1
|
Kumari N, Mittal A, Rana A, Sharma AK. Identification of different extracts and phytoconstituents of Callistemon viminalis Cheel for their anti-anxiety effects based on pharmacognostic, toxicological, and pharmacological strategies. Toxicol Rep 2024; 13:101726. [PMID: 39309633 PMCID: PMC11416648 DOI: 10.1016/j.toxrep.2024.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Psychiatric disorders like depression and anxiety are global challenges, exacerbated by the limitations of synthetic medications, including addiction and toxic side effects. Methods This study meticulously investigated the pharmacognostic, phytochemical, toxicological, and pharmacological properties of Callistemon viminalis Cheel. Toxicological assessments, including hemocompatibility assays, LD50 studies, FOB analysis, biochemical parameters, and structural integrity of vital organs, were conducted on aqueous, methanolic, chloroform, and petroleum ether extracts of leaves and stems. Phytochemical profiling via qualitative tests and GC-MS screened extracts for molecular docking against key receptors. Categorically screened extracts were evaluated for therapeutic potential against LPS-induced anxiety in mice. Results Toxicological evaluations on experimental animals demonstrated the safety of various extracts, evidenced by no in vitro and in vivo toxicity. GC-MS identified numerous phytochemicals that passed "Lipinski's Rule of Five." These compounds were screened for molecular docking, revealing significant binding affinities with CB1, SERT, α2A-AR, and GABAβ2 receptors, suggesting potential therapeutic effects against anxiety. The phytoconstituents with the highest docking scores, particularly in aqueous and methanolic extracts, were further validated for their therapeutic efficacy. Preliminary analysis based on the EPM test and serum cortisol levels confirmed these extracts' superior therapeutic effectiveness. Conclusion In conclusion, aqueous and methanolic extracts of Callistemon viminalis Cheel's leaf and stem showed promising potential as therapeutic interventions for anxiety disorders.
Collapse
Affiliation(s)
- Neelam Kumari
- Department of Pharmacognosy and Phytochemistry, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, Haryana 122413, India
| | - Arun Mittal
- Department of Pharmacognosy and Phytochemistry, Hindu College of Pharmacy, Sonipat, Haryana 131001, India
| | - Arpana Rana
- Department of Pharmaceutical Chemistry, Advanced Institute of Pharmacy, Palwal, Haryana 121102, India
| | - Arun K. Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, Haryana 122413, India
| |
Collapse
|
2
|
Kurbatova IV, Topchieva LV, Dudanova OP, Shipovskaya AA. Role of MMP-2 and MMP-9 in the Relationship between Inflammation, Fibrosis, and Apoptosis during Progression of Non-Alcoholic Fatty Liver Disease and Diagnostic Significance of Plasma Levels of Their Active Forms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1998-2022. [PMID: 39647828 DOI: 10.1134/s0006297924110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/10/2024]
Abstract
MMP-2 and MMP-9 play an important role in pathogenesis of chronic liver diseases, participating in the processes of inflammation and fibrosis. Their role in progression of non-alcoholic fatty liver disease (NAFLD) is poorly understood. Analysis of MMP-2, -9 levels in the blood plasma of patients with different forms of NAFLD [liver steatosis (LS) and non-alcoholic steatohepatitis (NASH) of weak (-WA), moderate (MA), high (-HA) activity without pronounced fibrosis] was performed. Correlations between the levels of MMP-2, -9 and mRNA of the genes MMP2, MMP9, ADAM17, NLRP3, caspase 3 activity in peripheral blood leukocytes (PBL), TNFα, IL-6, sIL-6R, cytokeratin-18 fragments in plasma were assessed. In steatosis, the levels of MMP2 gene mRNA in PBL and MMP-2 in plasma are lower than in the control, and expression of the NLRP3 gene in PBL is increased relative to other groups. In the NASH-WA, the level of MMP-9 is higher than in the control, in LS, and in NASH-MA, which could be associated with activation of inflammation during transformation of LS into NASH. The plasma level of MMP-9 over 389.50 pg/ml has been shown to be diagnostically significant for identification of NASH-WA among the patients with steatosis (AUC ROC = 0.818, 95% CI = 0.689-0.948, p < 0.001). In NAFLD, the level of MMP-9 could be associated not only with inflammation, but also with apoptosis. ADAM17 probably plays a certain role in this regard. In the advanced NASH, hepatocyte apoptosis is increased, the level of caspase 3 activity in PBL is increased, the level of MMP-9 in the blood is reduced to the level of the control and LS. In the NASH-HA, the level of mRNA of the ADAM17 gene in PBL is increased compared to the control, NASH-WA, and NASH-MA. Thus, MMP-2 and MMP-9 are involved in pathogenesis of NAFLD already at the early stages and their level in blood could be associated with the presence and severity of inflammation in the liver parenchyma.
Collapse
Affiliation(s)
- Irina V Kurbatova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia.
| | - Lyudmila V Topchieva
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia
| | - Olga P Dudanova
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| | - Anastasia A Shipovskaya
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| |
Collapse
|
3
|
Attia H, Badr A, Alshehri O, Alsulaiman W, Alshanwani A, Alshehri S, Arafa M, Hasan I, Ali R. The Protective Effects of Vitamin B Complex on Diclofenac Sodium-Induced Nephrotoxicity: The Role of NOX4/RhoA/ROCK. Inflammation 2024; 47:1600-1615. [PMID: 38413451 DOI: 10.1007/s10753-024-01996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Diclofenac sodium (DIC) is a widely used non-steroidal anti-inflammatory drug. Unfortunately, its prolonged use is associated with nephrotoxicity due to oxidative stress, inflammation, and fibrosis. We aimed to investigate the nephroprotective effects of vitamin B complex (B1, B6, B12) against DIC-induced nephrotoxicity and its impact on NOX4/RhoA/ROCK, a pathway that plays a vital role in renal pathophysiology. Thirty-two Wistar rats were divided into four groups: (1) normal control; (2) vitamin B complex (16 mg/kg B1, 16 mg/kg B6, 0.16 mg/kg B12, intraperitoneal); (3) DIC (10 mg/kg, intramuscular); and (4) DIC plus vitamin B complex group. After 14 days, the following were assayed: serum renal biomarkers (creatinine, blood urea nitrogen, kidney injury molecule-1), oxidative stress, inflammatory (tumor necrosis factor-α, interleukin-6), and fibrotic (transforming growth factor-β) markers as well as the protein levels of NOX4, RhoA, and ROCK. Structural changes, inflammatory cell infiltration, and fibrosis were detected using hematoxylin and eosin and Masson trichrome stains. Compared to DIC, vitamin B complex significantly decreased the renal function biomarkers, markers of oxidative stress and inflammation, and fibrotic cytokines. Glomerular and tubular damage, inflammatory infiltration, and excessive collagen accumulation were also reduced. Protein levels of NOX4, RhoA, and ROCK were significantly elevated by DIC, and this elevation was ameliorated by vitamin B complex. In conclusion, vitamin B complex administration could be a renoprotective approach during treatment with DIC via, at least in part, suppressing the NOX4/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia.
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Orjuwan Alshehri
- College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Waad Alsulaiman
- College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Aliah Alshanwani
- Department of Physiology, College of Medicine, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Maha Arafa
- Pathology Department, College of Medicine, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Iman Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Rehab Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
4
|
D’Haese S, Claes L, Jaeken E, Deluyker D, Evens L, Heeren E, Haesen S, Vastmans L, Lambrichts I, Wouters K, Schalkwijk CG, Hansen D, Eijnde BO, Bito V. Pyridoxamine Alleviates Cardiac Fibrosis and Oxidative Stress in Western Diet-Induced Prediabetic Rats. Int J Mol Sci 2024; 25:8508. [PMID: 39126079 PMCID: PMC11312841 DOI: 10.3390/ijms25158508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) are at an increased risk for heart failure, yet preventive cardiac care is suboptimal in this population. Pyridoxamine (PM), a vitamin B6 analog, has been shown to exert protective effects in metabolic and cardiovascular diseases. In this study, we aimed to investigate whether PM limits adverse cardiac remodeling and dysfunction in rats who develop T2DM. Male rats received a standard chow diet or Western diet (WD) for 18 weeks to induce prediabetes. One WD group received additional PM (1 g/L) via drinking water. Glucose tolerance was assessed with a 1 h oral glucose tolerance test. Cardiac function was evaluated using echocardiography and hemodynamic measurements. Histology on left ventricular (LV) tissue was performed. Treatment with PM prevented the increase in fasting plasma glucose levels compared to WD-fed rats (p < 0.05). LV cardiac dilation tended to be prevented using PM supplementation. In LV tissue, PM limited an increase in interstitial collagen deposition (p < 0.05) seen in WD-fed rats. PM tended to decrease 3-nitrotyrosine and significantly lowered 4-hydroxynonenal content compared to WD-fed rats. We conclude that PM alleviates interstitial fibrosis and oxidative stress in the hearts of WD-induced prediabetic rats.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Lisa Claes
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Eva Jaeken
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Lize Evens
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Ellen Heeren
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Sibren Haesen
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Lotte Vastmans
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Dominique Hansen
- UHasselt, Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Centre, Agoralaan, 3590 Diepenbeek, Belgium;
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - BO Eijnde
- SMRc-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine & Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
- Division of Sport Science, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| |
Collapse
|
5
|
Badr AM, Alotaibi HN, El-Orabi N. Dibenzazepine, a γ-Secretase Enzyme Inhibitor, Protects Against Doxorubicin-Induced Cardiotoxicity by Suppressing NF-κB, iNOS, and Hes1/Hey1 Expression. Inflammation 2024:10.1007/s10753-024-02046-x. [PMID: 39078585 DOI: 10.1007/s10753-024-02046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug; however, its cardiotoxicity and resistance compromise its therapeutic index. The Notch pathway was reported to contribute to DOX cancer resistance. The role of Notch pathway in DOX cardiotoxicity has not been identified yet. Notch receptors are characterized by their extracellular (NECD) and intracellular (NICD) domains (NICD). The γ-secretase enzyme helps in the release of NICD. Dibenzazepine (DBZ) is a γ-secretase inhibitor. The present study investigated the effect of Notch pathway inhibition on DOX cardiotoxicity. Twenty-four male Wistar rats were divided into four groups: control group, DOX group, acute cardiotoxicity was induced by a single dose of DOX (20 mg/kg) i.p., DOX (20 mg/kg) plus DBZ group, and DBZ group. The third and fourth groups received i.p. injection of DBZ daily for 14 days at 2 mg/kg dose. DOX cardiotoxicity increased the level of serum creatine kinase-MB and cardiac troponin I, and it was confirmed by the histopathological examination. Moreover, the antioxidants glutathione peroxidase and superoxide dismutase levels were markedly decreased, and the inflammatory markers, inducible nitric oxide synthase, nuclear factor-ķB, and tumor necrosis factor-α were markedly increased. Furthermore, DOX increased BAX protein and downregulated BCL-2. In addition, DOX upregulated Notch pathway-related parameters: Hes1 and Hey1 mRNA levels, and increased Hes1 protein levels. DBZ ameliorated DOX-induced cardiotoxicity, evidenced by reducing the cardiac injury biomarkers, improving cardiac histopathological changes, correcting antioxidant levels, and reducing inflammatory and apoptotic proteins. Our study indicates the protective effect of Notch inhibitor against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Hind N Alotaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Naglaa El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
6
|
Román-Sagüillo S, Quiñones Castro R, Juárez-Fernández M, Soluyanova P, Stephens C, Robles-Díaz M, Jorquera Plaza F, González-Gallego J, Martínez-Flórez S, García-Mediavilla MV, Nistal E, Jover R, Sánchez-Campos S. Idiosyncratic Drug-Induced Liver Injury and Amoxicillin-Clavulanate: Spotlight on Gut Microbiota, Fecal Metabolome and Bile Acid Profile in Patients. Int J Mol Sci 2024; 25:6863. [PMID: 38999973 PMCID: PMC11241776 DOI: 10.3390/ijms25136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Several hepatic disorders are influenced by gut microbiota, but its role in idiosyncratic drug-induced liver injury (iDILI), whose main causative agent is amoxicillin-clavulanate, remains unknown. This pioneering study aims to unravel particular patterns of gut microbiota composition and associated metabolites in iDILI and iDILI patients by amoxicillin-clavulanate (iDILI-AC). Thus, serum and fecal samples from 46 patients were divided into three study groups: healthy controls (n = 10), non-iDILI acute hepatitis (n = 12) and iDILI patients (n = 24). To evaluate the amoxicillin-clavulanate effect, iDILI patients were separated into two subgroups: iDILI non-caused by amoxicillin-clavulanate (iDILI-nonAC) (n = 18) and iDILI-AC patients (n = 6). Gut microbiota composition and fecal metabolome plus serum and fecal bile acid (BA) analyses were performed, along with correlation analyses. iDILI patients presented a particular microbiome profile associated with reduced fecal secondary BAs and fecal metabolites linked to lower inflammation, such as dodecanedioic acid and pyridoxamine. Moreover, certain taxa like Barnesiella, Clostridia UCG-014 and Eubacterium spp. correlated with significant metabolites and BAs. Additionally, comparisons between iDILI-nonAC and iDILI-AC groups unraveled unique features associated with iDILI when caused by amoxicillin-clavulanate. In conclusion, specific gut microbiota profiles in iDILI and iDILI-AC patients were associated with particular metabolic and BA status, which could affect disease onset and progression.
Collapse
Affiliation(s)
- Sara Román-Sagüillo
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
| | - Raisa Quiñones Castro
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, 24008 León, Spain
| | - María Juárez-Fernández
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Polina Soluyanova
- Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain
| | - Camilla Stephens
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Mercedes Robles-Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Francisco Jorquera Plaza
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, 24008 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier González-Gallego
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Susana Martínez-Flórez
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
| | - María Victoria García-Mediavilla
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Nistal
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain
| | - Sonia Sánchez-Campos
- Instituto Universitario de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Tanhapour M, Nourbakhsh M, Panahi G, Golestani A. The role of Sirtuin 1 in regulation of fibrotic genes expression in pre-adipocytes. J Diabetes Metab Disord 2024; 23:1081-1091. [PMID: 38932833 PMCID: PMC11196476 DOI: 10.1007/s40200-024-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 06/28/2024]
Abstract
Purpose Considering inhibition of pre-adipocyte cells differentiation in adipose tissue fibrosis, we aimed to explore whether Sirt1 and Hif-1α in pre-adipocytes have a significant effect on fibrotic gene expression. Methods 3T3-L1 pre-adipocytes were transfected with SIRT1-specific siRNA, confirmed by real-time polymerase chain reaction (RT-PCR) and western blotting. Additionally, cells were treated with varying concentrations of resveratrol and sirtinol as the activator and inhibitor of Sirt1, respectively. Involvement of Hif-1α was evaluated by treatment with echinomycin. Subsequently, we assessed the gene and protein expressions related to fibrosis in the extracellular matrix of adipose tissue, including collagen VI (Col VI), lysyl oxidase (Lox), matrix metalloproteinase-2 (Mmp-2), Mmp-9, and osteopontin (Opn) in pre-adipocytes through RT-PCR and western blot. Results The current study demonstrated that Sirt1 knockdown and reduced enzyme activity significantly increased the expression of Col VI, Lox, Mmp-2, Mmp-9, and Opn genes in the treated 3T3-L1 cells compared to the control group. Interestingly, resveratrol significantly decreased the gene expression related to the fibrosis pathway. Inhibition of Hif-1α by echinomycin led to a significant reduction in Col VI, Mmp-2, and Mmp-9 gene expression in the treated group compared to the control. Conclusion This study highlights that down-regulation of Sirt1 might be a predisposing factor in the emergence of adipose tissue fibrosis by enhancing the expression of extracellular matrix (ECM) components. Activation of Sirt1, similar to suppressing of Hif-1α in pre-adipocytes may be a beneficial approach for attenuating fibrotic gene expression. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01389-4.
Collapse
Affiliation(s)
- Maryam Tanhapour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pumphrey SA, Harman CD, Anderson AL, Sweigart B, Komáromy AM. Relative ability of aqueous humor from dogs with and without primary angle-closure glaucoma and ADAMTS10 open-angle glaucoma to catalyze or inhibit collagenolysis. Vet Ophthalmol 2024; 27:238-247. [PMID: 37658474 PMCID: PMC10904665 DOI: 10.1111/vop.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE The objective of the study was to compare the ability of aqueous humor (AH) from dogs with primary angle-closure glaucoma (CPACG), companion dogs without overt evidence of CPACG, and Beagles with and without ADAMTS10 open-angle glaucoma (ADAMTS10-OAG) to catalyze or inhibit collagenolysis. ANIMALS STUDIED Seventeen normal pet dogs, 27 dogs with CPACG, 19 Beagles with ADAMTS10-OAG, and 4 unaffected Beagles. PROCEDURES A fluorescein-based substrate degradation assay was used to assess AH proteolytic capacity. Samples were then assayed using the same substrate degradation assay, with recombinant activated matrix metalloproteinase-2 (MMP-2) added to measure protease inhibition effects. RESULTS For the protease activity assay, relative fluorescence (RF) for AH from normal pet dogs was 13.28 ± 2.25% of control collagenase while RF for AH from dogs with CPACG was 17.47 ± 4.67%; RF was 8.57 ± 1.72% for ADAMTS10-OAG Beagles and 7.99 ± 1.15% for unaffected Beagles. For the MMP-2 inhibition assay, RF for AH from normal dogs was 34.96 ± 15.04% compared to MMP-2 controls, while RF from dogs with CPACG was 16.69 ± 7.95%; RF was 85.85 ± 13.23% for Beagles with ADAMTS10-OAG and 94.51 ± 8.36% for unaffected Beagles. Significant differences were found between dogs with CPACG and both normal pet dogs and dogs with ADAMTS10-OAG and between normal pet dogs and both groups of Beagles. CONCLUSIONS AH from dogs with CPACG is significantly more able to catalyze proteolysis and inhibit MMP-2 than AH from normal dogs or dogs with ADAMTS10-OAG. Results suggest that pathogenesis may differ between CPACG and ADAMTS10-OAG.
Collapse
Affiliation(s)
- Stephanie A. Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Christine D. Harman
- Michigan State University Veterinary Medical Center, East Lansing, Michigan, USA
| | - Amanda L. Anderson
- Michigan State University Veterinary Medical Center, East Lansing, Michigan, USA
| | - Benjamin Sweigart
- Biostatistics, Epidemiology, and Research Design (BERD) Center, Tufts Medical Center, Boston, MA, USA
| | - András M. Komáromy
- Michigan State University Veterinary Medical Center, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Singh J, Bisht P, Srivastav S, Kumar Y, Sharma V, Kumar A, Akhtar MS, Khan MF, Aldosari SA, Yadav S, Yadav NK, Mukherjee M, Sharma AK. Amelioration of endothelial integrity by 3,5,4'-trihydroxy-trans-stilbene against high-fat-diet-induced obesity and -associated vasculopathy and myocardial infarction in rats, targeting TLR4/MyD88/NF-κB/iNOS signaling cascade. Biochem Biophys Res Commun 2024; 705:149756. [PMID: 38460440 DOI: 10.1016/j.bbrc.2024.149756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Priyanka Bisht
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Srishti Srivastav
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Yash Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Vikash Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Ashish Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Snehlata Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Nirmala K Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India.
| |
Collapse
|
10
|
Ali SA, Datusalia AK. Protective effects of Tinospora cordifolia miers extract against hepatic and neurobehavioral deficits in thioacetamide-induced hepatic encephalopathy in rats via modulating hyperammonemia and glial cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117700. [PMID: 38176666 DOI: 10.1016/j.jep.2023.117700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (TC) a potential medicinal herb, has been ethnobotanically used as an eco-friendly supplement to manage various diseases, including cerebral fever. Earlier studies have shown that TC exhibits diverse beneficial effects, including hepatoprotective and neuroprotective effects. However, the effects of TC remain unexplored in animal models of encephalopathy including hepatic encephalopathy (HE). AIM OF THE STUDY To evaluate the effects of TC stem extract against thioacetamide (TAA)-induced behavioural and molecular alterations in HE rats. METHODS AND MATERIALS The extract was preliminarily screened through phytochemical and HR-LC/MS analysis. Animals were pre-treated with TC extract at doses 30 and 100 mg/kg, orally. Following 7 days of TC pre-treatment, HE was induced by administering TAA (300 mg/kg, i. p. thrice). Behavioural assessments were performed after 56 h of TAA first dose. The animals were then sacrificed to assess biochemical parameters in serum, liver and brain. Liver tissue was used for immunoblotting and histological studies to evaluate inflammatory and fibrotic signalling. Moreover, brain tissue was used to evaluate brain edema, activation of glial cells (GFAP, IBA-1) and NF-κB/NLRP3 downstream signalling via immunoblotting and immunohistochemical analysis in cortex and hippocampus. RESULTS The pre-treatment with TC extract effective mitigated TAA-induced behavioural alterations, lowered serum LFT (AST, ALT, ALP, bilirubin) and oxidative stress markers in liver and brain. TC treatment significantly modulated hyperammonemia, cerebral edema and preserved the integrity of BBB proteins in HE animals. TC treatment attenuated TAA-induced histological changes, tissue inflammation (pNF-κB (p65), TNF-α, NLRP3) and fibrosis (collagen, α-SMA) in liver. In addition, immunoblotting analysis revealed TC pre-treatment inhibited fibrotic proteins such as vimentin, TGF-β1 and pSmad2/3 in the liver. Our study further showed that TC treatment downregulated the expression of MAPK/NF-κB inflammatory signalling, as well as GFAP and IBA-1 (glial cell markers) in cortex and hippocampus of TAA-intoxicated rats. Additionally, TC-treated animals exhibited reduced expression of caspase3/9 and BAX induced by TAA. CONCLUSION This study revealed promising insights on the protective effects of TC against HE. The findings clearly demonstrated that the significant inhibition of MAPK/NF-κB signalling and glial cell activation could be responsible for the observed beneficial effects of TC in TAA-induced HE rats.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
11
|
El-Demerdash FM, Al Mhanna AB, El-Sayed RA, Mohamed TM, Salem MM. Hepatoprotective impact of Nigella sativa silver nanocomposite against genotoxicity, oxidative stress, and inflammation induced by thioacetamide. Tissue Cell 2024; 87:102332. [PMID: 38367325 DOI: 10.1016/j.tice.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Protection from liver damage and the repercussion of that harm is thought to be crucial for reducing the number of deaths each year. This work was developed to evaluate the possible role of silver nanocomposite prepared using Nigella sativa (N. sativa) aqueous extract against the hepatic damage brought on by thioacetamide (TAA), with particular attention to how they affect the NF-κβ, TNF-α, IL-1β, and COX-2 signaling pathways. There were seven groups of male Wistar rats used as follows: control, saline, N. sativa aqueous extract (NSAE; 200 mg/kg/d), N. sativa silver nanocomposite (NS-AgNC; 0.25 mg/kg/d), TAA (100 mg/kg; thrice weekly), NSAE + TTA, and NS-AgNC + TAA, respectively. The experiment continued for six weeks. The results showed that NS-AgNPs significantly enhanced liver functions (p<0.05) (albumin, ALP, LDH, AST, total protein, ALT, and globulin) and oxidant/antioxidant biomarkers (p<0.05) (H2O2, MDA, PCC, NO, SOD, CAT, GPx, GR, GST and, GSH), contrasted with TAA group. Moreover, a significant (p<0.05) downregulation of the gene expressions (COX-2, TNF-α, IL-1β, and NF-κβ) was also achieved by using silver nanocomposite therapy. These findings have been supported by histological analysis. Collectively, NS-AgNC exhibits more prominent and well-recognized protective impacts than NSAE in modulating the anti-inflammatory, genotoxicity and oxidative stress effects against TAA-induced liver injuries.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Ansam B Al Mhanna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, 31257, Tanta, Egypt.
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, 31257, Tanta, Egypt.
| |
Collapse
|
12
|
Yadav NK, Yadav R. Medicinal Effects, Phytochemistry, Pharmacology of Euphorbia prostrata and Promising Molecular Mechanisms. Chin J Integr Med 2024; 30:181-192. [PMID: 36653685 DOI: 10.1007/s11655-023-3544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 01/20/2023]
Abstract
Euphorbiaceae is a large family of dicotyledonous angiosperms with diverse genera including Euphorbia prostrata (E. prostrata). Current research has provided scientific evidence for traditional uses of E. prostrata against diverse pathological conditions such as anti-hemorrhoidal, anti-inflammatory, analgesic, wound healing, antioxidant, antibacterial, leishmanicidal, antitumor activity, and so on. The phytochemical screening has revealed the presence of glycosides, phytosterols, flavonoids, polyphenols, tannins, and anthraquinones with chemical structures elucidation of their respective compounds. The uniqueness of such multifactorial compounds present in this species endorses it as the potent therapeutic or prophylactic choice for several fatal diseases. Although ethnomedical applications served as a significant citation for pharmacology, the molecular mechanism has not been reviewed yet. The present paper provides a comprehensive review of research outcomes, pharmacology, toxicology, and molecular signaling of phytochemicals of E. prostrata species as a reference for relevant researchers. The study of bioactive compounds in crude extracts and fractions, the demonstration of primary mechanisms of pharmacology, along with the addition of toxicity, and clinical trials, should be conceded in depth. This review underlines the E. prostrata species that can be a promising phytomedicine since we are committed to excavating more intensely into their pharmacological role.
Collapse
Affiliation(s)
- Nirmala Kumari Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
- National Forensic Sciences University, Tripura Campus, Agartala, 799001, Tripura, India.
| |
Collapse
|
13
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Mohamed Azar KAH, Ezhilarasan D, Shree Harini K, Karthick M, Uthirappan M. Coleus vettiveroides ethanolic root extract protects against thioacetamide-induced acute liver injury in rats. Cell Biochem Funct 2023; 41:876-888. [PMID: 37605364 DOI: 10.1002/cbf.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Acute liver injury is caused by various factors, including oxidative stress and inflammation. Coleus vettiveroides, an ayurvedic medicinal plant, is known to possess antioxidant, antibacterial, and antidiabetic properties. In this current study, we investigated the protective effect of C. vettiveroides ethanolic root extract (CVERE) against thioacetamide (TAA)-induced acute liver injury in rats. A single dose of TAA (300 mg/kg, b.w., i.p.) was administered to induce acute liver injury. The treatment groups of rats were concurrently treated with CVERE (125 and 250 mg/kg, b.w., p.o.) and silymarin (100 mg/kg, b.w., p.o.), respectively. After 24 h of the experimental period, TAA-induced liver injury was confirmed by increased activity of serum transaminases and malondialdehyde levels in liver tissue, decreased levels of antioxidants, upregulated expression of the inflammatory marker gene, and altered liver morphology. Whereas CVERE simultaneous treatment inhibited hepatic injury and prevented the elevation of serum aspartate and alanine transaminases, alkaline phosphatase, and lactate dehydrogenase activities. CVERE attenuated TAA-induced oxidative stress by suppressing lipid peroxidation and restoring antioxidants such as superoxide dismutase, catalase, and reduced glutathione. Further, CVERE treatment was found to inhibit nuclear factor κB-mediated inflammatory signaling, as indicated by downregulated pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-1β. Our findings suggest that CVERE prevents TAA-induced acute liver injury by targeting oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Munusamy Karthick
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Mani Uthirappan
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Guo W, Cui S, Tang X, Zhang Q, Zhao J, Mao B, Zhang H. Intestinal Microbiomics and Metabolomics Insights into the Hepatoprotective Effects of Lactobacillus paracasei CCFM1222 Against the Acute Liver Injury in Mice. Probiotics Antimicrob Proteins 2023; 15:1063-1077. [PMID: 36056292 DOI: 10.1007/s12602-022-09986-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
In recent years, acute liver injury (ALI) has received wide-range attention in the world due to its relatively high morbidity and mortality. This study aimed to explore the hepatoprotective effect of Lactobacillus paracasei CCFM1222 against lipopolysaccharide (LPS)-induced ALI mice and further elaborate its mechanism of action from the perspective of intestinal microbiomics and metabolomics. The results displayed that L. paracasei CCFM1222 pretreatment significantly decreased the serum ALT, and AST levels, inhibited the releases of hepatic TNF-α, IL-1β, and IL-6 levels, and activated the SOD, CAT, and GSH-Px activities in LPS-treated mice. The cecal short-chain fatty acid (SCFAs) levels were increased in LPS-treated mice with L. paracasei CCFM1222 pretreatment. In addition, L. paracasei CCFM1222 pretreatment remarkably shifted the intestinal microbiota composition, including the higher abundance of Faecalibaculum, Bifidobacterium, and lower abundance of the Prevotellaceae NK3B31 group, which is positively associated with the cecal propionic, butyric, valeric, isobutyric, and isovaleric acids. The metabolomics based on UPLC-QTOF/MS revealed that L. paracasei CCFM1222 pretreatment significantly regulated the composition of feces metabolites in LPS-treated mice, especially the potential biomarker-related butanoate metabolism, vitamin B6 metabolism, D-glutamine and D-glutamate metabolism, tryptophan metabolism, caffeine metabolism, arginine biosynthesis, arginine, and proline metabolism. Moreover, L. paracasei CCFM1222 pretreatment remarkably regulated the expression of gene-associated ALI (including Tlr4, Myd88, Nf-kβ, iNOS, Cox2, Iκ-Bα, Nrf2, and Sirt-1). In conclusion, these results suggest the possibility that L. paracasei CCFM1222 supplementation has beneficial effects on preventing the occurrence and development of ALI by inhibiting the inflammatory responses and altering intestinal microbiota composition and their metabolites.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
16
|
Wu K, Lu X, Fang F, Liu J, Gao J, Zheng Y. Comparative Study on In Vitro Fermentation Characteristics of the Polysaccharides Extracted from Bergamot and Fermented Bergamot. Foods 2023; 12:2878. [PMID: 37569146 PMCID: PMC10418462 DOI: 10.3390/foods12152878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to compare the in vitro fermentation characteristics of polysaccharides from Bergamot and Laoxianghuang (fermented 1, 3, and 5 years from bergamot) using the stable in vitro human gut fermentation model. Results showed that bergamot polysaccharide (BP) and Laoxianghuang polysaccharides (LPs) with different surface topographies were characterized as mannorhamnan (comprising Mannose and Rhamnose) and polygalacturonic acid (comprising Galacturonic acid and Galactose), respectively. The distinct effects on the gut microbiota and metabolome of BP and LPs may be due to their different monosaccharide compositions and surface morphologies. BP decreased harmful Fusobacterium and promoted beneficial Bifidobacterium, which was positively correlated with health-enhancing metabolites such as acetic acid, propionic acid, and pyridoxamine. Lactobacillus, increased by LPs, was positively correlated with 4-Hydroxybenzaldehyde, acetic acid, and butyric acid. Overall, this study elucidated gut microbiota and the metabolome regulatory discrepancies of BP and LPs, potentially contributing to their development as prebiotics in healthy foods.
Collapse
Affiliation(s)
- Kaizhang Wu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521031, China;
- Department of Food Science, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (F.F.); (J.L.)
| | - Xingyu Lu
- Department of Food Science, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (F.F.); (J.L.)
| | - Fang Fang
- Department of Food Science, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (F.F.); (J.L.)
| | - Juncheng Liu
- Department of Food Science, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (F.F.); (J.L.)
| | - Jie Gao
- Department of Food Science, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (F.F.); (J.L.)
| | - Yang Zheng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521031, China;
| |
Collapse
|
17
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
18
|
Ezhilarasan D. Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104093. [PMID: 36870405 DOI: 10.1016/j.etap.2023.104093] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Thioacetamide (TAA) undergoes bioactivation in the liver by the CYP450 2E1 enzyme, resulting in the formation of TAA-S-oxide and TAA-S-dioxide. TAA-S-dioxide induces oxidative stress via lipid peroxidation of the hepatocellular membrane. A single TAA dose (50-300 mg/kg) administration initiates hepatocellular necrosis around the pericentral region after its covalent binding to macromolecules in the liver. Intermittent TAA administration (150-300 mg/kg, weekly thrice, for 11-16 weeks) activates transforming growth factor (TGF)-β/smad3 downstream signaling in injured hepatocytes, causing hepatic stellate cells (HSCs) to acquire myofibroblast like phenotype. The activated HSCs synthesize a variety of extracellular matrix, leading to liver fibrosis, cirrhosis, and portal hypertension. The TAA induced liver injury varies depending on the animal model, dosage, frequency, and routes of administration. However, TAA induces hepatotoxicity in a reproducible manner, and it is an ideal model to evaluate the antioxidant, cytoprotective, and antifibrotic compounds in experimental animals.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
19
|
Duan Y, Yang Y, Zhang Z, Xing Y, Li H. Toxicity of titanium dioxide nanoparticles on the histology, liver physiological and metabolism, and intestinal microbiota of grouper. MARINE POLLUTION BULLETIN 2023; 187:114600. [PMID: 36652857 DOI: 10.1016/j.marpolbul.2023.114600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2) are a common environmental pollutant threatening aquatic animals. The natural habitats and cultured environments of groupers make them vulnerable to nanoparticle pollution. In this study, hybrid grouper juveniles were separately exposed to 1 or 10 mg/L nano-TiO2 for 14 days, and the toxicological response of these groupers were investigated. After nano-TiO2 exposure, the liver showed apparent histopathology and intestinal goblet cells were also affected. The transcription of antioxidant and apoptosis-related genes were down-regulated, and the inflammatory factor TNF-α was up-regulated in the liver. The metabolite patterns of the liver were disturbed, especially amino acid metabolism. The diversity and composition of the intestinal microbiota were also altered especially the genera Lactobacillus and Nautella. The changes of several intestinal bacteria were correlated with the immune factors and metabolites of respective hosts. We concluded that nano-TiO2 exposure negatively affects the physiological homeostasis of groupers.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| |
Collapse
|
20
|
Sharma AK, Mukherjee M, Kumar A, Sharma G, Tabassum F, Akhtar MS, Imam MT, Almalki ZS. Preliminary investigation on impact of intergenerational treatment of resveratrol endorses the development of 'super-pups'. Life Sci 2023; 314:121322. [PMID: 36574941 DOI: 10.1016/j.lfs.2022.121322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Redox biology balances free radical generation and scavenging systems, whereas an imbalanced cellular redox can hasten the onset of various diseases and be regarded as a Pandora's box of ailments. The current study aims to assess the pathophysiological impact of intergenerational resveratrol treatment on diabetes-related cognitive and cardio-renal disorders. MATERIAL AND METHOD Diabetic rats of the first, second, and third generations were subjected to an intergenerational treatment of resveratrol (20 mg/kg/p.o./day) for 5 months. During this period, the second generation of animals (pups of the first generation) was produced. After the adulthood of second-generation rats, they used to produce third-generation rats. The rats of each generation were evaluated for physiological parameters (BMI, litter size, and life expectancy) and the pathological impact of streptozotocin (55 mg/kg/i.p.), cognitive dysfunctions, and cardio-renal injury. RESULTS The intergenerational treatment of resveratrol significantly reduced litter size and improved anthropometric parameters, life expectancy, and blood glucose levels in diabetic animals. Resveratrol treatment ameliorates oxidative stress as measured by increased serum nitrite/nitrate concentrations, SOD activity, reduced glutathione concentrations, total serum antioxidant capacity, and diminished serum TBARS level in diabetic animals. Furthermore, diabetic rats receiving intergenerational resveratrol treatment showed improved cognitive behaviour and cardio-renal functionality when compared to the disease control group. CONCLUSION The intergenerational treatment of resveratrol improved the physiological traits and vital abilities of the heart, kidney, and brain, which endorse its antioxidant potential. Surprisingly, resveratrol treatment increases the second and third generations' resistance to neurobehavioral changes, diabetes, and -associated cardio-renal dysfunction, implying that these generations are "super-pups."
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201303, India
| | - Ashish Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Gunjan Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private College, Al Qassim 51418, Saudi Arabia
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
21
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|