1
|
Sun J, Wang X, Xu T, Ren M, Gao M, Lin H. Quercetin antagonizes apoptosis, autophagy and immune dysfunction induced by di(2-ethylhexyl) phthalate via ROS/ASK1/JNK pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109991. [PMID: 39103134 DOI: 10.1016/j.cbpc.2024.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that can damage various organizations and physiques through oxidative stress. Quercetin (Que) is a rich polyphenol flavonoid with good anti-inflammatory and antioxidant effects. However, the protection mechanism of Que against DEHP exposure-induced IPEC-J2 cell injury and the implication of autophagy, apoptosis and immunity are still unclear. In this experiment, we looked into the toxicity regime of DEHP exposure on IPEC-J2 cells and the antagonistic function of Que on DEHP. In the experiment, 135 μM DEHP and/or 80 μM Que were used to treat the IPEC-J2 cells for 24h. Experiments indicated that DEHP exposure can cause increased reactive oxygen species (ROS) levels leading to oxidative stress, decreased CAT, T-AOC and GSH-Px activities, increased MDA and H2O2 accumulation, activated the ASK1/JNK signalling pathway, and further increases in the levels of apoptosis markers Bax, Caspase3, Caspase9, and Cyt-c, while reduced the Bcl-2 expression. DEHP also increased the expression of genes linked to autophagy (ATG5, Beclin1, LC3), while decreasing the expression of P62. Additionally, DEHP exposure led to elevated levels of IL1-β, IL-6, MCP-1, and TNF expression. When exposed to Que alone, there were no significant changes in cellular oxidative stress level, ASK1/JNK signalling pathway expression level, apoptosis, autophagy and cellular immune function. The combination of DEHP and Que treatment remarkably decreased the proportion of autophagy and apoptosis, and recovered cellular immunity. In summary, Que can attenuate DEHP-induced apoptosis and autophagy in IPEC-J2 cells by regulating the ROS/ASK1/JNK signalling pathway and improving the immune dysfunction of IPEC-J2 cells.
Collapse
Affiliation(s)
- Jiatong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
4
|
Wang J, Li Y, Li L, Liang H, Ye H, Kang P, Li Z, Yu Y, Gao Q. Effect of NLRP3 gene knockdown on pyroptosis and ferroptosis in diabetic cardiomyopathy injury. BMC Cardiovasc Disord 2024; 24:351. [PMID: 38987672 PMCID: PMC11234732 DOI: 10.1186/s12872-024-04010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic disease caused by diabetes mellitus, which is recognized as a worldwide challenging disease. This study aimed to investigate the role and the potential mechanism of knocking down the NACHT-, LRR- and PYD domains-containing protein 3 (NLRP3), an inflammasome associated with onset and progression of various diseases, on high glucose or diabetes -induced cardiac cells pyroptosis and ferroptosis, two regulated non-necrosis cell death modalities discovered recent years. In the present study, both in vivo and in vitro studies were conducted simultaneously. Diabetic rats were induced by 55 mg/kg intraperitoneal injection of streptozotocin (STZ). Following the intraperitoneal injection of MCC950 (10 mg/kg), On the other hand, the DCM model in H9C2 cardiac cells was simulated with 35 mmol/L glucose and a short hairpin RNA vector of NLRP3 were transfected to cells. The results showed that in vivo study, myocardial fibers were loosely arranged and showed inflammatory cell infiltration, mitochondrial cristae were broken and the GSDMD-NT expression was found notably increased in the DM group, while the protein expressions of xCT and GPX4 was significantly decreased, both of which were reversed by MCC950. High glucose reduced the cell viability and ATP level in vitro, accompanied by an increase in LDH release. All of the above indicators were reversed after NLRP3 knockdown compared with the HG treated alone. Moreover, the protein expressions of pyroptosis- and ferroptosis-related fators were significantly decreased or increased, consistent with the results shown by immunofluorescence. Furthermore, the protective effects of NLRP3 knockdown against HG were reversed following the mtROS agonist rotenone (ROT) treatment. In conclusion, inhibition of NLRP3 suppressed DM-induced myocardial injury. Promotion of mitochondrial ROS abolished the protective effect of knockdown NLRP3, and induced the happening of pyroptosis and ferroptosis. These findings may present a novel therapeutic underlying mechanism for clinical diabetes-induced myocardial injury treatment.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Anatomy, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Yuping Li
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Lu Li
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Huan Liang
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Department of Graduate Studies, Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, P.R. China
| | - Hongwei Ye
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Pinfang Kang
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, P.R. China
| | - Zhenghong Li
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Ying Yu
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China
| | - Qin Gao
- Department of Physiology, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China.
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu, 233000, Anhui, P.R. China.
| |
Collapse
|
5
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Targeting MAPK-ERK/JNK pathway: A potential intervention mechanism of myocardial fibrosis in heart failure. Biomed Pharmacother 2024; 173:116413. [PMID: 38461687 DOI: 10.1016/j.biopha.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
6
|
Park YJ, Gil TY, Jin BR, Cha YY, An HJ. Apocynin alleviates weight gain and obesity-induced adipose tissue inflammation in high-fat diet-fed C57BL/6 mice. Phytother Res 2023; 37:3481-3494. [PMID: 37194916 DOI: 10.1002/ptr.7823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/18/2023]
Abstract
Obesity involves chronic low-grade inflammation within adipose tissue. Apocynin (APO) is a therapeutic agent for the treatment of inflammatory diseases. Therefore, the present study aimed to investigate whether APO can reduce weight gain and obesity-induced adipose tissue inflammation. C57BL/6 mice were administered APO or orlistat (Orli) as a positive control with a high-fat diet (HFD) for 12 weeks. Lipopolysaccharide-stimulated 3T3-L1 adipocytes were used for the in vitro study. Our results showed a significantly lower white adipose tissue (WAT) mass index in 10 mg/kg APO-treated mice than in 20 mg/kg Orli-treated mice. Moreover, the protein expression of adipose triglyceride lipase, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and peroxisome proliferator-activated receptor γ was reversed in the WAT of 10 mg/kg APO-treated mice. Furthermore, APO reduced the expression of the macrophage marker F4/80, decreased the mRNA levels of tumor necrosis factor-α and monocyte chemoattractant protein-1, and increased the mRNA levels of interleukin-10 in WAT. APO decreased the phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p65 in vivo and in vitro. Notably, APO had a stronger effect on the amelioration of adipose tissue inflammation than Orli did. Our findings lay the foundation for research on the use of APO as an agent to ameliorate weight gain and obesity-induced inflammatory diseases.
Collapse
Affiliation(s)
- Yea-Jin Park
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Young Gil
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yun-Yeop Cha
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, Republic of Korea
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Chen L, Qin Z, Ruan ZB. Hyperoside alleviates doxorubicin-induced myocardial cells apoptosis by inhibiting the apoptosis signal-regulating kinase 1/p38 pathway. PeerJ 2023; 11:e15315. [PMID: 37220525 PMCID: PMC10200097 DOI: 10.7717/peerj.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
Background Cardiotoxicity is a side effect of the anthracycline broad-spectrum anti-tumor agent, doxorubicin (DOX). Hyperoside, a flavonoid glycoside extracted from many herbs, has anti-apoptotic and anticancer properties. However, its impact on the alleviation of DOX-induced apoptosis in cardiomyocytes remains elusive. Methods The HL-1 cell line was treated with 100 µ M hyperoside for 1 h prior to treatment with 100 µ M hyperoside and 1 µ M DOX for 24 h. The cell counting kit-8 (CCK-8) assay was used to detect cell viability; DCFH-DA fluorescent probe was used to detect (reactive oxygen species) ROS; biochemical methods were used to detect the activity of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA); the degree of apoptosis following DOX insult was assessed using immunofluorescence staining and terminal deoxynucleotidyl transferase mediated deoxy uridine triphosphate nick end labeling (TUNEL) assay; the change in protein expression of apoptosis signal-regulating kinase 1 (ASK1), p38, and apoptosis markers was determined using western blot. Results Hyperoside ameliorated DOX-induced oxidative stress in HL-1 cells, up-regulated GSH, SOD and CAT activity, reduced ROS production and inhibited MDA overproduction. Moreover, in addition to promoting HL-1 cell apoptosis, DOX administration also increased B-cell lymphoma (Bcl)-2-associated X-protein and cleaved caspase-3 protein levels and decreased Bcl-2 protein level. Hyperoside therapy, however, significantly reversed the impact of DOX on the cardiomyocytes. Mechanically, DOX treatment increased the phosphorylation of the ASK1/p38 axis whereas hyperoside treatment attenuated those changes. In a further step, hyperoside synergizes with DOX to kill MDA-MB-231 cells. Conclusions Hyperoside protects HL-1 cells from DOX-induced cardiotoxicity by inhibiting the ASK1/p38 signaling pathway. Meanwhile, hyperoside maintained the cytotoxicity of DOX in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Lingxia Chen
- Department of Cardiology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Zhi Qin
- Department of Cardiology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Zhong-bao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
8
|
Miao R, Wang L, Chen Z, Ge S, Li L, Zhang K, Chen Y, Guo W, Duan X, Zhu M, Zhao G, Lin F. Advances in the study of nicotinamide adenine dinucleotide phosphate oxidase in myocardial remodeling. Front Cardiovasc Med 2022; 9:1000578. [PMID: 36407440 PMCID: PMC9669076 DOI: 10.3389/fcvm.2022.1000578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Myocardial remodeling is a key pathophysiological basis of heart failure, which seriously threatens human health and causes a severe economic burden worldwide. During chronic stress, the heart undergoes myocardial remodeling, mainly manifested by cardiomyocyte hypertrophy, apoptosis, interstitial fibrosis, chamber enlargement, and cardiac dysfunction. The NADPH oxidase family (NOXs) are multisubunit transmembrane enzyme complexes involved in the generation of redox signals. Studies have shown that NOXs are highly expressed in the heart and are involved in the pathological development process of myocardial remodeling, which influences the development of heart failure. This review summarizes the progress of research on the pathophysiological processes related to the regulation of myocardial remodeling by NOXs, suggesting that NOXs-dependent regulatory mechanisms of myocardial remodeling are promising new therapeutic targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Runran Miao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Libo Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhigang Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqi Ge
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Li Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Kai Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Yingen Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Wenjing Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Xulei Duan
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Mingyang Zhu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Li H, Yang Q, Huang Z, Liang C, Zhang DH, Shi HT, Du JQ, Du BB, Zhang YZ. Dual-specificity phosphatase 12 attenuates oxidative stress injury and apoptosis in diabetic cardiomyopathy via the ASK1-JNK/p38 signaling pathway. Free Radic Biol Med 2022; 192:13-24. [PMID: 36108935 DOI: 10.1016/j.freeradbiomed.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Diabetic cardiomyopathy (DCM) is ventricular dysfunction that occurs in patients with diabetes mellitus (DM), independent of recognized risk factors, such as coronary artery disease, hypertension, and valvular heart disease. Dual-specificity phosphatase 12 (DUSP12) is a dual-specificity phosphatase expressed in all tissues. Genome-wide linkage studies have found an association between DUSP12 and type 2 diabetes (T2D). However, the role of DUSP12 in DCM remains largely unknown. Ubiquitously expressed DUSP12 is involved in nonalcoholic fatty liver disease, bacterial infection, and myocardial hypertrophy and plays a critical role in tumorigenesis. Herein, we observed an increased expression of DUSP12 in a hyperglycemia cell model and a high-fat diet (HFD) mouse model. Heart-specific DUSP12-deficient mice showed severe cardiac dysfunction and remodeling induced by an HFD. DUSP12 deficiency exacerbated oxidative stress injury and apoptosis, whereas DUSP12 overexpression had the opposite effect. At the molecular level, DUSP12 physically bound to apoptotic signal-regulated kinase 1 (ASK1), promoted its dephosphorylation, and inhibited its action on c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Rescue experiments have shown that oxidative stress injury and apoptosis, exacerbated by DUSP12 deficiency, are alleviated by ASK1 inhibition. Therefore, we consider DUSP12 an important signaling pathway in DCM.
Collapse
Affiliation(s)
- Huan Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Qin Yang
- Department of Cardiology, Huanggang Central Hospital, Huanggang, 438021, China
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Dian-Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Qi Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Bin-Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan-Zhou Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Gu Y, Ding Y, Zhang X, Li Y, Shang Z. Secreted frizzled-related protein 3 alleviated cardiac remodeling induced by angiotensin II via inhibiting oxidative stress and apoptosis in mice. Eur J Pharmacol 2022; 934:175303. [PMID: 36174667 DOI: 10.1016/j.ejphar.2022.175303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Increased expression of secreted frizzled related protein 3 (SFRP3) is associated with adverse outcomes of heart failure. The purpose of this study was to investigate the effect of SFRP3 on cardiac remodeling and its mechanism. Cardiac remodeling was induced by angiotensin II (Ang II) infusion in the mice, and in the neonatal rat cardiomyocytes (NRCM) treated with Ang II. The expression decreased in the heart of mice, and NRCM and HL-1 cells with Ang II treatment. Ang II-induced hypertrophy and fibrosis of heart in mice were attenuated by upregulation of SFRP3, and were further deteriorated by downregulation of SFRP3. Ang II-induced hypertrophy of NRCM and HL-1 cells were improved by SFRP3 overexpression, and were further deteriorated by SFRP3 knockdown. The oxidative stress increased in the heart of Ang II-treated mice, and this enhancement was inhibited by overexpressing of SFPR3, and was worsened by downregulation of SFPR3. These outcomes suggested that upregulation of SFPR3 could improve cardiac remodeling via inhibition of oxidative stress.
Collapse
Affiliation(s)
- Yang Gu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Ying Ding
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xin Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yong Li
- Department of Cardiology, The Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
11
|
Liu A, Zhang Y, Xun S, Zhou G, Lin L, Mei Y. Fibroblast growth factor 12 attenuated cardiac remodeling via suppressing oxidative stress. Peptides 2022; 153:170786. [PMID: 35304156 DOI: 10.1016/j.peptides.2022.170786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factors (FGFs) mediate key cardiac functions from development to homeostasis and disease. The current research was to explore the effects of FGF12 in the fibrosis of cardiac function and heart failure, and whether FGF12 alleviated cardiac fibrosis via inhibition of oxidative stress. Ligation of left coronary artery in mice induced heart failure and myocardial infarction (MI). Angiotensin II (Ang II) was administered to cardiac fibroblasts (CFs). FGF12 upregulation or FGF12 transgenic (Tg) mice could improve cardiac dysfunction of MI mice, and attenuated cardiac fibrosis of heart failure induced by MI in mice. FGF12 overexpression suppressed the increases of collagen I, collagen III and fibronectin which was induced by Ang II in CFs. The oxidative stress was enhanced in the heart of MI mice and CFs treated with Ang II, and these enhances were attenuated via FGF12 overexpression. Superoxide dismutase (SOD) overexpression inhibited the enhancements of collagen I, collagen III and fibronectin in the heart of MI mice, and in the CFs treated with Ang II. Overexpression of nicotinamide adenine dinucleotide phosphate oxidases (Nox1) reversed the attenuating influences of FGF12 on the enhancements of collagen I, collagen III and fibronectin in the CFs induced by Ang II. These outcomes showed that FGF12 upregulation can improve cardiac dysfunction and heart fibrosis of heart failure. FGF12 attenuates oxidative stress to suppress the cardiac fibrosis.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Obsilova V, Honzejkova K, Obsil T. Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms222413395. [PMID: 34948191 PMCID: PMC8705584 DOI: 10.3390/ijms222413395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer’s, Parkinson’s and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| |
Collapse
|