliorates cognitive deficits in AD model mice by modulating Aβ via multiple pathways, including BACE-1, NO/cGMP, Wnt/Ca2+, and PI3K/Akt signaling. ICA exhibits neuroprotective properties by inhibiting neuronal apoptosis through the suppression of ER stress in AD mice, potentially linked to NF-κB, MAPK, ERK, and PERK/Eif2α signaling pathways. Moreover, ICA may safeguard neurons by attenuating mitochondrial oxidative stress injury. ICA can also enhance learning, memory, and cognition by improving synaptic structure via regulation of the PSD-95 protein. Furthermore, ICA can mitigate neuroinflammation by inactivating microglial activity through the upregulation of PPARγ, TAK1/IKK/NF-κB, and JNK/p38 MAPK signaling pathways. CONCLUSION This study indicates that ICA possesses multiple beneficial effects in AD treatment. Through the integration of pharmacological and molecular biological research, ICA may emerge as a promising candidate to expedite the advancement of TCM in the clinical management of AD.
Collapse
Affiliation(s)
- Lingyan Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Sichen Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Haichao Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiaqi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaole Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yuxiao Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhihao Zhou
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yaona Jiang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linhong Li
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xinyue Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shunyuan Guo
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical, Hangzhou 310014, Zhejiang, China.
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Hangzhou 311106, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
9
|
Li M, Yu J, Deng H, Xie S, Li Q, Zhao Y, Yin S, Ji YF. Upregulation of glutamate transporter 1 by mTOR/Akt pathway in astrocyte culture during oxygen-glucose deprivation and reoxygenation. Exp Brain Res 2023; 241:201-209. [PMID: 36436003 DOI: 10.1007/s00221-022-06514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Astrocyte-specific glutamate transporter subtype 1 (GLT-1) plays an important role in influencing glutamate excitatory toxicity and preventing the death of excitatory toxic neurons. Although the mammalian target of rapamycin (mTOR)/protein kinase B(Akt)/nuclear factor kappa B signaling cascade is involved in the upregulation of astrocytic GLT-1 in oxygen-glucose deprivation (OGD), it is unclear whether the mTOR/Akt pathway is involved in astrocytic GLT-1 upregulation in OGD and reoxygenation (OGD/R). In this study, we found that the treatment of cultured astrocytes with rapamycin and triciribine led to the decreased astrocytes' protrusions, smaller nuclei, and an increased apoptotic rate. The inhibitors of mTOR complex 1 significantly increased the expression levels of phosphorylated Akt-Ser473 (p-Akt), phosphorylated Akt-Thr308(p-Akt), and GLT-1, while Akt-specific inhibitors blocked GLT-1 expression, suggesting that the mTOR/Akt pathway is involved in GLT-1 upregulation. We further demonstrated that astrocytes under OGD/R adapted to environmental changes through the mTOR/Akt pathway, mainly by altering cell morphology and apoptosis and upregulating the expression levels of p-Akt and GLT-1. Our results suggested that astrocytes may adapt to short-term ischemic-reperfusion injury by regulating cell morphology, apoptosis and GLT-1 upregulation.
Collapse
Affiliation(s)
- Mi Li
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
- Department of Neurology, Yilong County People's Hospital, Nanchong, Sichuan, People's Republic of China
| | - Jingmei Yu
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Huan Deng
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Shansha Xie
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Qiuling Li
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yuping Zhao
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Shubin Yin
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yi-Fei Ji
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Li XL, Wang L, He MC, Li WX, Zhang JL, Fu YF, Zhang Y. A clinical herbal prescription Gu-Shu-Kang capsule exerted beneficial effects on the musculoskeletal system of dexamethasone-treated mice by acting on tissue IGF-1 signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2098-2109. [PMID: 36269032 PMCID: PMC9590446 DOI: 10.1080/13880209.2022.2132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Gu-Shu-Kang (GSK) is a clinical traditional Chinese medicine prescription for the treatment of primary osteoporosis. OBJECTIVE This study investigates the protection of GSK against dexamethasone (Dex)-induced disturbance of musculoskeletal system in male mice and to identify the underlying mechanism. MATERIALS AND METHODS Male C57BL/6 mice in Dex-treated groups were orally administered (i.g.) with vehicle, low dose (0.38 g/kg), middle dose (0.76 g/kg), or high dose (1.52 g/kg) of GSK for 8 weeks. A control group was designed without any treatment. The quadriceps femoris, tibialis anterior and gastrocnemius were harvested. Molecular expression was determined by RT-PCR and immunoblotting. RESULTS Treatment with GSK enhanced weight-loaded swimming time (from 411.7 ± 58.4 s in Dex group to 771.4 ± 87.3 s in GSK-M) and grip strength (from 357.8 ± 23.9 g in Dex group to 880.3 ± 47.6 g in GSK-M). GSK produced a rise in cross-sectional area of myofibers and promoted a switching of glycolytic-to-oxidative myofiber. The administration with GSK affected expression of muscle regulatory factors shown by the down-regulation in MuRF-1 and atrogin-1 and the up-regulation in myogenic differentiation factor (MyoD) and myosin heavy chain (MHC). GSK stimulated tissue IGF-1 signalling pathway (IGF-1R/PI3K/Akt), not only in skeletal muscle but also in bone associated with the amelioration of trabecular bone mineral density and the improvement of osteogenesis. CONCLUSIONS These findings revealed the potential mechanisms involved in the beneficial effects of Gu-Shu-Kang on musculoskeletal system in mice with challenging to dexamethasone, and this prescription may have applications in management for muscle atrophy and osteoporosis triggered by glucocorticoid.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liang Wang
- Department of Geriatric, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Xiong Li
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Trauma, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Fang Fu
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ministry of Education, Key Laboratory of Theory and Therapy of Muscles and Bones, Shanghai, China
| |
Collapse
|
11
|
Chen Y, Peng F, Xing Z, Chen J, Peng C, Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022; 13:1006434. [PMID: 36353622 PMCID: PMC9638012 DOI: 10.3389/fimmu.2022.1006434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is the fundamental immune response against multiple factors in the central nervous system and is characterized by the production of inflammatory mediators, activated microglia and astrocytes, and the recruitment of innate and adaptive immune cells to inflammatory sites, that contributes to the pathological process of related brain diseases, such as Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids, as a species of important natural compounds, have been widely revealed to alleviate neuroinflammation by inhibiting the production of pro-inflammatory mediators, elevating the secretion of anti-inflammatory factors, and modulating the polarization of microglia and astrocyte, mainly via suppressing the activation of NLRP3 inflammasome, as well as NF-κB, MAPK, and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/β-Catenin, PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will provide the latest and comprehensive knowledge on the therapeutic benefits and mechanisms of natural flavonoids in neuroinflammation, and the natural flavonoids might be developed into food supplements or lead compounds for neuroinflammation-associated brain disorders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| |
Collapse
|
12
|
Icariin: A Potential Lipid Metabolism Regulator in Osteoarthritis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Icariin is a small molecule drug capable of treating osteoarthritis. Additionally, icariin is known to have an excellent ability to regulate lipid metabolism. A growing number of studies have demonstrated that lipid metabolism is related to the pathogenesis of osteoarthritis. Therefore, by regulating lipid metabolism, icariin may have a significant role in osteoarthritis. However, the molecular mechanism by which icariin regulates lipid metabolism in osteoarthritis is currently unknown. Understanding the molecular mechanism would be helpful in the treatment of osteoarthritis. Objective: This study aimed to explore the mechanism of icariin that regulated lipid metabolism in the treatment of osteoarthritis through a combination of molecular docking and network pharmacology. Methods: Firstly, potential targets for icariin were collected from the TCMSP database, Pharm Mapper, and Swiss Target Prediction Server. Targets for osteoarthritis and lipid metabolism were obtained in OMIM, DrugBank, and GeneCards databases. Common targets of icariin, osteoarthritis, and lipid metabolism were acquired by clusterProfiler R package software. We then constructed the drug-target-signaling pathway-disease network after performing GO and KEGG enrichment analyses of common targets. Finally, we performed molecular docking validation. To support our findings, a search of PubMed was performed to find relevant literature published within the last 5 years. Results: We obtained 12 targets that may be important in the regulation of lipid metabolism in osteoarthritis by icariin. Through PPI network analysis, it was determined that 5 core targets, including TNF, PTGS2, CCND1, MMP2, and ESR1, participated in this process. Molecular docking results showed that the icariin had a high affinity to the core target proteins. Relevant studies in the literature suggest that TNF, PTGS2, MMP2, and ESR1 are the core targets. Conclusion: Icariin is a potential modulator of lipid metabolism in osteoarthritis, and the molecular mechanism may be related to core targets such as TNF, PTGS2, MMP2, and ESR1.
Collapse
|
13
|
Zhou Y, Huang N, Li Y, Ba Z, Luo Y. Effect of icaritin on autophagy-related protein expression in TDP-43-transfected SH-SY5Y cells. PeerJ 2022; 10:e13703. [PMID: 35811810 PMCID: PMC9261921 DOI: 10.7717/peerj.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Objective To study the protective effect and mechanism of icaritin (ICT) in a SH-SY5Y cells with virus-loaded TAR DNA-binding domain protein 43(TDP-43) by examining the effect of ICT on the expression of autophagy-related proteins in TDP-43-infected SH-SY5Y cells. Methods A TDP-43-induced neuronal cell injury model was established by transfecting well-growing SH-SY5Y cells with virus loaded with the TDP-43 gene. The changes in cell viability were detected by the CCK-8 method. After successful transfection, the establishment of the model was verified by real-time quantitative PCR (qPCR) and Western blot methods. After the cells were subjected to drug intervention with ICT, the changes in the expression levels of TDP-43, cleaved Caspase-3, LC3 II/I, Beclin-1 and p62 were detected by Western blotting. Results After ICT intervention, it was found that compared with that of the TDP-43 group, the cell viability of the TDP-43+ICT group increased, the expression level of TDP-43 decreased, and the expression levels of the apoptotic protein cleaved Caspase-3, autophagy protein Beclin-1, and LC3-II/I decreased, while the expression level of the autophagy protein p62 increased. Conclusion ICT has a protective effect on the SH-SY5Y cell injury model transfected with TDP-43. This protective effect may be related to reducing the protein expression of TDP-43 and inhibiting autophagy.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Neurology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yuanyuan Li
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Zhisheng Ba
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
14
|
Tu S, Mao D, Shi M, Zhang H, Liu C, Li X, Zhao Y, Chen Y, Liu Y. Icaritin ameliorates extracellular microparticles‐induced inflammatory pre‐metastatic niche via modulating the
cGAS‐STING
signaling. Phytother Res 2022; 36:2127-2142. [PMID: 35257426 DOI: 10.1002/ptr.7433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Shumei Tu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Mengxin Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine Nanjing China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| |
Collapse
|