1
|
Zhang L, Tian Y, Zhang L, Zhang H, Yang J, Wang Y, Lu N, Guo W, Wang L. A Comprehensive Review on the Plant Sources, Pharmacological Activities and Pharmacokinetic Characteristics of Syringaresinol. Pharmacol Res 2024:107572. [PMID: 39742933 DOI: 10.1016/j.phrs.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Syringaresinol, a phytochemical constituent belonging to lignan, is formed from two sinapyl alcohol units linked via a β-β linkage, which can be found in a wide variety of cereals and medicinal plants. Medical researches revealed that Syringaresinol possesses a broad spectrum of biological activities, including anti-inflammatory, anti-oxidation, anticancer, antibacterial, antiviral, neuroprotection, and vasodilation effects. These pharmacological properties lay the foundation for its use in treating various diseases such as inflammatory diseases, neurodegenerative disorders, diabetes and its complication, skin disorders, cancer, cardiovascular and cerebrovascular diseases. As the demand for natural therapeutics increases, Syringaresinol has garnered significant attention for its pharmacological properties. Despite the extensive literature that highlights the various biological activities of this molecule, the underlying mechanisms and the interrelationships between these activities are rarely addressed from a comprehensive perspective. Moreover, no thorough comprehensive summary and evaluation of Syringaresinol has been conducted to offer recommendations for potential future clinical trials and therapeutic applications of this bioactive compound. Thus, a comprehensive review on Syringaresinol is essential to advance scientific understanding, assess its therapeutic applications, ensure safety, and guide future research efforts. This will ultimately contribute to its potential integration into clinical practice and public health. This study aims to provide a comprehensive overview of Syringaresinol on its sources and biological activities to provide insights into its therapeutic potential, and to provide a basis for high-quality studies to determine the clinical efficacy of this compound. Additionally, we explored the pharmacokinetics, toxicology, and drug development aspects of Syringaresinol to guide future research efforts. The review also discussed the limitations of current research on Syringaresinol and put forward some new perspectives and challenges, which laid a solid foundation for further study on clinical application and new drug development of Syringaresinol in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yuqing Tian
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lingling Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Huanyu Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Jinghua Yang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yi Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Na Lu
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Wei Guo
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Liang Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
2
|
Ma J, Yang Y, He L, Yang C, Yang Y, Li Y, He W, Niu X, Chen Z, Hu S, Wang J, Zhaxi Y, Huo S. 17β-estradiol inhibits lipopolysaccharide-induced inflammation and pyroptosis of Leydig cells of the domestic yak (Bos grunniens) via the SIRT1/Nox4/ROS pathway. Domest Anim Endocrinol 2024; 91:106906. [PMID: 39672084 DOI: 10.1016/j.domaniend.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Estradiol (E2) secreted by Leydig cells (LCs) can accumulate in the testes due to constriction of the reproductive lumen. Estrogen is not only important for reproduction, but also protects against inflammation. In this study, the role of pyroptosis in testicular inflammation and the effects of E2 against inflammation and pyroptosis of yak interstitial cells were investigated. Inflamed testes exhibited structural damage and pyroptosis with decreased E2, testosterone, and estrogen receptor β (ERβ) levels in testicular fluid. E2 alone inhibited testosterone secretion and increased ERβ expression in mature LCs. In LCs, lipopolysaccharide (LPS) causes inflammation by activation of TNF-α and IL-6, and pyroptosis via activation of the classical and non-classical pyroptosis pathways. LPS inhibits sex hormone secretion and ERβ expression in LCs. E2 inhibited the LPS-induced decrease of ER expression in LCs and also inhibited LPS-induced interstitial cell inflammation and pyroptosis, which was partially blocked by Selisistat (EX-527, SIRT1 inhibitor) or Fulvestrant (ICI 182,780, E2 non-genomic receptor inhibitors). In conclusion, E2 relieved LPS-induced inflammation and pyroptosis of yak LCs via the SIRT1/Nox4/ROS pathway. This finding provides new insights into the role of estrogen in male reproductive health and offers a potential therapeutic strategy to improve testicular immune and reproductive function by modulating hormonal homeostasis.
Collapse
Affiliation(s)
- Junyuan Ma
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China; Gannan Livestock Technical Service Center, Gannan, Gansu, 747000, China
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Lin He
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Chongfa Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yahua Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yang Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Wen He
- Gannan Livestock Technical Service Center, Gannan, Gansu, 747000, China.
| | - Xiaoying Niu
- Gannan Livestock Technical Service Center, Gannan, Gansu, 747000, China
| | - Zhou Chen
- Songtao Miao Autonomous County Ecological Animal Husbandry Development Center, Touren, Guizhou, 554100, China
| | - Songming Hu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Jin'e Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yingpai Zhaxi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Shengdong Huo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
3
|
Zhang T, Li L, Mo X, Xie S, Liu S, Zhao N, Zhang H, Chen S, Zeng X, Wang S, Deng W, Tang Q. Matairesinol blunts adverse cardiac remodeling and heart failure induced by pressure overload by regulating Prdx1 and PI3K/AKT/FOXO1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156054. [PMID: 39306883 DOI: 10.1016/j.phymed.2024.156054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pathological cardiac remodeling is a critical process leading to heart failure, characterized primarily by inflammation and apoptosis. Matairesinol (Mat), a key chemical component of Podocarpus macrophyllus resin, exhibits a wide range of pharmacological activities, including anti-hydatid, antioxidant, antitumor, and anti-inflammatory effects. PURPOSE This study aims to investigate whether Matairesinol alleviate cardiac hypertrophy and remodeling caused by pressure overload and to elucidate its mechanism of action. METHODS An in vitro pressure loading model was established using neonatal rat cardiomyocytes treated with angiotensin Ⅱ, while an in vivo model was created using C57 mice subjected to transverse aortic constriction (TAC). To activate the PI3K/Akt/FoxO1 pathway, Ys-49 was employed. Moreover, small interfering RNA (siRNA) and short hairpin RNA (shRNA) were utilized to silence Prdx1 expression both in vitro and in vivo. Various techniques, including echocardiography, wheat germ agglutinin (WGA) staining, HE staining, PSR staining, and Masson trichrome staining, were used to assess cardiac function, cardiomyocyte cross-sectional area, and fibrosis levels in rats. Apoptosis in myocardial tissue and in vitro was detected by TUNEL assay, while reactive oxygen species (ROS) content in tissues and cells was measured using DHE staining. Furthermore, the affinity of Prdx1 with Mat and PI3K was analyzed using computer-simulated molecular docking. Western blotting and RT-PCR were utilized to evaluate Prdx1 levels and proteins related to apoptosis and oxidative stress, as well as the mRNA levels of cardiac hypertrophy and fibrosis-related indicators. RESULTS Mat significantly alleviated cardiac hypertrophy and fibrosis induced by TAC, preserved cardiac function, and markedly reduced cardiomyocyte apoptosis and oxidative damage. In vitro, mat attenuated ang Ⅱ - induced hypertrophy of nrvms and activation of neonatal rat fibroblasts. Notably, activation of the PI3K/Akt/FoxO1 pathway and downregulation of Prdx1 expression were observed in TAC mice; however, these effects were reversed by Mat treatment. Furthermore, Prdx1 knockdown activated the PI3K/Akt/FoxO1 pathway, leading to exacerbation of the disease. Molecular docking indicated that Molecular docking indicated that Mat upregulated Prdx1 expression by binding to it, thereby inhibiting the PI3K/Akt/FoxO1 pathway and protecting the heart by restoring Prdx1 expression levels. CONCLUSION Matairesinol alleviates pressure overload-induced cardiac remodeling both in vivo and in vitro by upregulating Prdx1 expression and inhibiting the PI3K/Akt/FoxO1 pathway. This study highlights the therapeutic potential of Matairesinol in the treatment of cardiac hypertrophy and remodeling, providing a promising avenue for future research and clinical application.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- Abbreviations: MAT, matairesinol
- BNP, B-type natriuretic peptide
- Cardiac fibrosis
- Cardiac hypertrophy
- Cardiac remodeling
- LV, left ventricular
- LVEDd, left ventricular end-diastolic dimension
- LVEF, left ventricular ejection fraction
- Matairesinol
- NRCFS, neonatal rat cardiac fibroblasts
- PRDX 1
- PRDX1, peroxiredoxin 1
- ROS, reactive oxygen species
- Sh-RNA, short-hairpin RNA
- Si-RNA, small interfering RNA
- TAC, transverse aortic contraction
- β-MHC, Β-myosin heavy chain
Collapse
Affiliation(s)
- Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Xiaotong Mo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
4
|
Tian W, Song P, Zang J, Zhao J, Liu Y, Wang C, Fang H, Wang H, Zhao Y, Liu X, Gao Y, Cao L. Tanshinone IIA, a component of Salvia miltiorrhiza Bunge, attenuated sepsis-induced liver injury via the SIRT1/Sestrin2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119169. [PMID: 39617088 DOI: 10.1016/j.jep.2024.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Salvia miltiorrhiza Bunge has been widely used to treat ischemic and inflammation-related diseases for more than 2000 years. S. miltiorrhiza Bunge has hepatoprotective effects, but the underlying mechanism is not fully understood. OBJECTIVE To verify the effect of tanshinone IIA (Tan IIA), the main fat-soluble component of S. miltiorrhiza Bunge, on liver damage induced by sepsis/LPS-induced inflammation and further explore the underlying mechanisms. MATERIALS AND METHODS Mice were administered Tan IIA 2 h before cecal ligation and puncture (CLP). Liver damage was evaluated by hematoxylin-eosin staining and changes in related serum factor levels. The expression of silent information regulator sirtuin 1 (SIRT1), Sestrin2, HO-1 and inflammatory cytokines was examined by immunohistochemistry or western blotting. LPS was used to induce the inflammatory response in vitro, and the activity of the related signaling pathway in response to Tan IIA was detected by western blotting. The SIRT1 inhibitor EX-527 and small interfering RNAs (siRNAs) were employed to determine the key roles of SIRT1 and Sestrin2 in Tan IIA's function. RESULTS We found that Tan IIA significantly improved the pathological changes and function of the liver, and alleviated liver damage in CLP mice. Additionally, SIRT1, Sestrin2, and HO-1 expression was significantly elevated after Tan IIA treatment compared with that in the CLP group both in vivo and in vitro, and Tan IIA treatment additionally suppressed pro-inflammatory cytokine release. However, inhibition of either SIRT1 or Sestrin2 remarkably abrogated the protective effects of Tan IIA. Most importantly, Sestrin2 appeared to function downstream of SIRT1 based on their expression changes after EX-527 or siRNA treatment. CONCLUSION Tan IIA inhibited sepsis/LPS-induced inflammation through the SIRT1/Sestrin2/HO-1 pathway, thereby protecting against sepsis-induced liver injury (SLI). This study suggests that Tan IIA has therapeutic potential against SLI and that the SIRT1/Sestrin2/HO-1 signaling pathway might be a viable target for SLI treatment.
Collapse
Affiliation(s)
- Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Peng Song
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Junhao Zang
- School of Medicine, Nankai University Tianjin, 300071, PR China.
| | - Jia Zhao
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Chuntao Wang
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Hong Fang
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Hongzhi Wang
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China; Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center Tianjin, 300122, PR China.
| | - Xingqiang Liu
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China.
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, 300350, PR China.
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300122, PR China; Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center Tianjin, 300122, PR China.
| |
Collapse
|
5
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
6
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Li H, Li X, Xu G, Zhan F. Minocycline alleviates lipopolysaccharide-induced cardiotoxicity by suppressing the NLRP3/Caspase-1 signaling pathway. Sci Rep 2024; 14:21180. [PMID: 39261543 PMCID: PMC11390881 DOI: 10.1038/s41598-024-72133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Minocycline (Min), as an antibiotic, possesses various beneficial properties such as anti-inflammatory, antioxidant, and anti-apoptotic effects. Despite these known qualities, the precise cardioprotective effect and mechanism of Min in protecting against sepsis-induced cardiotoxicity (SIC) remain unspecified. To address this, our study sought to assess the protective effects of Min on the heart. Lipopolysaccharide (LPS) was utilized to establish a cardiotoxicity model both in vivo and in vitro. Min was pretreated in the models. In the in vivo setting, evaluation of heart tissue histopathological injury was performed using hematoxylin and eosin (H&E) staining and TUNEL. Immunohistochemistry (IHC) was employed to evaluate the expression levels of NLRP3 and Caspase-1 in the heart tissue of mice. During in vitro experiments, the viability of H9c2 cells was gauged utilizing the CCK8 assay kit. Intracellular ROS levels in H9c2 cells were quantified using a ROS assay kit. Both in vitro and in vivo settings were subjected to measurement of oxidative stress indexes, encompassing glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) levels. Additionglly, myocardial injury markers like lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) activity were quantified using appropriate assay kits. Western blotting (WB) analysis was conducted to detect the expression levels of NOD-like receptor protein-3 (NLRP3), caspase-1, IL-18, and IL-1β, alongside apoptosis-related proteins such as Bcl-2 and Bax, and antioxidant proteins including superoxide dismutase-1 (SOD-1) and antioxidant proteins including superoxide dismutase-1 (SOD-2), both in H9c2 cells and mouse heart tissues. In vivo, Min was effective in reducing LPS-induced inflammation in cardiac tissue, preventing cell damage and apoptosis in cardiomyocytes. The levels of LDH and CK-MB were significantly reduced with Min treatment. In vitro studies showed that Min improved the viability of H9C2 cells, reduced apoptosis, and decreased ROS levels in these cells. Further analysis indicated that Min decreased the protein levels of NLRP3, Caspase-1, IL-18, and IL-1β, while increasing the levels of SOD-1 and SOD-2 both in vivo and in vitro. Min alleviates LPS-induced SIC by suppressing the NLRP3/Caspase-1 signalling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Anesthesiology, Wuhan Third Hospital, Wuhan, 430074, China
| | - Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China.
| |
Collapse
|
8
|
Wang Y, Feng W, Li S, Liu C, Jia L, Wang P, Li L, Du H, Yu W. Oxycodone attenuates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidation and pyroptosis via Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13910. [PMID: 39073215 DOI: 10.1111/1440-1681.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Myocardial injury and cardiovascular dysfunction are the most common complications of sepsis, and effective therapeutic candidate is still lacking. This study aims to investigate the protective effect of oxycodone in myocardial injury of lipopolysaccharide-induced sepsis and its related signalling pathways. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout mice, as well as H9c2 cardiomyocytes cultures treated with lipopolysaccharide (LPS) were used as models of septic myocardial injury. H9c2 cardiomyocytes culture showed that oxycodone protected cells from pyroptosis induced by LPS. Mice model confirmed that oxycodone pretreatment significantly attenuated myocardial pathological damage and improved cardiac function demonstrated by increased ejection fraction (EF) and fractional shortening (FS), as well as decreased cardiac troponin I (cTnI) and creatine kinase isoenzymes MB (CK-MB). Oxycodone also reduced the levels of inflammatory factors and oxidative stress damage induced by LPS, which involves pyroptosis-related proteins including: Nod-like receptor protein 3 (NLRP3), Caspase 1, Apoptosis-associated speck-like protein contain a CARD (ASC), and Gasdermin D (GSDMD). These changes were mediated by Nrf2 and heme oxygenase-1 (HO-1) because Nrf2-knockout mice or Nrf2 knockdown in H9c2 cells significantly reversed the beneficial effect of oxycodone on oxidative stress, inflammatory responses and NLRP3-mediated pyroptosis. Our findings yielded that oxycodone therapy reduces LPS-induced myocardial injury by suppressing NLRP3-mediated pyroptosis via the Nrf2/HO-1 signalling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yanting Wang
- The First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Wei Feng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cuicui Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Pei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linlin Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyin Du
- Tianjin Municipal Health Commission, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Wen R, Zhang TN, Yang N. [Recent research on pyroptosis in sepsis-induced myocardial depression]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:774-781. [PMID: 39014956 PMCID: PMC11562036 DOI: 10.7499/j.issn.1008-8830.2312039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Sepsis-induced myocardial depression (SIMD), a common complication of sepsis, is one of the main causes of death in patients with sepsis. The pathogenesis of SIMD is complicated, and the process of SIMD remains incompletely understood, with no single or definitive mechanism fully elucidated. Notably, pyroptosis, as a pro-inflammatory programmed cell death, is characterized by Gasdermin-mediated formation of pores on the cell membrane, cell swelling, and cell rupture accompanied by the release of large amounts of inflammatory factors and other cellular contents. Mechanistically, pyroptosis is mainly divided into the canonical pathway mediated by caspase-1 and the non-canonical pathway mediated by caspase-4/5/11. Pyroptosis has been confirmed to participate in various inflammation-associated diseases. In recent years, more and more studies have shown that pyroptosis is also involved in the occurrence and development of SIMD. This article reviews the molecular mechanisms of pyroptosis and its research progress in SIMD, aiming to provide novel strategies and targets for the treatment of SIMD.
Collapse
Affiliation(s)
- Ri Wen
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
10
|
Zheng S, Teng Y, Liu H, He J, Zhang S, Xiong H. Syringaresinol attenuates Tau phosphorylation and ameliorates cognitive dysfunction induced by sevoflurane in aged rats. J Neuropathol Exp Neurol 2024; 83:596-605. [PMID: 38622895 PMCID: PMC11187417 DOI: 10.1093/jnen/nlae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Cognitive dysfunction following anesthesia with agents such as sevoflurane is a significant clinical problem, particularly in elderly patients. This study aimed to explore the protective effects of the phytochemical syringaresinol (SYR) against sevoflurane-induced cognitive deficits in aged Sprague-Dawley rats and to determine the underlying mechanisms involved. We assessed the impact of SYR on sevoflurane-induced cognitive impairment, glial activation, and neuronal apoptosis through behavioral tests (Morris water maze), immunofluorescence, Western blotting for key proteins involved in apoptosis and inflammation, and enzyme-linked immunosorbent assays for interleukin-1β, tumor necrosis factor-α, and interleukin-6. SYR treatment mitigated sevoflurane-induced cognitive decline, reduced microglial and astrocyte activation (decreased Iba-1 and GFAP expression), and countered neuronal apoptosis (reduced Bax, cleaved-caspase3, and cleaved-PARP expression). SYR also enhanced Sirtuin-1 (SIRT1) expression and reduced p-Tau phosphorylation; these effects were reversed by the SIRT1 inhibitor EX527. SYR exerts neuroprotective effects on sevoflurane-induced cognitive dysfunction by modulating glial activity, apoptotic signaling, and Tau phosphorylation through the SIRT1 pathway. These findings could inform clinical strategies to safeguard cognitive function in patients undergoing anesthesia.
Collapse
Affiliation(s)
- Simin Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shannxi, China
| | - Yunpeng Teng
- Department of Anesthesia and Comfort Health Center, Xi’an International Medical Center Hospital, Xi’an, Shannxi, China
| | - Hongtao Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shannxi, China
| | - Jiaxuan He
- Department of Anesthesia and Comfort Health Center, Xi’an International Medical Center Hospital, Xi’an, Shannxi, China
| | - Shaobo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shannxi, China
| | - Hongfei Xiong
- Department of Anesthesia and Comfort Health Center, Xi’an International Medical Center Hospital, Xi’an, Shannxi, China
| |
Collapse
|
11
|
Li J, Teng D, Jia W, Gong L, Dong H, Wang C, Zhang L, Xu B, Wang W, Zhong L, Wang J, Yang J. PLD2 deletion ameliorates sepsis-induced cardiomyopathy by suppressing cardiomyocyte pyroptosis via the NLRP3/caspase 1/GSDMD pathway. Inflamm Res 2024; 73:1033-1046. [PMID: 38630134 PMCID: PMC11106193 DOI: 10.1007/s00011-024-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVE Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.
Collapse
Affiliation(s)
- Jun Li
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Bowen Xu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenlong Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
12
|
López-Bascón MA, Moscoso-Ruiz I, Quirantes-Piné R, del Pino-García R, López-Gámez G, Justicia-Rueda A, Verardo V, Quiles JL. Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action. Int J Mol Sci 2024; 25:4878. [PMID: 38732097 PMCID: PMC11084348 DOI: 10.3390/ijms25094878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.
Collapse
Affiliation(s)
- María Asunción López-Bascón
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Inmaculada Moscoso-Ruiz
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071 Granada, Spain;
| | - Raquel del Pino-García
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Gloria López-Gámez
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Andrea Justicia-Rueda
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Vito Verardo
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
- Department of Nutrition and Food Science, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
13
|
Wang J, Hou J, Peng C. Phospholipid transfer protein ameliorates sepsis-induced cardiac dysfunction through NLRP3 inflammasome inhibition. Open Med (Wars) 2024; 19:20240915. [PMID: 38584827 PMCID: PMC10996989 DOI: 10.1515/med-2024-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Cardiomyocyte pyroptosis is a primary contributor to sepsis-induced cardiac dysfunction (SICD). Recombinant phospholipid transfer protein (PLTP) have been demonstrated to possess anti-inflammatory and antiseptic properties. However, the effect of PLTP on SICD remains unknown. In this study, we established the in vivo and in vitro sepsis model with the recombinant PLTP treatment. The survival rates of mice, mouse cardiac function, cell viability, the protein level of proinflammatory cytokine, and lactate dehydrogenase level were evaluated. The cardiomyocyte pyroptotic changes were observed. The distribution of PLTP and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in mouse myocardial tissue and expression of PLTP, apoptosis associated speck like protein containing a CARD (ASC), NLRP3, caspase-1, interleukin (IL)-1β, and Gasdermin D (GSDMD) were detected. PLTP ameliorated the cecal ligation and puncture-induced mouse survival rate decrease and cardiac dysfunction, inhibited the IL-1β, IL-18, and tumor necrosis factor (TNF)-α release, and blocked the NLRP3 inflammasome/GSDMD signaling pathway in septic mice. In vitro, PLTP reversed the lipopolysaccharide-induced cardiomyocyte pyroptosis, expression of IL-1β, IL-6, TNF-α, and activation of the NLRP3 inflammasome/GSDMD signal pathway. Moreover, PLTP could bind to NLRP3 and negatively regulate the activity of the NLRP3 inflammasome/GSDMD signal pathway. This study demonstrated that PLTP can ameliorate SICD by inhibiting inflammatory responses and cardiomyocyte pyroptosis by blocking the activation of the NLRP3 inflammasome/GSDMD signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Jing Hou
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Chaohua Peng
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| |
Collapse
|
14
|
Xin Y, Li X, Ping K, Xiang Y, Li M, Li X, Yang H, Dong J. Pesticide avermectin-induced hepatotoxicity and growth inhibition in carp: Ameliorative capacity and potential mechanisms of quercetin as a dietary additive. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106859. [PMID: 38342007 DOI: 10.1016/j.aquatox.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Flavonoid quercetin (QUE) has biological activities of anti-oxidation, anti-inflammation and anti-apoptosis, however, its protective effects against avermectin (AVM) induced liver toxicity in carp remains unclear. The objective of this research is to explore the biologically potent effects of QUE in AVM-induced hepatotoxicity in carp and its underlying mechanism. Therefore, we established a liver injury model in carp induced by AVM to evaluate QUE against AVM induced liver toxicity in carp. In this investigation, AVM dosage was determined as 2.404 μg/L for both groups, and an experimentation of 30 days duration was carried out. Various methods including hematoxylin and eosin (H&E) staining, biochemical kits, real-time quantitative PCR (qRT-PCR), western blotting, TUNEL, reactive oxygen species (ROS) staining, immunofluorescence (Hoseinifar, et al.,), and oil red O staining were used in this study. Results showed that the growth inhibition of carp was relieved in the QUE treatment group comparing to the AVM group. In the QUE treatment group, there was a significant decrease in the levels of ALT and AST in carp liver tissue. Additionally, the histopathological damage and lipid accumulation were alleviated compared to the AVM group. Moreover, QUE prevented AVM induced decrease in the activities of antioxidant enzymes of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), glutathione (GSH), catalase (CAT) and the accumulation of reactive oxygen species (ROS), but reduced accumulation of malondialdehyde (MDA). In addition, the mRNA levels of liver pro-inflammatory factors of tumor necrosis factor-α (TNF-α), interleukin-1β (iL-1β), interleukin-6 (iL-6), interleukin-10 (iL-10) and the protein levels of NOD-like receptor protein 3 (NLRP3) inflammasome were significantly down-regulated in the QUE treatment group in comparison to the AVM group. We also found that QUE could affect the expression of Bcl2-associated x (Bax), B-cell lymphoma-2 (Bcl-2), cleaved-cysteinyl aspartate specific proteinase (CCaspase3) key apoptotic proteins and TUNEL-labeled apoptotic hepatocytes by regulating SIRT1/FOXO3a signal pathway. In summary, QUE alleviated the growth inhibition, liver oxidative damage, lipid accumulation, inflammatory response, and apoptosis of carp induced by AVM. QUE is a potential protective agent against liver injury induced by AVM in carp.
Collapse
Affiliation(s)
- Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
15
|
Wu QR, Yang H, Zhang HD, Cai YJ, Zheng YX, Fang H, Wang ZF, Kuang SJ, Rao F, Huang HL, Deng CY, Chen CB. IP3R2-mediated Ca 2+ release promotes LPS-induced cardiomyocyte pyroptosis via the activation of NLRP3/Caspase-1/GSDMD pathway. Cell Death Discov 2024; 10:91. [PMID: 38378646 PMCID: PMC10879485 DOI: 10.1038/s41420-024-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Pyroptosis plays a crucial role in sepsis, and the abnormal handling of myocyte calcium (Ca2+) has been associated with cardiomyocyte pyroptosis. Specifically, the inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is a Ca2+ release channel in the endoplasmic reticulum (ER). However, the specific role of IP3R2 in sepsis-induced cardiomyopathy (SIC) has not yet been determined. Thus, this study aimed to investigate the underlying mechanism by which IP3R2 channel-mediated Ca2+ signaling contributes to lipopolysaccharide (LPS)-induced cardiac pyroptosis. The SIC model was established in rats by intraperitoneal injection of LPS (10 mg/kg). Cardiac dysfunction was assessed using echocardiography, and the protein expression of relevant signaling pathways was analyzed using ELISA, RT-qPCR, and western blot. Small interfering RNAs (siRNA) and an inhibitor were used to explore the role of IP3R2 in neonatal rat cardiomyocytes (NRCMs) stimulated by LPS in vitro. LPS-induced NLRP3 overexpression and GSDMD-mediated pyroptosis in the rats' heart. Treatment with the NLRP3 inhibitor MCC950 alleviated LPS-induced cardiomyocyte pyroptosis. Furthermore, LPS increased ATP-induced intracellular Ca2+ release and IP3R2 expression in NRCMs. Inhibiting IP3R activity with xestospongin C (XeC) or knocking down IP3R2 reversed LPS-induced intracellular Ca2+ release. Additionally, inhibiting IP3R2 reversed LPS-induced pyroptosis by suppressing the NLRP3/Caspase-1/GSDMD pathway. We also found that ER stress and IP3R2-mediated Ca2+ release mutually regulated each other, contributing to cardiomyocyte pyroptosis. IP3R2 promotes NLRP3-mediated pyroptosis by regulating ER Ca2+ release, and the mutual regulation of IP3R2 and ER stress further promotes LPS-induced pyroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Qing-Rui Wu
- School of Medicine, South China University of Technology, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Hui-Dan Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Yong-Jiang Cai
- School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Yan-Xiang Zheng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Heng Fang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zi-Fan Wang
- School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Fang Rao
- School of Medicine, South China University of Technology, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Huan-Lei Huang
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chun-Yu Deng
- School of Medicine, South China University of Technology, 510006, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China.
- School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China.
| | - Chun-Bo Chen
- School of Medicine, South China University of Technology, 510006, Guangzhou, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, 518000, Shenzhen, Guangdong Province, China.
| |
Collapse
|
16
|
Abilkassymova A, Turgumbayeva A, Sarsenova L, Tastambek K, Altynbay N, Ziyaeva G, Blatov R, Altynbayeva G, Bekesheva K, Abdieva G, Ualieva P, Shynykul Z, Kalykova A. Exploring Four Atraphaxis Species: Traditional Medicinal Uses, Phytochemistry, and Pharmacological Activities. Molecules 2024; 29:910. [PMID: 38398660 PMCID: PMC10891555 DOI: 10.3390/molecules29040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Atraphaxis is a genus of flowering plants in the family Polygonaceae, with approximately 60 species. Species of Atraphaxis are much-branched woody plants, forming shrubs or shrubby tufts, primarily inhabiting arid zones across the temperate steppe and desert regions of Central Asia, America, and Australia. Atraphaxis species have been used by diverse groups of people all over the world for the treatment of various diseases. However, their biologically active compounds with therapeutic properties have not been investigated well. Studying the biologically active components of Atraphaxis laetevirens, Atraphaxis frutescens, Atraphaxis spinosa L., and Atraphaxis pyrifolia is crucial for several reasons. Firstly, it can unveil the therapeutic potential of these plants, aiding in the development of novel medicines or natural remedies for various health conditions. Understanding their bioactive compounds enables scientists to explore their pharmacological properties, potentially leading to the discovery of new drugs or treatments. Additionally, investigating these components contributes to preserving traditional knowledge and validating the historical uses of these plants in ethnomedicine, thus supporting their conservation and sustainable utilization. These herbs have been used as an anti-inflammatory and hypertension remedies since the dawn of time. Moreover, they have been used to treat a variety of gastrointestinal disorders and problems related to skin in traditional Kazakh medicine. Hence, the genus Atraphaxis can be considered as a potential medicinal plant source that is very rich in biologically active compounds that may exhibit great pharmacological properties, such as antioxidant, antibacterial, antiulcer, hypoglycemic, wound healing, neuroprotective, antidiabetic, and so on. This study aims to provide a collection of publications on the species of Atraphaxis, along with a critical review of the literature data. This review will constitute support for further investigations on the pharmacological activity of these medicinal plant species.
Collapse
Affiliation(s)
- Alima Abilkassymova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Lazzat Sarsenova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Kuanysh Tastambek
- Institute of Ecology, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Nazym Altynbay
- Institute of Ecological Problems, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Gulnar Ziyaeva
- Department of Biology, Taraz Regional University Named after M.Kh.Dulaty, Taraz 080000, Kazakhstan;
| | - Ravil Blatov
- Department of Pharmacy, Kazakh-Russian Medical University, Almaty 050000, Kazakhstan;
| | - Gulmira Altynbayeva
- School of Pharmacy, JSC “S.D. Asfendiyarov Kazakh National Medical University”, Almaty 050000, Kazakhstan;
- Neonatology and Neonatal Surgery Department, JSC “Scientific Center of Pediatrics and Pediatric Surgery”, Almaty 050060, Kazakhstan
| | - Kuralay Bekesheva
- JSC “Scientific Centre for Anti-Infectious Drugs”, Almaty 010000, Kazakhstan;
| | - Gulzhamal Abdieva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (G.A.); (P.U.)
| | - Perizat Ualieva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (G.A.); (P.U.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Assem Kalykova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| |
Collapse
|
17
|
Cao Z, Li W, Shao Z, Liu X, Zeng Y, Lin P, Lin C, Zhao Y, Li T, Zhao Z, Li X, Zhang Y, Hu B. Apelin ameliorates sepsis-induced myocardial dysfunction via inhibition of NLRP3-mediated pyroptosis of cardiomyocytes. Heliyon 2024; 10:e24568. [PMID: 38356599 PMCID: PMC10864914 DOI: 10.1016/j.heliyon.2024.e24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SMD) is the major cause of death in sepsis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis contributes to the occurrence and development of SMD. Although Apelin confers direct protection against SMD, the potential mechanisms remain unclear. This study aimed to determine whether Apelin protects against SMD via regulation of NLRP3-mediated pyroptosis of cardiomyocytes. Experimental SMD was induced in wild-type (WT) control mice and Apelin knockout (Apelin-/-) mice by cecal ligation and puncture (CLP). Neonatal mouse cardiomyocytes (NMCs) were treated with lipopolysaccharide (LPS) to simulate the physiological environment of SMD in vitro. The expression of Apelin was greatly decreased in the plasma from septic patients and septic mouse heart. Knockout of Apelin aggravated SMD, evidenced by decreased cardiac function, and increased cardiac fibrosis and NLRP3 inflammasome and pyroptosis levels in CLP-treated Apelin-/- mice compared with WT mice. Overexpression of Apelin activated the AMPK pathway and thereby inhibited NLRP3 inflammasome-mediated pyroptosis of NMCs induced by LPS in vitro These protective effects were partially abrogated by AMPK inhibitor. In conclusion, Apelin attenuated SMD by inhibiting NLRP3-mediated pyroptosis via activation of the AMPK pathway. Apelin may serve as a promising therapeutic target for SMD.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinqiang Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Lin
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chuangqiang Lin
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Yuechu Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zichao Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
19
|
Gao Z, Zheng C, Xing Y, Zhang X, Bai Y, Chen C, Zheng Y, Wang W, Zhang H, Meng Y. Polo-like kinase 1 promotes sepsis-induced myocardial dysfunction. Int Immunopharmacol 2023; 125:111074. [PMID: 37879229 DOI: 10.1016/j.intimp.2023.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the main cause of mortality in sepsis. In this study, we identified Polo-like kinase 1 (Plk-1) is a promoter of SIMD. Plk-1 expression was increased in lipopolysaccharide (LPS)-treated mouse hearts and neonatal rat cardiomyocytes (NRCMs). Inhibition of Plk-1 either by heterozygous deletion of Plk-1 or Plk-1 inhibitor BI 6727 alleviated LPS-induced myocardial injury, inflammation, cardiac dysfunction, and thereby improved the survival of LPS-treated mice. Plk-1 was identified as a kinase of inhibitor of kappa B kinase alpha (IKKα). Plk-1 inhibition impeded NF-κB signal pathway activation in LPS-treated mouse hearts and NRCMs. Augmented Plk-1 is thus essential for the development of SIMD and is a druggable target for SIMD.
Collapse
Affiliation(s)
- Zhenqiang Gao
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Cuiting Zheng
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqi Xing
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiyu Zhang
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China; National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Meng
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Guo Y, Alvigini L, Saifuddin M, Ashley B, Trajkovic M, Alonso-Cotchico L, Mattevi A, Fraaije MW. One-Pot Biocatalytic Synthesis of rac-Syringaresinol from a Lignin-Derived Phenol. ACS Catal 2023; 13:14639-14649. [PMID: 38026814 PMCID: PMC10660655 DOI: 10.1021/acscatal.3c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
The drive for a circular bioeconomy has resulted in a great demand for renewable, biobased chemicals. We present a one-pot biocatalytic cascade reaction for the production of racemic syringaresinol, a lignan with applications as a nutraceutical and in polymer chemistry. The process consumes dihydrosinapyl alcohol, which can be produced renewably from the lignocellulosic material. To achieve this, a variant of eugenol oxidase was engineered for the oxidation of dihydrosinapyl alcohol into sinapyl alcohol with good conversion and chemoselectivity. The crystal structure of the engineered oxidase revealed the molecular basis of the influence of the mutations on the chemoselectivity of the oxidation of dihydrosinapyl alcohol. By using horseradish peroxidase, the subsequent oxidative dimerization of sinapyl alcohol into syringaresinol was achieved. Conditions for the one-pot, two-enzyme synthesis were optimized, and a high yield of syringaresinol was achieved by cascading the oxidase and peroxidase steps in a stepwise fashion. This study demonstrates the efficient production of syringaresinol from a compound that can be renewed by reductive catalytic fractionation of lignocellulose, providing a biocatalytic route for generating a valuable compound from lignin.
Collapse
Affiliation(s)
- Yiming Guo
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Laura Alvigini
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | - Mohammad Saifuddin
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Ben Ashley
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Milos Trajkovic
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | | | - Andrea Mattevi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | - Marco W. Fraaije
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| |
Collapse
|
21
|
Wang W, He Z. Gasdermins in sepsis. Front Immunol 2023; 14:1203687. [PMID: 38022612 PMCID: PMC10655013 DOI: 10.3389/fimmu.2023.1203687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a hyper-heterogeneous syndrome in which the systemic inflammatory response persists throughout the course of the disease and the inflammatory and immune responses are dynamically altered at different pathogenic stages. Gasdermins (GSDMs) proteins are pore-forming executors in the membrane, subsequently mediating the release of pro-inflammatory mediators and inflammatory cell death. With the increasing research on GSDMs proteins and sepsis, it is believed that GSDMs protein are one of the most promising therapeutic targets in sepsis in the future. A more comprehensive and in-depth understanding of the functions of GSDMs proteins in sepsis is important to alleviate the multi-organ dysfunction and reduce sepsis-induced mortality. In this review, we focus on the function of GSDMs proteins, the molecular mechanism of GSDMs involved in sepsis, and the regulatory mechanism of GSDMs-mediated signaling pathways, aiming to provide novel ideas and therapeutic strategies for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Dong W, Peng Q, Liu Z, Xie Z, Guo X, Li Y, Chen C. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed Pharmacother 2023; 167:115554. [PMID: 37738797 DOI: 10.1016/j.biopha.2023.115554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important part of the natural immune system that plays an important role in many diseases. Estrogen is a sex hormone that plays an important role in controlling reproduction and regulates many physiological and pathological processes. Recent studies have indicated that estrogen is associated with disease progression. Estrogen can ameliorate some diseases (e. g, sepsis, mood disturbances, cerebral ischemia, some hepatopathy, Parkinson's disease, amyotrophic lateral sclerosis, inflammatory bowel disease, spinal cord injury, multiple sclerosis, myocardial ischemia/reperfusion injury, osteoarthritis, and renal fibrosis) by inhibiting the NLRP3 inflammasome. Estrogen can also promote the development of diseases (e.g., ovarian endometriosis, dry eye disease, and systemic lupus erythematosus) by upregulating the NLRP3 inflammasome. In addition, estrogen has a dual effect on the development of cancers and asthma. However, the mechanism of these effects is not summarized. This article reviewed the progress in understanding the effects of estrogen on the NLRP3 inflammasome and its mechanisms in recent years to provide a theoretical basis for an in-depth study.
Collapse
Affiliation(s)
- Wanglin Dong
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhuoxin Liu
- Clinical College of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China.
| | - Xiajun Guo
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yuanyuan Li
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
23
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Zhang H, Liao J, Jin L, Lin Y. NLRP3 inflammasome involves in the pathophysiology of sepsis-induced myocardial dysfunction by multiple mechanisms. Biomed Pharmacother 2023; 167:115497. [PMID: 37741253 DOI: 10.1016/j.biopha.2023.115497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is one of the serious health-affecting problems worldwide. At present, the mechanisms of SIMD are still not clearly elucidated. The NOD-like receptor protein 3 (NLRP3) inflammasome has been assumed to be involved in the pathophysiology of SIMD by regulating multiple biological processes. NLRP3 inflammasome and its related signaling pathways might affect the regulation of inflammation, autophagy, apoptosis, and pyroptosis in SIMD. A few molecular specific inhibitors of NLRP3 inflammasome (e.g., Melatonin, Ulinastatin, Irisin, Nifuroxazide, and Ginsenoside Rg1, etc.) have been developed, which showed a promising anti-inflammatory effect in a cellular or animal model of SIMD. These experimental findings indicated that NLRP3 inflammasome could be a promising therapeutic target for SIMD treatment. However, the clinical translation of NLRP3 inhibitors for treating SIMD still requires robust in vivo and preclinical trials.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Litong Jin
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Yan Lin
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
25
|
Karolczak K, Watala C. Estradiol as the Trigger of Sirtuin-1-Dependent Cell Signaling with a Potential Utility in Anti-Aging Therapies. Int J Mol Sci 2023; 24:13753. [PMID: 37762053 PMCID: PMC10530977 DOI: 10.3390/ijms241813753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Aging entails the inevitable loss of the structural and functional integrity of cells and tissues during the lifetime. It is a highly hormone-dependent process; although, the exact mechanism of hormone involvement, including sex hormones, is unclear. The marked suppression of estradiol synthesis during menopause suggests that the hormone may be crucial in maintaining cell lifespan and viability in women. Recent studies also indicate that the same may be true for men. Similar anti-aging features are attributed to sirtuin 1 (SIRT1), which may possibly be linked at the molecular level with estradiol. This finding may be valuable for understanding the aging process, its regulation, and possible prevention against unhealthy aging. The following article summarizes the initial studies published in this field with a focus on age-associated diseases, like cancer, cardiovascular disease and atherogenic metabolic shift, osteoarthritis, osteoporosis, and muscle damage, as well as neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland;
| | | |
Collapse
|
26
|
Zou XZ, Hao JF, Hou MX. Hmgcs2 regulates M2 polarization of macrophages to repair myocardial injury induced by sepsis. Aging (Albany NY) 2023; 15:7794-7810. [PMID: 37561521 PMCID: PMC10457052 DOI: 10.18632/aging.204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023]
Abstract
The respiratory and cardiovascular systems are often the most severely impacted by the rapid onset of sepsis, which can lead to multiple organ failure. The mortality has ranged from 10 to 40% when it has evolved into septic shock. This study sought to demonstrate the potential and role of Hmgcs2 in safeguarding against cardiovascular harm in septic mouse models. The cecal ligament and puncture (CLP) model was used to induce sepsis in C57BL/6 mice, with Hmgcs2 expression in the myocardium of the mice being heightened and inflammatory factors being augmented. Subsequently, we utilized ASOs to silence the hmgcs2 gene, and found that silencing accelerated septic myocardial injury and cardiac dysfunction in CLP mice models. In contrast, hmgcs2 attenuated inflammation and apoptosis and protected against septic cardiomyopathy in murine septicemia models. Src production, spurred on by Hmgcs2, triggered the PI3K/Akt pathway and augmented M2 macrophage polarization. Moreover, the inhibition of M2 polarization by an Src antagonist significantly contributed to apoptosis of cardiomyocytes. Our research revealed that Hmgcs2 inhibited the activation of pro-inflammatory macrophages and, through Src-dependent activation of PI3K/Akt pathway, promoted the anti-inflammatory phenotype, thus safeguarding myocardial damage from sepsis. This offers a novel theoretical basis for prevention and treatment of infectious complications.
Collapse
Affiliation(s)
- Xiao-Zheng Zou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, PR China
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, Liaoning, PR China
| | - Jun-Feng Hao
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, PR China
| | - Ming-Xiao Hou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, Liaoning, PR China
- Shenyang Medical College, Shenyang 110034, Liaoning, PR China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning, Shenyang 110001, Liaoning, PR China
| |
Collapse
|
27
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
28
|
Li G, Liu C, Yang L, Feng L, Zhang S, An J, Li J, Gao Y, Pan Z, Xu Y, Liu J, Wang Y, Yan J, Cui J, Qi Z, Yang L. Syringaresinol protects against diabetic nephropathy by inhibiting pyroptosis via NRF2-mediated antioxidant pathway. Cell Biol Toxicol 2023; 39:621-639. [PMID: 36640193 DOI: 10.1007/s10565-023-09790-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy (DN) is one of the serious complications of diabetes that has limited treatment options. As a lytic inflammatory cell death, pyroptosis plays an important role in the pathogenesis of DN. Syringaresinol (SYR) possesses anti-inflammatory and antioxidant properties. However, the therapeutic effects and the underlying mechanism of SYR in DN remain unclear. Herein, we showed that SYR treatment ameliorated renal hypertrophy, fibrosis, mesangial expansion, glomerular basement membrane thickening, and podocyte foot process effacement in streptozotocin (STZ)-induced diabetic mice. Mechanistically, SYR prevented the abundance of pyroptosis-related proteins such as NOD-like receptor family pyrin domain containing 3 (NLRP3), cysteinyl aspartate-specific proteinase 1 (Caspase-1), and gasdermin D (GSDMD), and the biosynthesis of inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18). In addition, SYR promoted the nuclear translocation of nuclear factor E2-related factor 2 (NRF2) and enhanced the downstream antioxidant enzymes heme oxygenase 1 (HO-1) and manganese superoxide dismutase (MnSOD), thereby effectively decreasing excess reactive oxygen species (ROS). Most importantly, knockout of NRF2 abolished SYR-mediated renoprotection and anti-pyroptotic activities in NRF2-KO diabetic mice. Collectively, SYR inhibited the NLRP3/Caspase-1/GSDMD pyroptosis pathway by upregulating NRF2 signaling in DN. These findings suggested that SYR may be promising a therapeutic option for DN.
Collapse
Affiliation(s)
- Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiale An
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Zhongjie Pan
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China.
- Xinjiang Production and Construction Corps Hospital, Xinjiang, 830092, China.
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China.
| |
Collapse
|
29
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
30
|
He J, Deng Y, Ren L, Jin Z, Yang J, Yao F, Liu Y, Zheng Z, Chen D, Wang B, Zhang Y, Nan G, Wang W, Lin R. Isoliquiritigenin from licorice flavonoids attenuates NLRP3-mediated pyroptosis by SIRT6 in vascular endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115952. [PMID: 36442759 DOI: 10.1016/j.jep.2022.115952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Licorice is a traditional Chinese medicine that has been used for cardiovascular diseases. Recent studies found that supplementation with licorice extracts attenuated the development of atherosclerosis (AS) in hypercholesterolemic patients. Many studies have shown that licorice flavonoids, the main active components of licorice, have a variety of pharmacological effects, including anti-inflammation, regulation of lipid metabolism, and antioxidation. However, the key active components against AS in licorice flavonoids are still unclear. AIM OF THE STUDY The aim of this paper is to investigate the active components of licorice flavonoids that exert anti-atherosclerotic effects and the underlying mechanisms. MATERIALS AND METHODS Network pharmacology was used to screen the active components of licorice flavonoids that have anti-atherosclerotic effects. Combining bioinformatics analysis and in vitro studies, the effects and underlying mechanisms of the active component isoliquiritigenin (ISL) on cell pyroptosis were further investigated in tumor necrosis factor (TNF)-α-treated human umbilical vein endothelial cells (HUVECs). RESULTS We constructed a compound-target network and screened 3 active components, namely, ISL, glabridin, and naringenin in licorice flavonoids. The half maximal effective concentration values of these 3 components suggested that ISL was the key active component against TNF-α-induced endothelial cell injury. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that ISL could potentially treat AS via the nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway. An in vitro study verified that ISL suppressed TNF-α-induced NLRP3 activation and pyroptosis in HUVECs. The molecular docking and cellular thermal shift assay showed good compatibility between ISL and class III histone deacetylase sirtuin 6 (SIRT6). Moreover, we found that ISL upregulated the expression of SIRT6 in TNF-α-treated HUVECs. Further study found that SIRT6 knockdown reduced the inhibitory effect of ISL on pyroptosis, whereas the NLRP3 inhibitor reversed this process in TNF-α-treated HUVECs. CONCLUSIONS Our results demonstrate that ISL is a key active component of licorice flavonoids. ISL attenuates NLRP3-mediated vascular endothelial cell pyroptosis via SIRT6, and SIRT6 may be a potential target of ISL for the treatment of AS.
Collapse
Affiliation(s)
- Jianyu He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ying Deng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lingxuan Ren
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhen Jin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jianjun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Feng Yao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yizhen Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zihan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Danli Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Bo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yirong Zhang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weirong Wang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Rong Lin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
31
|
Horvath C, Kararigas G. Sex-Dependent Mechanisms of Cell Death Modalities in Cardiovascular Disease. Can J Cardiol 2022; 38:1844-1853. [PMID: 36152770 DOI: 10.1016/j.cjca.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022] Open
Abstract
Despite currently available therapies, cardiovascular diseases (CVD) are among the leading causes of death globally. Biological sex is a critical determinant of the occurrence, progression and overall outcome of CVD. However, the underlying mechanisms are incompletely understood. A hallmark of CVD is cell death. Based on the inability of the human heart to regenerate, loss of functional cardiac tissue can lead to irreversible detrimental effects. Here, we summarize current knowledge on how biological sex affects cell death-related mechanisms in CVD. Initially, we discuss apoptosis and necrosis, but we specifically focus on the relatively newly recognized programmed necrosis-like processes: pyroptosis and necroptosis. We also discuss the role of 17β-estradiol (E2) in these processes, particularly in terms of inhibiting pyroptotic and necroptotic signaling. We put forward that a better understanding of the effects of biological sex and E2 might lead to the identification of novel targets with therapeutic potential.
Collapse
Affiliation(s)
- Csaba Horvath
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
32
|
Ni Y, Zhang J, Zhu W, Duan Y, Bai H, Luan C. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH/ROS/ER stress. J Cell Mol Med 2022; 26:5414-5425. [PMID: 36201630 PMCID: PMC9639035 DOI: 10.1111/jcmm.17564] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Prevalence of heart failure (HF) continues to rise over time and is a global difficult problem; new drug targets are urgently needed. In recent years, pyroptosis is confirmed to promote cardiac remodelling and HF. Echinacoside (ECH) is a natural phenylethanoid glycoside and is the major active component of traditional Chinese medicine Cistanches Herba, which is reported to possess powerful anti‐oxidation and anti‐inflammatory effects. In addition, we previously reported that ECH reversed cardiac remodelling and improved heart function, but the effect of ECH on pyroptosis has not been studied. So, we investigated the effects of ECH on cardiomyocyte pyroptosis and the underlying mechanisms. In vivo, we established HF rat models induced by isoproterenol (ISO) and pre‐treated with ECH. Indexes of heart function, pyroptotic marker proteins, ROS levels, and the expressions of NOX2, NOX4 and ER stress were measured. In vitro, primary cardiomyocytes of neonatal rats were treated with ISO and ECH; ASC speckles and caspase‐1 mediated pyroptosis in cardiomyocytes were detected. Hoechst/PI staining was also used to evaluate pyroptosis. ROS levels, pyroptotic marker proteins, NOX2, NOX4 and ER stress levels were all tested. In vivo, we found that ECH effectively inhibited pyroptosis, down‐regulated NOX2 and NOX4, decreased ROS levels, suppressed ER stress and improved heart function. In vitro, ECH reduced cardiomyocyte pyroptosis and suppressed NADPH/ROS/ER stress. We concluded that ECH inhibited cardiomyocyte pyroptosis and improved heart function via suppressing NADPH/ROS/ER stress.
Collapse
Affiliation(s)
- YaJuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Zhu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixuan Duan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - HongYuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chunhong Luan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Omaveloxolone attenuates the sepsis-induced cardiomyopathy via activating the nuclear factor erythroid 2-related factor 2. Int Immunopharmacol 2022; 111:109067. [PMID: 35908503 DOI: 10.1016/j.intimp.2022.109067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a common complication of sepsis and is the main reason for the high mortality in sepsis patients. More recent studies have indicated that activating nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a protective role in SIC. As a potent activator of Nrf2, Omaveloxolone plays a pivotal role in defending against oxidative stress and the inflammatory response. Thus, we examined the efficacy of omaveloxolone in SIC. In the present study, the mice were injected intraperitoneally with a single dose of LPS (10 mg/kg) for 12 h to induce SIC. The data in our study indicated that omaveloxolone administration significantly improved cardiac injury and dysfunction in LPS-induced SIC. In addition, omaveloxolone administration reduced SIC-related cardiac oxidative stress, the inflammatory response and cardiomyocyte apoptosis in mice. In addition, omaveloxolone administration also improved LPS-induced cardiomyocyte injury in an in vitro model using H9C2 cells. Moreover, knockdown of Nrf2 by si-Nrf2 abolished the omaveloxolone-mediated cardioprotective effects. In conclusion, omaveloxolone has potent cardioprotective potential in treating sepsis and SIC via activation of the Nrf2 signaling pathway.
Collapse
|
34
|
Yu H, Fu J, Guo HH, Pan LB, Xu H, Zhang ZW, Hu JC, Yang XY, Zhang HJ, Bu MM, Lin Y, Jiang JD, Wang Y. Metabolites Analysis of Anti-Myocardial Ischemia Active Components of Saussurea involucrata Based on Gut Microbiota-Drug Interaction. Int J Mol Sci 2022; 23:7457. [PMID: 35806462 PMCID: PMC9267203 DOI: 10.3390/ijms23137457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022] Open
Abstract
Saussurea involucrata has been reported to have potential therapeutic effects against myocardial ischemia. The pharmacological effects of oral natural medicines may be influenced by the participation of gut microbiota. In this study, we aimed to investigate the bidirectional regulation of gut microbiota and the main components of Saussurea involucrata. We first established a quantitative method for the four main components (chlorogenic acid, syringin, acanthoside B, rutin) which were chosen by fingerprint using liquid chromatography tandem mass spectrometry (LC-MS/MS), and found that gut microbiota has a strong metabolic effect on them. Meanwhile, we identified five major rat gut microbiota metabolites (M1-M5) using liquid chromatography tandem time-of-flight mass spectrometry (LC/MSn-IT-TOF). The metabolic properties of metabolites in vitro were preliminarily elucidated by LC-MS/MS for the first time. These five metabolites of Saussurea involucrata may all have potential contributions to the treatment of myocardial ischemia. Furthermore, the four main components (10 μg/mL) can significantly stimulate intestinal bacteria to produce short chain fatty acids in vitro, respectively, which can further contribute to the effect in myocardial ischemia. In this study, the therapeutic effect against myocardial ischemia of Saussurea involucrata was first reported to be related to the intestinal flora, which can be useful in understanding the effective substances of Saussurea involucrata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China; (H.Y.); (J.F.); (H.-H.G.); (L.-B.P.); (H.X.); (Z.-W.Z.); (J.-C.H.); (X.-Y.Y.); (H.-J.Z.); (M.-M.B.); (Y.L.)
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China; (H.Y.); (J.F.); (H.-H.G.); (L.-B.P.); (H.X.); (Z.-W.Z.); (J.-C.H.); (X.-Y.Y.); (H.-J.Z.); (M.-M.B.); (Y.L.)
| |
Collapse
|
35
|
Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res 2022; 15:4275-4290. [PMID: 35923903 PMCID: PMC9342248 DOI: 10.2147/jir.s374117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is an abnormal condition with multiple organ dysfunctions caused by the uncontrolled infection response and one of the major diseases that seriously hang over global human health. Besides, sepsis is characterized by high morbidity and mortality, especially in intensive care unit (ICU). Among the numerous subsequent organ injuries of sepsis, myocardial injury is one of the most common complications and the main cause of death in septic patients. To better manage septic inpatients, it is necessary to understand the specific mechanisms of sepsis induced myocardial injury (SIMI). Therefore, this review will elucidate the pathophysiology of SIMI from the following certain mechanisms: apoptosis, mitochondrial damage, autophagy, excessive inflammatory response, oxidative stress and pyroptosis, and outline current therapeutic strategies and potential approaches in SIMI.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jia Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Li-Shan Yang; Jun-Fei Zhang, Email ;
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
36
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
37
|
Chai R, Xue W, Shi S, Zhou Y, Du Y, Li Y, Song Q, Wu H, Hu Y. Cardiac Remodeling in Heart Failure: Role of Pyroptosis and Its Therapeutic Implications. Front Cardiovasc Med 2022; 9:870924. [PMID: 35509275 PMCID: PMC9058112 DOI: 10.3389/fcvm.2022.870924] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of programmed cell death closely related to inflammation. The pathways that mediate pyroptosis can be divided into the Caspase-1-dependent canonical pathway and the Caspase4/5/11-dependent non-canonical pathway. The most significant difference from other cell death is that pyroptosis rapidly causes rupture of the plasma membrane, cell expansion, dissolution and rupture of the cell membrane, the release of cell contents and a large number of inflammatory factors, and send pro-inflammatory signals to adjacent cells, recruit inflammatory cells and induce inflammatory responses. Cardiac remodeling is the basic mechanism of heart failure (HF) and the core of pathophysiological research on the underlying mechanism. A large number of studies have shown that pyroptosis can cause cardiac fibrosis, cardiac hypertrophy, cardiomyocytes death, myocardial dysfunction, excessive inflammation, and cardiac remodeling. Therefore, targeting pyroptosis has a good prospect in improving cardiac remodeling in HF. In this review, the basic molecular mechanism of pyroptosis is summarized, the relationship between pyroptosis and cardiac remodeling in HF is analyzed in-depth, and the potential therapy of targeting pyroptosis to improve adverse cardiac remodeling in HF is discussed, providing some ideas for improving the study of adverse cardiac remodeling in HF.
Collapse
Affiliation(s)
- Ruoning Chai
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhou
- Department of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yihang Du
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qingqiao Song
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Huaqin Wu
| | - Yuanhui Hu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yuanhui Hu
| |
Collapse
|