1
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
2
|
Caliendo F, Vitu E, Wang J, Kuo SH, Sandt H, Enghuus CN, Tordoff J, Estrada N, Collins JJ, Weiss R. Customizable gene sensing and response without altering endogenous coding sequences. Nat Chem Biol 2024:10.1038/s41589-024-01733-y. [PMID: 39266721 DOI: 10.1038/s41589-024-01733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
Synthetic biology aims to modify cellular behaviors by implementing genetic circuits that respond to changes in cell state. Integrating genetic biosensors into endogenous gene coding sequences using clustered regularly interspaced short palindromic repeats and Cas9 enables interrogation of gene expression dynamics in the appropriate chromosomal context. However, embedding a biosensor into a gene coding sequence may unpredictably alter endogenous gene regulation. To address this challenge, we developed an approach to integrate genetic biosensors into endogenous genes without modifying their coding sequence by inserting into their terminator region single-guide RNAs that activate downstream circuits. Sensor dosage responses can be fine-tuned and predicted through a mathematical model. We engineered a cell stress sensor and actuator in CHO-K1 cells that conditionally activates antiapoptotic protein BCL-2 through a downstream circuit, thereby increasing cell survival under stress conditions. Our gene sensor and actuator platform has potential use for a wide range of applications that include biomanufacturing, cell fate control and cell-based therapeutics.
Collapse
Affiliation(s)
- Fabio Caliendo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elvira Vitu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junmin Wang
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Shuo-Hsiu Kuo
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hayden Sandt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Casper Nørskov Enghuus
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jesse Tordoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neslly Estrada
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James J Collins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Kan YY, Chang YS, Liao WC, Chao TN, Hsieh YL. Roles of Neuronal Protein Kinase Cε on Endoplasmic Reticulum Stress and Autophagic Formation in Diabetic Neuropathy. Mol Neurobiol 2024; 61:2481-2495. [PMID: 37906389 PMCID: PMC11043183 DOI: 10.1007/s12035-023-03716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
In chronic diabetic neuropathy (DN), the cellular mechanisms of neuropathic pain remain unclear. Protein kinase C epsilon (PKCε) is an intracellular signaling molecule that mediates chronic pain. This paper addresses the long-term upregulated PKCε in DN associated with endoplasmic reticulum (ER) stress and autophagic formation and correlates to chronic neuropathic pain. We found that thermal hyperalgesia and mechanical allodynia course development were associated with PKCε upregulation after DN but not skin denervation. Pathologically, PKCε upregulation was associated with the expression of inositol-requiring enzyme 1α (IRE1α; ER stress-related molecule) and ubiquitin D (UBD), which are involved in the ubiquitin-proteasome system (UPS)-mediated degradation of misfolded proteins under ER stress. Manders coefficient analyses revealed an approximately 50% colocalized ratio for IRE1α(+):PKCε(+) neurons (0.34-0.48 for M1 and 0.40-0.58 for M2 Manders coefficients). The colocalized coefficients of UBD/PKCε increased (M1: 0.33 ± 0.03 vs. 0.77 ± 0.04, p < 0.001; M2: 0.29 ± 0.05 vs. 0.78 ± 0.04; p < 0.001) in the acute DN stage. In addition, the regulatory subunit p85 of phosphoinositide 3-kinase, which is involved in regulating insulin signaling, exhibited similar expression patterns to those of IRE1α and UBD; for example, it had highly colocalized ratios to PKCε. The ultrastructural examination further confirmed that autophagic formation was associated with PKCε upregulation. Furthermore, PKCεv1-2, a PKCε specific inhibitor, reverses neuropathic pain, ER stress, and autophagic formation in DN. This finding suggests PKCε plays an upstream molecule in DN-associated neuropathic pain and neuropathology and could provide a potential therapeutic target.
Collapse
Affiliation(s)
- Yu-Yu Kan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wen-Chieh Liao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tzu-Ning Chao
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
4
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Prasad MK, Mohandas S, Ramkumar KM. Dysfunctions, molecular mechanisms, and therapeutic strategies of pancreatic β-cells in diabetes. Apoptosis 2023:10.1007/s10495-023-01854-0. [PMID: 37273039 DOI: 10.1007/s10495-023-01854-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
Pancreatic beta-cell death has been established as a critical mediator in the progression of type 1 and type 2 diabetes mellitus. Beta-cell death is associated with exacerbating hyperglycemia and insulin resistance and paves the way for the progression of DM and its complications. Apoptosis has been considered the primary mechanism of beta-cell death in diabetes. However, recent pieces of evidence have implicated the substantial involvement of several other novel modes of cell death, including autophagy, pyroptosis, necroptosis, and ferroptosis. These distinct mechanisms are characterized by their unique biochemical features and often precipitate damage through the induction of cellular stressors, including endoplasmic reticulum stress, oxidative stress, and inflammation. Experimental studies were identified from PubMed literature on different modes of beta cell death during the onset of diabetes mellitus. This review summarizes current knowledge on the crucial pathways implicated in pancreatic beta cell death. The article also focuses on applying natural compounds as potential treatment strategies in inhibiting these cell death pathways.
Collapse
Affiliation(s)
- Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhong Y, Wang L, Jin R, Liu J, Luo R, Zhang Y, Zhu L, Peng X. Diosgenin Inhibits ROS Generation by Modulating NOX4 and Mitochondrial Respiratory Chain and Suppresses Apoptosis in Diabetic Nephropathy. Nutrients 2023; 15:2164. [PMID: 37432297 PMCID: PMC10181383 DOI: 10.3390/nu15092164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Diosgenin (DIO) is a dietary steroid sapogenin possessing multiple biological functions, such as the amelioration of diabetes. However, the remission effect of DIO on diabetic nephropathy (DN) underlying oxidative stress and cell apoptosis remains unclear. Here, the effect of DIO on ROS generation and its induced cell apoptosis was studied in vitro and in vivo. Renal proximal tubular epithelial (HK-2) cells were treated with DIO (1, 2, 4 µM) under high glucose (HG, 30 mM) conditions. DN rats were induced by a high-fat diet combined with streptozotocin, followed by administration of DIO for 8 weeks. Our data suggested that DIO relieved the decline of HK-2 cell viability and renal pathological damage in DN rats. DIO also relieved ROS (O2- and H2O2) production. Mechanistically, DIO inhibited the expression of NOX4 and restored mitochondrial respiratory chain (MRC) complex I-V expressions. Further, DIO inhibited mitochondrial apoptosis by ameliorating mitochondrial membrane potential (MtMP) and down-regulating the expressions of CytC, Apaf-1, caspase 3, and caspase 9, while up-regulating Bcl2 expression. Moreover, the ER stress and its associated cell apoptosis were inhibited through decreasing PERK, p-PERK, ATF4, IRE1, p-CHOP, and caspase 12 expressions. Collectively, DIO inhibited ROS production by modulating NOX4 and MRC complexes, which then suppressed apoptosis regulated by mitochondria and ER stress, thereby attenuating DN.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yinghan Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Lin Zhu
- Qinling National Botanical Garden, Xi’an 710061, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
7
|
Abstract
Diabetes has become one of the most prevalent endocrine and metabolic diseases that threaten human health, and it is accompanied by serious complications. Therefore, it is vital and pressing to develop novel strategies or tools for prewarning and therapy of diabetes and its complications. Fluorescent probes have been widely applied in the detection of diabetes due to the fact of their attractive advantages. In this report, we comprehensively summarize the recent progress and development of fluorescent probes in detecting the changes in the various biomolecules in diabetes and its complications. We also discuss the design of fluorescent probes for monitoring diabetes in detail. We expect this review will provide new ideas for the development of fluorescent probes suitable for the prewarning and therapy of diabetes in future clinical transformation and application.
Collapse
|
8
|
Fatima S, Ambreen S, Mathew A, Elwakiel A, Gupta A, Singh K, Krishnan S, Rana R, Khawaja H, Gupta D, Manoharan J, Besler C, Laufs U, Kohli S, Isermann B, Shahzad K. ER-Stress and Senescence Coordinately Promote Endothelial Barrier Dysfunction in Diabetes-Induced Atherosclerosis. Nutrients 2022; 14:2786. [PMID: 35889743 PMCID: PMC9323824 DOI: 10.3390/nu14142786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus is hallmarked by accelerated atherosclerosis, a major cause of mortality among patients with diabetes. Efficient therapies for diabetes-associated atherosclerosis are absent. Accelerated atherosclerosis in diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we directly compared the effects of high glucose and oxidized LDL, revealing that high glucose induced more pronounced responses in regard to maladaptive unfolded protein response (UPR), senescence, and vascular endothelial cell barrier disruption. Ex vivo, diabetic ApoE-/- mice displayed increased levels of senescence and UPR markers within atherosclerotic lesions compared with nondiabetic ApoE-/- mice. Activated protein C pretreatment maintained barrier permeability and prevented glucose-induced expression of senescence and UPR markers in vitro. These data suggest that high glucose-induced maladaptive UPR and associated senescence promote vascular endothelial cell dysfunction, which-however-can be reversed by aPC. Taken together, current data suggest that reversal of glucose-induced vascular endothelial cell dysfunction is feasible.
Collapse
Affiliation(s)
- Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Hamzah Khawaja
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Christian Besler
- Cardiology, Leipzig Heart Center, University of Leipzig, 04289 Leipzig, Germany;
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, 04103 Leipzig, Germany; (S.F.); (S.A.); (A.M.); (A.E.); (A.G.); (K.S.); (S.K.); (R.R.); (H.K.); (D.G.); (J.M.); (S.K.); (B.I.)
| |
Collapse
|