1
|
Islam R, Hong Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis. MECHANOBIOLOGY IN MEDICINE 2024; 2:100085. [PMID: 39281415 PMCID: PMC11391866 DOI: 10.1016/j.mbm.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhongkui Hong
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Guo Q, Liu Q, Zhou S, Lin Y, Lv A, Zhang L, Li L, Huang F. Apelin regulates mitochondrial dynamics by inhibiting Mst1-JNK-Drp1 signaling pathway to reduce neuronal apoptosis after spinal cord injury. Neurochem Int 2024; 180:105885. [PMID: 39433147 DOI: 10.1016/j.neuint.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
In the secondary injury stage of spinal cord injury, mitochondrial dysfunction leads to decreased ATP production, increased ROS production, and activation of the mitochondria-mediated apoptosis signaling pathway. This ultimately intensifies neuronal death and promotes the progression of the injury. Apelin, a peptide produced by the APLN gene, has demonstrated promise in the treatment of spinal cord injury. The aim of this study was to investigate how Apelin protects neurons after spinal cord injury by influencing the mitochondrial dynamics. The results showed that Apelin has the ability to reduce mitochondrial fission, enhance the mitochondrial membrane potential, improve antioxidant capacity, facilitate the clearance of excess ROS, and ultimately decrease apoptosis in PC12 cells. Moreover, Apelin is overexpressed in neurons in the damaged part of the spinal cord, contributing to reduce mitochondrial fission, improve antioxidant capacity, increase ATP production, decrease apoptosis, promote spinal cord morphological repair, maintain the number of nissl bodies, and enhance signal transduction in the descending spinal cord pathway. Apelin exerts its protective effect by inhibiting the Mst1-JNK-Drp1 signaling pathway. In summary, our study further improved the effect of Apelin in the treatment of spinal cord injury, revealed the mechanism of Apelin in protecting damaged neurons after spinal cord injury by maintaining mitochondrial homeostasis, and provided a new therapeutic mechanism for Apelin in spinal cord injury.
Collapse
Affiliation(s)
- Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Yabin Lin
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Ang Lv
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
| |
Collapse
|
3
|
Sahu MR, Ahmad MH, Mondal AC. MST1 selective inhibitor Xmu-mp-1 ameliorates neuropathological changes in a rat model of sporadic Alzheimer's Disease by modulating Hippo-Wnt signaling crosstalk. Apoptosis 2024; 29:1824-1851. [PMID: 38760516 DOI: 10.1007/s10495-024-01975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive impairment accompanied by aberrant neuronal apoptosis. Reports suggest that the pro-apoptotic mammalian set20-like kinase 1/2 (MST1/2) instigates neuronal apoptosis via activating the Hippo signaling pathway under various stress conditions, including AD. However, whether inhibiting MST1/2 has any therapeutic benefits in AD remains unknown. Thus, we tested the therapeutic effects of intervening MST1/2 activation via the pharmacological inhibitor Xmu-mp-1 in a sporadic AD rat model. Sporadic AD was established in adult rats by intracerebroventricular streptozotocin (ICV-STZ) injection (3 mg/kg body weight). Xmu-mp-1 (0.5 mg/kg/body weight) was administered once every 48 h for two weeks, and Donepezil (5 mg/kg body weight) was used as a reference standard drug. The therapeutic effects of Xmu-mp-1 on ICV-STZ rats were determined through various behavioral, biochemical, histopathological, and molecular tests. At the behavioral level, Xmu-mp-1 improved cognitive deficits in sporadic AD rats. Further, Xmu-mp-1 treatment reduced STZ-associated tau phosphorylation, amyloid-beta deposition, oxidative stress, neurotoxicity, neuroinflammation, synaptic dysfunction, neuronal apoptosis, and neurodegeneration. Mechanistically, Xmu-mp-1 exerted these neuroprotective actions by inactivating the Hippo signaling while potentiating the Wnt/β-Catenin signaling in the AD rats. Together, the results of the present study provide compelling support that Xmu-mp-1 negated the neuronal dysregulation in the rat model of sporadic AD. Therefore, inhibiting MST/Hippo signaling and modulating its crosstalk with the Wnt/β-Catenin pathway can be a promising alternative treatment strategy against AD pathology. This is the first study providing novel mechanistic insights into the therapeutic use of Xmu-mp-1 in sporadic AD.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Zhuang Q, Li M, Hu D, Li J. Recent advances in potential targets for myocardial ischemia reperfusion injury: Role of macrophages. Mol Immunol 2024; 169:1-9. [PMID: 38447462 DOI: 10.1016/j.molimm.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complex process that occurs when blood flow is restored after myocardium infarction (MI) with exacerbated tissue damage. Macrophages, essential cell type of the immune response, play an important role in MIRI. Macrophage subpopulations, namely M1 and M2, are distinguished by distinct phenotypes and functions. In MIRI, macrophages infiltrate in infarcted area, shaping the inflammatory response and influencing tissue healing. Resident cardiac macrophages interact with monocyte-derived macrophages in MIRI, and influence injury progression. Key factors including chemokines, cytokines, and toll-like receptors modulate macrophage behavior in MIRI. This review aims to address recent findings on the classification and the roles of macrophages in the myocardium, spanning from MI to subsequent MIRI, and highlights various signaling pathways implicated in macrophage polarization underlining the complexity of MIRI. This article will shed light on developing advanced therapeutic strategies for MIRI management.
Collapse
Affiliation(s)
- Qigang Zhuang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingyue Li
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024:CJ-24-0171. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
6
|
Li T, Wen Y, Lu Q, Hua S, Hou Y, Du X, Zheng Y, Sun S. MST1/2 in inflammation and immunity. Cell Adh Migr 2023; 17:1-15. [PMID: 37909712 PMCID: PMC10761064 DOI: 10.1080/19336918.2023.2276616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
The mammalian Sterile 20-like kinase 1/2 (MST1/2) belongs to the serine/threonine (GC) protein kinase superfamily. Collective studies confirm the vital role MST1/2 in inflammation and immunity. MST1/2 is closely related to the progress of inflammation. Generally, MST1/2 aggravates the inflammatory injury through MST1-JNK, MST1-mROS, MST1-Foxo3, and NF-κB pathways, as well as several regulatory factors such as tumor necrosis factor-α (TNF-α), mitochondrial extension factor 1 (MIEF1), and lipopolysaccharide (LPS). Moreover, MST1/2 is also involved in the regulation of immunity to balance immune activation and tolerance by regulating MST1/2-Rac, MST1-Akt1/c-myc, MST1-Foxos, MST1-STAT, Btk pathways, and lymphocyte function-related antigen 1 (LFA-1), which subsequently prevents immunodeficiency syndrome and autoimmune diseases. This article reviews the effects of MST1/2 on inflammation and immunity.
Collapse
Affiliation(s)
- Tongfen Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiongfen Lu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaohua Du
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Zhao JJ, Zhao B, Bai X, Zhang S, Xu R. Aucubin promotes activation of AMPK and alleviates cerebral ischemia/reperfusion injury in rats. Cell Stress Chaperones 2023; 28:801-809. [PMID: 37608231 PMCID: PMC10746661 DOI: 10.1007/s12192-023-01372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
In the current investigation, we explored the benefits of aucubin against rodent ischemia/reperfusion (I/R) damages in brains and elucidated the role of 5'-AMP-activated protein kinase (AMPK) in its neuroprotective action. I/R model of brain was established in male three-month-old rats through 2 h of middle cerebral artery occlusion followed by two days of reperfusion. Aucubin boosted phosphorylation of AMPKα in ipsilateral cortex of injured rats. Then, rats were exposed to cerebral I/R damage and received treatment of aucubin and compound C (a well-known AMPK inhibitor). It was found that aucubin administration improved neurological symptom score, decreased infarct volume, and mitigated cerebral edema in injured rats. Aucubin administration upregulated Nrf2 expression and abated oxidative stress in ipsilateral cortex of injured rats. Aucubin administration reduced levels of multiple pro-inflammatory cytokines, suppressed microglial activation and neutrophil infiltration, and promoted M2 polarization in injured rats. More importantly, compound C abolished the neuroprotective, anti-oxidant and inflammation-modulating effects of aucubin in injured rats, at least in part. Therefore, we concluded that activation of AMPK by aucubin alleviated I/R injury in brain through abating oxidative stress and suppressing inflammation, identifying a potential candidate for those patients of ischemic stroke.
Collapse
Affiliation(s)
- Jin-Jing Zhao
- Department of Neurology, The 305 Hospital of the People's Liberation Army, Beijing, China
| | - Bo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiao Bai
- Department of Geriatrics, The Third Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shuang Zhang
- Department of Neurology, The 305 Hospital of the People's Liberation Army, Beijing, China
| | - Rui Xu
- Department of Neurology, The 305 Hospital of the People's Liberation Army, Beijing, China.
| |
Collapse
|
8
|
Wang Z, Jiang X, Zhang L, Chen H. Protective effects of Althaea officinalis L. extract against N-diethylnitrosamine-induced hepatocellular carcinoma in male Wistar rats through antioxidative, anti-inflammatory, mitochondrial apoptosis and PI3K/Akt/mTOR signaling pathways. Food Sci Nutr 2023; 11:4756-4772. [PMID: 37576045 PMCID: PMC10420783 DOI: 10.1002/fsn3.3455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma is the fourth cause of death due to cancer and includes 90% of liver tumors. Therefore, in this study, it was tried to show that Althaea officinalis L. flower extract (ALOF) can protect hepatocytes against N-diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Totally, 70 Wistar rats were divided into seven groups (n = 10/group) of sham, DEN, treatment with silymarin (SIL; DEN + SIL), treatment with ALOF (DEN + 250 and 500 ALOF), and cotreatment with SIL and ALOF (DEN + SIL + 250 and 500 ALOF). At the end of the study, the serum levels of liver indices (albumin, total protein, bilirubin, C-reactive protein, ALT, AST, and ALP), inflammatory cytokines (IL-6, IL-1β, IL-10, and TNF-α), and oxidants parameters (glutathione peroxidase [GPx], superoxide dismutase [SOD], catalase [CAT] activity along with nitric oxide [NO] levels) were evaluated. The level of Bax, Bcl-2, Caspase-3, p53, PI3K, mTOR, and AKT genes were measured. ALOF in cotreatment with SIL was able to regulate liver biochemical parameters, improve serum antioxidant indices, and decrease the level of proinflammatory cytokines significantly (p < .05). ALOF extract in both doses of 250 and 500 mg/kg in cotreatment with SIL caused a significant (p < .05) decrease in the p53-positive cells and a significant (p < .05) increase in Bcl-2-positive cells. Therefore, ALOF was able to modulate the proliferation of cancer cells and protect normal cells through the regulation of Bax/Bcl-2/p53 and PI3K/Akt/mTOR signaling pathways. It seems that ALOF can be used as a prodrug or complementary treatment in the protection of hepatocytes in induced damages caused by carcinogens.
Collapse
Affiliation(s)
- Zhenqian Wang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Xiao Jiang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Long Zhang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Han Chen
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| |
Collapse
|
9
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Wang L, Wang W, Han R, Liu Y, Wu B, Luo J. Protective effects of melatonin on myocardial microvascular endothelial cell injury under hypertensive state by regulating Mst1. BMC Cardiovasc Disord 2023; 23:179. [PMID: 37005605 PMCID: PMC10068162 DOI: 10.1186/s12872-023-03159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND This study explored the protective effects of melatonin on the hypertensive model in myocardial microvascular endothelial cells. METHODS Mouse myocardial microvascular endothelial cells were intervened with angiotensin II to establish hypertensive cell model and divided into control, hypertension (HP), hypertension + adenovirus negative control (HP + Ad-NC), hypertension + adenovirus carrying Mst1 (HP + Ad-Mst1), hypertension + melatonin (HP + MT), hypertension + adenovirus negative control + melatonin (HP + Ad-NC + MT), and hypertension + adenovirus carrying Mst1 + melatonin (HP + Ad-Mst1 + MT) groups. Autophagosomes were observed by transmission electron microscope. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was detected by flow cytometry. Oxidative stress markers of MDA, SOD and GSH-PX were measured. The expression of LC3 and p62 was detected by immunofluorescence. Expression levels of Mst1, p-Mst1, Beclin1, LC3, and P62 were detected with Western blot. RESULTS Compared with the control group, the autophagosomes in HP, HP + Ad-Mst1, and HP + Ad-NC groups were significantly reduced. Compared with HP group, the autophagosomes in HP + Ad-Mst1 group were significantly reduced. The apoptosis of HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the apoptosis of HP + Ad-Mst1 + MT group was significantly reduced. The ratio of JC-1 monomer in HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the mitochondrial membrane potential of HP + Ad-Mst1 + MT group was also significantly reduced. MDA content in HP + MT group was significantly reduced, but SOD and GSH-PX activities were significantly increased. Compared with HP + Ad-Mst1 group, MDA content in HP + Ad-Mst1 + MT group was significantly reduced, whereas SOD and GSH-PX activities were increased significantly. Mst1 and p-Mst1 proteins in HP + MT group were significantly reduced. Compared with HP + Ad-Mst1 group, Mst1 and p-Mst1 in HP + Ad-Mst1 + MT group were reduced. P62 level was significantly decreased, while Beclin1 and LC3II levels were significantly increased. P62 in HP + MT group was significantly reduced, while Beclin1 and LC3II were significantly increased. Compared with HP + Ad-Mst1 group, P62 in HP + Ad-Mst1 + MT group was significantly reduced, but Beclin1 and LC3II were significantly increased. CONCLUSION Melatonin may inhibit apoptosis, increase mitochondrial membrane potential, and increase autophagy of myocardial microvascular endothelial cells under hypertensive state via inhibiting Mst1 expression, thereby exerting myocardial protective effect.
Collapse
Affiliation(s)
- Lingpeng Wang
- Department of Cardiology, the First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830000, China
| | - Wei Wang
- Department of Internal Medicine, The First Affiliated Hospital, Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830000, China
| | - Ruimei Han
- Department of Cardiology, Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Yang Liu
- Department of Internal Medicine, The First Affiliated Hospital, Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830000, China
| | - Bin Wu
- Department of Geriatrics, Xinjiang Military General Hospital, 359 Youhao North Street, Urumqi, Xinjiang, 830000, China.
| | - Jian Luo
- Department of Internal Medicine, The First Affiliated Hospital, Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
12
|
Li R, Huang W. Yes-Associated Protein and Transcriptional Coactivator with PDZ-Binding Motif in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24021666. [PMID: 36675179 PMCID: PMC9861006 DOI: 10.3390/ijms24021666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Yes-associated protein (YAP, also known as YAP1) and its paralogue TAZ (with a PDZ-binding motif) are transcriptional coactivators that switch between the cytoplasm and nucleus and regulate the organ size and tissue homeostasis. This review focuses on the research progress on YAP/TAZ signaling proteins in myocardial infarction, cardiac remodeling, hypertension and coronary heart disease, cardiomyopathy, and aortic disease. Based on preclinical studies on YAP/TAZ signaling proteins in cellular/animal models and clinical patients, the potential roles of YAP/TAZ proteins in some cardiovascular diseases (CVDs) are summarized.
Collapse
|
13
|
Chen S, Sun P, Li Y, Shen W, Wang C, Zhao P, Cui H, Xue JY, Du GQ. Melatonin activates the Mst1-Nrf2 signaling to alleviate cardiac hypertrophy in pulmonary arterial hypertension. Eur J Pharmacol 2022; 933:175262. [PMID: 36100129 DOI: 10.1016/j.ejphar.2022.175262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Among pulmonary arterial hypertension (PAH) patients, right ventricular (RV) functioning has been considered a major determining factor for cardiac capacity and survival. However, despite the recognition of the clinical importance for preserving RV functioning, no effective treatments are currently available for RV failure. This study aims to suggest one such possible treatment, through investigating the cardio-protective capabilities of the anti-oxidant, melatonin (Mel), for treating adverse RV remodeling in PAH, along with its underlying mechanisms. Arginine vasopressin induced neonatal rat cardiomyocyte hypertrophy in vitro; in vivo, PAH was induced in rats through intraperitoneal monocrotaline (MCT) injections, and Mel was administered intraperitoneally 24 h prior to MCT. Mel reduced rat cardiomyocyte hypertrophy and mitochondrial oxidative stress in vitro by activating the Mst1-Nrf2 pathway, which were all reversed upon siRNA knockdown of Mst1. Likewise, in vivo, Mel pre-treatment significantly ameliorated MCT-induced deterioration in cardiac function, RV hypertrophy, fibrosis and dilation. These beneficial effects were also associated with Mst1-Nrf2 pathway up regulation and its associated reduction in oxidative stress, as evidenced by the decrease in RV malondialdehyde content. Notably, results from Mel treatment were similar, or even superior, to those obtained from N-acetyl cysteine (NAC), which has already been-confirmed as an anti-oxidative treatment for PAH. By contrast, co-treatment with the Mst1 inhibitor XMU-MP-1 reversed all of those Mel-associated beneficial effects. Our findings thus identified Mel as a potent cardio-protective agent against the onset of maladaptive RV remodeling, through enhancement of the anti-oxidative response via Mst1-Nrf2 pathway activation.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Wenqian Shen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Cui
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing-Yi Xue
- Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Guo-Qing Du
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Shang H, VanDusseldorp TA, Ma R, Zhao Y, Cholewa J, Zanchi NE, Xia Z. Role of MST1 in the regulation of autophagy and mitophagy: implications for aging-related diseases. J Physiol Biochem 2022; 78:709-719. [PMID: 35727484 DOI: 10.1007/s13105-022-00904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
As a key mechanism to maintain cellular homeostasis under stress conditions, autophagy/mitophagy is related to the occurrence of metabolic disorders, neurodegenerative diseases, cancer, and other aging-related diseases, but the relevant signal pathways regulating autophagy have not been clarified. Mammalian sterile 20-like kinase 1 (MST1) is a central regulatory protein of many metabolic pathways involved in the pathophysiological processes of aging and aging-related diseases and has become a critical integrator affecting autophagic signaling. Recent studies show that MST1 not only suppresses autophagy through directly phosphorylating Beclin-1 and/or inhibiting the protein expression of silent information regulator 1 (SIRT1) in the cytoplasm, but also inhibits BCL2/adenovirus E1B protein-interacting protein 3 (BNIP3)-, FUN14 domain containing 1 (FUNDC1)-, and Parkin (Parkinson protein 2)-mediated mitophagy by interacting with factors such as Ras association domain family 1A (RASSF1A). Indeed, a common pharmacological strategy for anti-aging is to induce autophagy/mitophagy through MST1 inhibition. This article reviews the role and mechanism of MST1 in regulating autophagy during aging, to provide evidence for the development of drugs targeting MST1.
Collapse
Affiliation(s)
- Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Ranggui Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Jason Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), Sao Luis, MA, Brazil
- Laboratory of Skeletal Muscle Biology and Human Strength Performance (LABFORCEH), Sao Luis, MA, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China.
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.
| |
Collapse
|