1
|
Wang X, Cui L, Wang Y, Zeng Z, Wang H, Tian L, Guo J, Chen Y. Mechanistic investigation of wogonin in delaying the progression of endothelial mesenchymal transition by targeting the TGF-β1 pathway in pulmonary hypertension. Eur J Pharmacol 2024; 978:176786. [PMID: 38942264 DOI: 10.1016/j.ejphar.2024.176786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, which endothelial-to-mesenchymal transition (EndMT) being its main progressive phase. Wogonin, a flavonoid extracted from the root of Scutellaria baicalensis Georgi, hinders the abnormal proliferation of cells and has been employed in the treatment of several cardiopulmonary diseases. This study was designed to investigate how wogonin affected EndMT during PH. Monocrotaline (MCT) was used to induce PH in rats. Binding capacity of TGF-β1 receptor to wogonin detected by molecular docking and molecular dynamics. EndMT model was established in pulmonary microvascular endothelial cells (PMVECs) by transforming growth factor beta-1 (TGF-β1). The result demonstrated that wogonin (20 mg/kg/day) attenuated right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular thickness in PH rats. EndMT in the pulmonary vascular was inhibited after wogonin treatment as evidenced by the restored expression of CD31 and decreased expression of α-SMA. Wogonin has strong affinity for both TGFBRI and TGFBRII, and has a better binding stability for TGFBRI. In TGF-β1-treated PMVECs, wogonin (0.3, 1, and 3 μM) exhibited significant inhibitory effects on this transformation process via down-regulating the expression of p-Smad2 and Snail, while up-regulating the expression of p-Smad1/5. Additionally, results of Western blot and fluorescence shown that the expression of α-SMA were decrease with increasing level of CD31 in PMVECs. In conclusion, our research showed that wogonin suppressed EndMT via the TGF-β1/Smad pathway which may lead to its alleviated effect on PH. Wogonin may be a promising drug against PH.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Xie O, Li SS, Luo Y, Wang L. [Protective effects of 2-methoxyestradiol against hypoxic pulmonary hypertension in neonatal rats]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:757-764. [PMID: 39014954 DOI: 10.7499/j.issn.1008-8830.2401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To investigate the protective effects of 2-methoxyestradiol (2ME) against hypoxic pulmonary hypertension (HPH) in neonatal rats. METHODS Ninety-six Wistar neonatal rats were randomly divided into a normoxia group, a hypoxia group, and a hypoxia + 2ME group, with each group further subdivided into 3-day, 7-day, 14-day, and 21-day subgroups, containing eight rats each. The hypoxia and hypoxia + 2ME groups received daily subcutaneous injections of saline and 2ME (240 μg/kg), respectively, while the normoxia group was raised in a normoxic environment with daily saline injections. Right ventricular systolic pressure (RVSP) was measured using the direct pressure method. Pulmonary vascular morphology was assessed using hematoxylin and eosin staining, with metrics including the percentage of medial thickness of small pulmonary arteries relative to the external diameter (MT%) and the cross-sectional area of the media of small pulmonary arteries relative to the total cross-sectional area (MA%). Immunohistochemistry was used to detect the expression levels of hypoxia-inducible factor-1α (HIF-1α) and proliferating cell nuclear antigen (PCNA) proteins, while real-time quantitative PCR was used to to assess HIF-1α and PCNA mRNA levels. RESULTS Compared to the normoxia group, the hypoxia and hypoxia + 2ME groups showed increased RVSP and upregulated HIF-1α and PCNA protein and mRNA expression levels at 3, 7, 14, and 21 days after hypoxia (P<0.05). Furthermore, at 7, 14, and 21 days after hypoxia, the hypoxia group showed increased MT% and MA% (P<0.05). In comparison to the hypoxia group, the hypoxia + 2ME group exhibited reduced RVSP and downregulated HIF-1α and PCNA protein and mRNA expression levels, along with decreased MT% and MA% at 7, 14, and 21 days after hypoxia (P<0.05). CONCLUSIONS 2ME may protect against HPH in neonatal rats by inhibiting the expression of HIF-1α and PCNA and reducing pulmonary vascular remodeling. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 757-764.
Collapse
Affiliation(s)
- Ou Xie
- Department of Neonatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Shan-Shan Li
- Department of Neonatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yang Luo
- Department of Neonatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | | |
Collapse
|
3
|
Duler L, Visser L, Nguyen N, Johnson LR, Stern JA, Li RHL. Platelet hyperresponsiveness and increased platelet-neutrophil aggregates in dogs with myxomatous mitral valve disease and pulmonary hypertension. J Vet Intern Med 2024; 38:2052-2063. [PMID: 38773707 PMCID: PMC11256165 DOI: 10.1111/jvim.17067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/25/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) in dogs with myxomatous mitral valve disease (MMVD) is caused by increased pulmonary venous pressure. Thrombosis, vascular remodeling, and vasoconstriction mediated by platelets could exacerbate PH. HYPOTHESIS Dogs with PH will exhibit a hypercoagulable state, characterized by increased platelet activation, platelet-leukocyte, and platelet-neutrophil aggregate formation. ANIMALS Eleven dogs (≥3.5 kg) diagnosed with MMVD and PH and 10 dogs with MMVD lacking PH. METHODS Prospective cohort ex vivo study. All dogs underwent echocardiographic examination, CBC, 3-view thoracic radiographs, and heartworm antigen testing. Severity of PH and MMVD were assessed by echocardiography. Viscoelastic monitoring of coagulation was assessed using thromboelastography (TEG). Platelet activation and platelet-leukocyte/platelet-neutrophil interactions were assessed using flow cytometry. Plasma serotonin concentrations were measured by ELISA. RESULTS Unstimulated platelets from dogs with MMVD and PH expressed more surface P-selectin than MMVD controls (P = .03). Platelets from dogs with MMVD and PH had persistent activation in response to agonists. The number of platelet-leukocyte aggregates was higher in dogs with MMVD and PH compared with MMVD controls (P = .01). Ex vivo stimulation of whole blood resulted in higher numbers of platelet-neutrophil aggregates in dogs with MMVD and PH (P = .01). Assessment of hypercoagulability based on TEG or plasma serotonin concentrations did not differ between groups. CONCLUSION AND CLINICAL IMPORTANCE Platelet hyperresponsiveness and increased platelet-neutrophil interaction occur in dogs with MMVD and PH, suggesting that platelets play a role of in the pathogenesis of PH. Clinical benefits of antiplatelet drugs in dogs with MMVD and PH require further investigation.
Collapse
Affiliation(s)
- Laetitia Duler
- William R. Pritchard Veterinary Medicine Teaching Hospital, School of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Lance Visser
- Department of Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Colorado State UniversityFort CollinsColoradoUSA
| | - Nghi Nguyen
- Department of Surgical and Radiological ScienceSchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Lynelle R. Johnson
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Joshua A. Stern
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ronald H. L. Li
- Department of Surgical and Radiological ScienceSchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| |
Collapse
|
4
|
Miao H, Hui H, Fan W, Lin Y, Li H, Li D, Luo M, Qiu F, Jiang B, Zhang Y. Overexpressed pigment epithelium-derived factor alleviates pulmonary hypertension in two rat models induced by monocrotaline and SU5416/hypoxia. Biomed Pharmacother 2024; 172:116303. [PMID: 38377738 DOI: 10.1016/j.biopha.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by vascular remodeling and is associated with endothelial-to-mesenchymal transition (EndoMT). The pigment epithelium-derived factor (PEDF), a secretory protein widely distributed in multiple organs, has been shown to demonstrate anti-EndoMT activity in cardiovascular diseases. In the present study, the role of PEDF in PH was investigated. METHODS For PEDF overexpression, Sprague Dawley rats were infected with an adeno-associated virus through injection via the internal jugular vein. To establish PH models, the animals were subjected to monocrotaline or Sugen/hypoxia. Four weeks later, pulmonary artery angiography was performed, and hemodynamic parameters, right ventricular function, and vascular remodeling were evaluated. EndoMT and cell proliferation in the pulmonary arteries were assessed via immunofluorescence staining. Moreover, pulmonary artery endothelial cells (PAECs) isolated from experimental PH rats were cultured to investigate the underlying molecular mechanisms involved. RESULTS PEDF expression was significantly downregulated in PAECs from PH patients and PH model rats. Overexpressed PEDF alleviated the development of PH by improving pulmonary artery morphology and perfusion, reducing pulmonary artery pressure, improving right ventricular function, and alleviating vascular remodeling. PEDF inhibits EndoMT and reduces excessive PAEC proliferation. Moreover, PEDF overexpression reduced EndoMT in cultured PAECs by competitively inhibiting the binding of wnt to LRP6 and downregulating phosphorylation at the 1490 site of LRP6. CONCLUSIONS Our findings suggest that PEDF may be a potential therapeutic target for PH. We also found that PEDF can inhibit EndoMT in PAECs and may exert these effects by inhibiting the Wnt/LRP6/β-catenin pathway.
Collapse
Affiliation(s)
- Haoran Miao
- Department of Thoracic Cardiovascular Surgery, China
| | - Hongliang Hui
- Department of Thoracic Cardiovascular Surgery, China
| | - Wenbin Fan
- Department of Thoracic Cardiovascular Surgery, China
| | - Yangui Lin
- Department of Thoracic Cardiovascular Surgery, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, China
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, China.
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, China.
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, China.
| |
Collapse
|
5
|
Jiang HX, Wang XD, Wang HX, Liu T. Baicalin attenuates pulmonary vascular remodeling by inhibiting calpain-1 mediated endothelial-to-mesenchymal transition. Heliyon 2023; 9:e23076. [PMID: 38144352 PMCID: PMC10746466 DOI: 10.1016/j.heliyon.2023.e23076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Background Previous studies have demonstrated the beneficial effect of baicalin on pulmonary arterial hypertension (PAH), but the mechanism is unclear. Aim The aim of the present study was to evaluate the effect of baicalin on pulmonary vascular remodeling (PVR) with a focus on calpain-1-mediated endothelial-to-mesenchymal transition (EndMT). Methods PAH was induced by intraperitoneal injection of monocrotaline (MCT) in rats and hypoxia in calpain-1 gene knockout (Capn1-/-) and wild-type C57BL/6 mice. An in vitro PVR model was established in PASMCs and HPAECs. Results The data showed that baicalin treatment and calpain-1 inhibition alleviated MCT and hypoxia-induced increases in right ventricular systolic pressure (RVSP), prevented right ventricle hypertrophy and PVR, and attenuated cardiopulmonary fibrosis. Moreover, baicalin ameliorated PAH-induced EndMT, as evidenced by the suppressed expression of mesenchymal markers vimentin, and α-SMA and restored expression of endothelial markers CD31, and VE-cadherin. In vitro studies showed that baicalin treatment blocked TGF-β1-induced EndMT in HPAECs and abolished hypoxia-induced PASMC proliferation and migration. All the beneficial effects of baicalin on PVR in vitro and in vivo were accompanied by suppressed calpain-1 expression. Further study demonstrated that baicalin treatment and calpain-1 inhibition inhibited the enhanced expression of PI3K and p-AKT both in vitro and in vivo. Conclusions In conclusion, baicalin treatment attenuates PVR by inhibiting calpain-1 and PI3K/Akt-mediated EndMT.
Collapse
Affiliation(s)
- He-xi Jiang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiao-di Wang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, 121001, China
| | - Hong-xin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
6
|
Zhang W, Li X, Li M, He H, Yang C, Wang M, Liu D, Zhang L, Shu C. Empagliflozin inhibits neointimal hyperplasia through attenuating endothelial-to-mesenchymal transition via TAK-1/NF-κB pathway. Eur J Pharmacol 2023:175826. [PMID: 37321472 DOI: 10.1016/j.ejphar.2023.175826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To investigate whether empagliflozin could prevent injury-induced vascular neointimal hyperplasia and to further explore its mechanism. METHODS Male C57BL/6J mice were divided into two groups with or without the empagliflozin treatment, and carotid ligation injury was performed to induce neointimal hyperplasia. The injured carotid arteries were collected for Western blotting (WB), histology and immunofluorescence analysis after four weeks. The inflammatory responses were analyzed by qRT-PCR to detect the inflammatory gene mRNA expression. To further explore its mechanism, HUVECs were treated with TGFβ-1 to induce EndMT followed by empagliflozin or vehicle treatment in vitro. A23187 (Calcimycin), an agonist of NF-κB signaling was used in the experiment. RESULTS The wall thickness and the neointima area was significantly reduced in the empagliflozin treatment group on day 28 after artery ligation. The Ki-67 positive cells were 28.33 ± 12.66% and 48.83 ± 10.41% in the empagliflozin-treated group and control group, respectively (P < 0.05). The mRNA expression levels of the inflammatory genes and inflammatory cells were decreased in the empagliflozin treatment group, as well as the MMP2 and MMP9. Meanwhile, empagliflozin can significantly reduce the migratory ability of inflammatory-treated HUVECs. The CD31 was increased in the TGFβ1+empagliflozin group, whereas the FSP-1, phosphorylation of TAK-1 (p-TAK-1) and phosphorylation of NF-κB (p- NF-κB) expression level were decreased, compared to the control group without empagliflozin treatment. However, the expression level of FSP-1 and p-NF-κB were reversed after co-treatment with A23187, whereas the (p-TAK-1 expression level was without any significant difference. CONCLUSION Empagliflozin inhibits the inflammation-induced EndMT via the TAK-1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weichang Zhang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Xin Li
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Ming Li
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Hao He
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Chenzi Yang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Mo Wang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Dingxiao Liu
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Lei Zhang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Chang Shu
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
7
|
Liu Q, Dong S, Zhou X, Zhao Y, Dong B, Shen J, Yang K, Li L, Zhu D. Effects of Long-Term Intervention with Losartan, Aspirin and Atorvastatin on Vascular Remodeling in Juvenile Spontaneously Hypertensive Rats. Molecules 2023; 28:molecules28041844. [PMID: 36838830 PMCID: PMC9965824 DOI: 10.3390/molecules28041844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Hypertension in adolescents is associated with adverse cardiac and vascular events. In addition to lowering blood pressure, it is not clear whether pharmacological therapy in early life can improve vascular remodeling. This study aimed to evaluate the effects of long-term administration of losartan, aspirin, and atorvastatin on vascular remodeling in juvenile spontaneously hypertensive rats (SHRs). Losartan, aspirin, and atorvastatin were administered via gavage at doses of 20, 10, and 10 mg/kg/day, respectively, on SHRs aged 6-22 weeks. Paraffin sections of the blood vessels were stained with hematoxylin-eosin (H&E) and Sirius Red to evaluate the changes in the vascular structure and the accumulation of different types of collagen. The plasma levels of renin, angiotensin II (Ang II), aldosterone (ALD), endothelin-1 (ET-1), interleukin-6 (IL-6), and neutrophil elastase (NE) were determined using ELISA kits. After the 16-week treatment with losartan, aspirin, and atorvastatin, the wall thickness of the thoracic aorta and carotid artery decreased. The integrity of the elastic fibers in the tunica media was maintained in an orderly manner, and collagen deposition in the adventitia was retarded. The plasma levels of renin, ALD, ET-1, IL-6, and NE in the SHRs also decreased. These findings suggest that losartan, aspirin, and atorvastatin could improve vascular remodeling beyond their antihypertensive, anti-inflammatory, and lipid-lowering effects. Many aspects of the protection provided by pharmacological therapy are important for the prevention of cardiovascular diseases in adults and older adults.
Collapse
Affiliation(s)
- Qi Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Shuai Dong
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xue Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yubo Zhao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kang Yang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Linsen Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Correspondence: (L.L.); (D.Z.); Tel.: +86-158-1089-2058 (D.Z.)
| | - Dan Zhu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Correspondence: (L.L.); (D.Z.); Tel.: +86-158-1089-2058 (D.Z.)
| |
Collapse
|
8
|
Abstract
The endothelium is one of the largest organ systems in the body, and data continue to emerge regarding the importance of endothelial cell (EC) dysfunction in vascular aging and a range of cardiovascular diseases (CVDs). Over the last two decades and as a process intimately related to EC dysfunction, an increasing number of studies have also implicated endothelial to mesenchymal transition (EndMT) as a potentially disease-causal pathobiologic process that is involved in a multitude of differing CVDs. However, EndMT is also involved in physiologic processes (e.g., cardiac development), and transient EndMT may contribute to vascular regeneration in certain contexts. Given that EndMT involves a major alteration in the EC-specific molecular program, and that it potentially contributes to CVD pathobiology, the clinical translation opportunities are significant, but further molecular and translational research is needed to see these opportunities realized.
Collapse
Affiliation(s)
- Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; .,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Vascular peroxidase 1 promotes phenotypic transformation of pulmonary artery smooth muscle cells via ERK pathway in hypoxia-induced pulmonary hypertensive rats. Life Sci 2022; 307:120910. [PMID: 36029851 DOI: 10.1016/j.lfs.2022.120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
AIMS Vascular peroxidase 1 (VPO1) plays an important role in mediation of vascular remodeling with pulmonary arterial hypertension (PAH). This study aims to determine whether VPO1 can promote phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanisms. MAIN METHODS Sprague-Dawley (SD) rats were exposed to 10 % O2 for 21 days to establish the model of vascular remodeling in pulmonary arterial hypertension. PASMCs were incubated with 3 % O2 for 48 h to induce phenotypic transformation. Western blot was performed to detect the expressions of target proteins. The 5-ethynyl-2'-deoxyuridine (EdU) assay was conducted to measure the proliferation of PASMCs. KEY FINDINGS In the rats exposed to hypoxia, there were increases in right ventricular systolic pressure, pulmonary vascular remodeling and phenotypic transformation of PASMCs (the down-regulated contractile proteins of α-smooth muscle actin, smooth muscle 22α while the up-regulated synthetic proteins of osteopontin, cyclinD1), accompanied by up-regulation of VPO1, increase of hypochlorous acid (HOCl) production and elevation of the phosphorylation of ERK. In the cultured PASMCs exposed to hypoxia, similar results were achieved but they were reversed by VPO1 small interfering RNA (VPO1 siRNA) or HOCl inhibitor. Replacement of hypoxia with NaOCl could induce PASMCs phenotypic transformation and activate the ERK signaling. Furthermore, ERK inhibitor (PD98059) could also attenuate hypoxia-induced PASMCs phenotypic transformation. SIGNIFICANCE VPO1 play a pivotal role in promotion of phenotypic transformation of PASMCs under hypoxic condition through activation of VPO1/HOCl/ERK pathway. It might serve as a potential target for prevention of pulmonary vascular remodeling.
Collapse
|
10
|
Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother 2022; 151:113191. [PMID: 35643068 DOI: 10.1016/j.biopha.2022.113191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.
Collapse
|
11
|
Zhu T, Wang X, Zheng Z, Quan J, Liu Y, Wang Y, Liu T, Liu X, Wang M, Zhang Z. ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells. J Cardiovasc Pharmacol 2022; 79:235-243. [PMID: 34694243 DOI: 10.1097/fjc.0000000000001156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT ZIP12, a plasmalemmal zinc transporter, reportedly promotes pulmonary vascular remodeling (PVR) by enhancing proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the mechanisms of ZIP12 facilitating PASMCs proliferation remain incompletely appreciated. It has been acknowledged that proliferation-predisposing phenotypic switching of PASMCs can lead to PVR. Given that hypoxia triggers phenotypic switching of PASMCs and ZIP12 mediates PVR, this study aims to explore whether ZIP12-mediated phenotypic switching of PASMCs contributes to hypoxia-induced PVR. Rats were exposed to hypoxia (10% O2) for 3 weeks to induce PVR, and primary rat PASMCs were cultured under hypoxic condition (3% O2) for 48 hours to induce proliferation. Immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and Western blot analysis were performed to detect the expression of target mRNAs and proteins. EdU incorporation and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay were conducted to measure the proliferation of PASMCs. Hypoxia upregulated ZIP12 expression (both mRNA and protein) in pulmonary arteries and PASMCs. Knockdown of ZIP12 inhibited phenotypic switching of PASMCs induced by hypoxia. We propose that HIF-1α/ZIP12/pERK pathway could represent a novel mechanism underlying hypoxia-induced phenotypic switching of PASMCs. Therapeutic targeting of ZIP12 could be exploited to treat PVR.
Collapse
Affiliation(s)
- Tiantian Zhu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuan Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| | - Zijie Zheng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| | - Jinping Quan
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuhao Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuting Wang
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianheng Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mi Wang
- The Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| |
Collapse
|
12
|
Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/LOX-1 signaling-impelled intercellular communication. Cell Signal 2021; 87:110149. [PMID: 34520855 DOI: 10.1016/j.cellsig.2021.110149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022]
Abstract
Continuous recruitment and inappropriate activation of platelets in pulmonary arteries contribute to pulmonary vascular remodeling in pulmonary hypertension (PH). Our previous study has demonstrated that lectin like oxidized low-density lipoprotein receptor-1 (LOX-1) regulates the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Phosphatidylserine exposed on the surface of activated platelets is a ligand for LOX-1. However, whether hypoxia-activated platelets stimulate the proliferation and migration of PASMCs by phosphatidylserine/LOX-1 signaling-impelled intercellular communication remains unclear. The present study found that rats treated with hypoxia (10% O2) for 21 days revealed PH with the activation of platelets and the recruitment of platelets in pulmonary arteries, and LOX-1 knockout inhibited hypoxia-induced PH and platelets activation. Notably, co-incubation of PASMCs with hypoxic PH rats-derived platelets up-regulated LOX-1 expression in PASMCs leading to the proliferation and migration of PASMCs, which was inhibited by the phosphatidylserine inhibitor annexin V or the LOX-1 neutralizing antibody. LOX-1 knockout led to decreased proliferation and migration of PASMCs stimulated by hypoxia-activated platelets. In rats, hypoxia up-regulated the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and the expression of Pim-1 in pulmonary arteries. Hypoxia-activated platelets also up-regulated the phosphorylation of Stat3 and the expression of Pim-1 in PASMCs, which was inhibited by annexin V, the LOX-1 neutralizing antibody, the protein kinase C inhibitor and LOX-1 knockout. In conclusion, we for the first time demonstrated that hypoxia-activated platelets stimulated the proliferation and migration of PASMCs by phosphatidylserine/LOX-1/PKC/Stat3/Pim-1 signaling-impelled intercellular communication, thereby potentially contributing to hypoxic pulmonary vascular remodeling.
Collapse
|