1
|
Shi Z, Zhang J, Ma H, Jing L. Network pharmacology and in vivo experimental studies reveal the protective effects of 6-hydroxygenistein against hypobaric hypoxia-induced brain injury. Heliyon 2024; 10:e36241. [PMID: 39253263 PMCID: PMC11382173 DOI: 10.1016/j.heliyon.2024.e36241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Hypobaric hypoxia-induced brain injury (HHBI) is a progressive neurodegenerative disease that has still not been effectively treated. There are several different mechanisms involved in HHBI. Among them, oxidative stress and inflammation response predominate. 6-hydroxygenistein (4',5,6,7-tetrahydroxyisoflavone, 6-OHG) is a hydroxylated derivative of genistein with excellent antioxidant activity, however, the protective effects and underlying mechanisms against HHBI have not been clarified. In the present study, we aimed to explore the mechanisms of action of 6-OHG on HHBI using network pharmacology and experimental validation. Network pharmacology analysis revealed 186 candidate targets through the intersection of the targets of 6-OHG and related genes in HHBI, which were mainly enriched in oxidative stress and inflammation response. Moreover, key targets of 6-OHG against HHBI, namely Nrf2 and NF-κB, were screened and found to be closely related to oxidative stress and inflammation response. Subsequent in vivo experiments revealed that 6-OHG treatment attenuated oxidative stress and inflammation response, prevented energy disorder and apoptosis as well as maintained the BBB integrity in HHBI mice. In addition, 6-OHG administration up-regulated the expressions of Nrf2 and HO-1 and down-regulated the expressions of NF-κB and NLRP3, thereby inhibiting oxidative stress and inflammation response. Hence, the present study demonstrates that 6-OHG protects against HHBI by stimulating the Nrf2/HO-1 signaling pathway and suppressing the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Zhiqun Shi
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, China
| | - Jie Zhang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, China
| | - Linlin Jing
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, China
| |
Collapse
|
2
|
Zheng J, Zhang J, Han J, Zhao Z, Lin K. The effect of salidroside in promoting endogenous neural regeneration after cerebral ischemia/reperfusion involves notch signaling pathway and neurotrophic factors. BMC Complement Med Ther 2024; 24:293. [PMID: 39090706 PMCID: PMC11295647 DOI: 10.1186/s12906-024-04597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.
Collapse
Affiliation(s)
- Jiabing Zheng
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Zhichang Zhao
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Kan Lin
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
3
|
Wu Z, Wang Y, Gao R, Chen J, Chen Y, Li M, Gao Y. Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: pathogenesis, mechanisms and future directions. Front Pharmacol 2024; 15:1393209. [PMID: 38895636 PMCID: PMC11183292 DOI: 10.3389/fphar.2024.1393209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background and objectives Acute mountain sickness (AMS) is a pathology with different symptoms in which the organism is not adapted to the environment that occurs under the special environment of high altitude. Its main mechanism is the organism's tissue damage caused by acute hypobaric hypoxia. Traditional Chinese medicine (TCM) theory focuses on the holistic concept. TCM has made remarkable achievements in the treatment of many mountain sicknesses. This review outlines the pathogenesis of AMS in modern and traditional medicine, the progress of animal models of AMS, and summarizes the therapeutic effects of TCM on AMS. Methods Using the keywords "traditional Chinese medicine," "herbal medicine," "acute mountain sickness," "high-altitude pulmonary edema," "high-altitude cerebral edema," "acute hypobaric hypoxia," and "high-altitude," all relevant TCM literature published up to November 2023 were collected from Scopus, Web of Science, PubMed, and China National Knowledge Infrastructure databases, and the key information was analyzed. Results We systematically summarised the effects of acute hypobaric hypoxia on the tissues of the organism, the study of the methodology for the establishment of an animal model of AMS, and retrieved 18 proprietary Chinese medicines for the clinical treatment of AMS. The therapeutic principle of medicines is mainly invigorating qi, activating blood and removing stasis. The components of botanical drugs mainly include salidroside, ginsenoside Rg1, and tetrahydrocurcumin. The mechanism of action of TCM in the treatment of AMS is mainly through the regulation of HIF-1α/NF-κB signaling pathway, inhibition of inflammatory response and oxidative stress, and enhancement of energy metabolism. Conclusion The main pathogenesis of AMS is unclear. Still, TCM formulas and components have been used to treat AMS through multifaceted interventions, such as compound danshen drip pills, Huangqi Baihe granules, salidroside, and ginsenoside Rg1. These components generally exert anti-AMS pharmacological effects by inhibiting the expression of VEGF, concentration of MDA and pro-inflammatory factors, down-regulating NF-κB/NLRP3 pathway, and promoting SOD and Na + -K + -ATPase activities, which attenuates acute hypobaric hypoxia-induced tissue injury. This review comprehensively analyses the application of TCM in AMS and makes suggestions for more in-depth studies in the future, aiming to provide some ideas and insights for subsequent studies.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Hematology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Rong Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junru Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingfan Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Hou Y, Fan F, Xie N, Zhang Y, Wang X, Meng X. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155529. [PMID: 38503156 DOI: 10.1016/j.phymed.2024.155529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND/PURPOSE Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. STUDY DESIGN/METHODS The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKβ and Sirt1 were determined by immunofluorescent and western blot analyses. RESULTS The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. CONCLUSION Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.
Collapse
Affiliation(s)
- Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fuhan Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
5
|
Chen XD, Wei JX, Wang HY, Peng YY, Tang C, Ding Y, Li S, Long ZY, Lu XM, Wang YT. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats. Neuropharmacology 2023; 240:109728. [PMID: 37742716 DOI: 10.1016/j.neuropharm.2023.109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1β) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.
Collapse
Affiliation(s)
- Xing-Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jing-Xiang Wei
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
6
|
Tang Z, Wang Y, Liu Y, Li C. Salidroside inhibits renal ischemia/reperfusion injury‑induced ferroptosis by the PI3K/AKT signaling pathway. Exp Ther Med 2023; 26:507. [PMID: 37822587 PMCID: PMC10562959 DOI: 10.3892/etm.2023.12206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/09/2023] [Indexed: 10/13/2023] Open
Abstract
Renal ischemia/reperfusion injury (RIRI) represents the principal factor underlying acute kidney injury (AKI), which primarily stems from cellular injuries and ferroptosis caused by reactive oxygen species (ROS). Salidroside (SA), an antioxidant natural ester, has been attributed with the potential to protect against RIRI. In the present study, rats received daily SA doses (1, 10, or 100 mg/kg) by gavage for 7 consecutive days before surgery. The results revealed aggravated renal injury in the RIRI group, which was effectively prevented by SA pretreatment (10 and 100 mg/kg), with the 1 mg/kg dosage demonstrating lesser efficacy. Additionally, the results indicated that SA pretreatment mitigated the RIRI-related upregulation of antioxidative superoxide dismutase. In vitro studies corroborated SA's ability to maintain hypoxia/reoxygenation-treated NRK cell viability, with the protective effect being observed at SA concentrations ≥1 µM and peaking at 100 µM. Furthermore, the results showed that SA safeguarded renal tubular epithelial cells from oxidative damage, reduced ROS accumulation, and inhibited ferroptosis via activation of the PI3K/AKT signaling pathway. Therefore, the results of the present study highlight the promising therapeutic potential of SA as an effective intervention for RIRI via targeting of PI3K/AKT signaling pathway-mediated anti-oxidative and anti-ferroptotic mechanisms.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Urology, The First People's Hospital of Jing Zhou/The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yong Wang
- Department of Urology, Ying Shan Hospital of Traditional Chinese Medicine, Ying Shan, Hubei 438700, P.R. China
| | - Yan Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Feng H, Zhang D, Yin Y, Kang J, Zheng R. Salidroside ameliorated the pulmonary inflammation induced by cigarette smoke via mitigating M1 macrophage polarization by JNK/c-Jun. Phytother Res 2023; 37:4251-4264. [PMID: 37254460 DOI: 10.1002/ptr.7905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
Pulmonary inflammation induced by cigarette smoke (CS) promoted the development of chronic obstructive pulmonary disease (COPD), and macrophage polarization caused by CS modulated inflammatory response. Previous studies indicated that salidroside exerted therapeutic effects in COPD, but the anti-inflammatory mechanisms were not clear. This study aimed to explore the effects and mechanisms of salidroside on macrophage polarization induced by CS. Wistar rats received passively CS exposure and were treated intraperitoneally with salidroside at a low, medium or high dose. Lung tissues were stained with hematoxylin-eosin. Emphysema and inflammatory scores were evaluated by histomorphology. Lung function, cytokines, and cell differential counts in BALF were detected. The macrophage polarization was determined by immunohistochemistry in lung tissues. Alveolar macrophages (AMs) were isolated and treated with cigarette smoke extract (CSE), salidroside or inhibitors of relative pathways. The polarization status was determined by qPCR, and the protein level was detected by Western blotting. CS exposure induced emphysema and lung function deterioration. The inflammatory scores, cytokines level and neutrophils counts were elevated after CS exposure. Salidroside treatment partly ameliorated above abnormal. CS exposure activated M1 and M2 polarization of AMs in vivo and in vitro, and salidroside mitigated M1 polarization induced by CS. CSE activated the JNK/c-Jun in AMs and the M1 polarization of AMs was inhibited by the inhibitors of JNK and AP-1. Salidroside treatment deactivated the JNK/c-Jun, which indicated that salidroside mitigated the M1 polarization of AMs induced by CS via inhibiting JNK/c-Jun. Salidroside treatment ameliorated the pulmonary inflammation and M1 polarization of AMs induced by CS, and the process might be mediated by the deactivation of JNK/c-Jun.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
8
|
Huan Y, Quan H, Jia B, Hao G, Shi Z, Zhao T, Yuan Y, Yuan F, Dong Y, Liang G. High-altitude cerebral hypoxia promotes mitochondrial dysfunction and apoptosis of mouse neurons. Front Mol Neurosci 2023; 16:1216947. [PMID: 37501726 PMCID: PMC10370763 DOI: 10.3389/fnmol.2023.1216947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Neuronal cell death is an important factor in the pathogenesis of acute high-altitude cerebral hypoxia; however, the underlying molecular mechanism remains unclear. In this study, we tested if high-altitude hypoxia (HAH) causes neuronal death and mitochondrial dysfunction using various in vivo and in vitro approaches. Methods Acute high-altitude cerebral hypoxia was induced by hypobaric hypoxia chamber in male mice. we explored the mechanisms of neuronal cell death using immunofluorescence, western blotting, transmission electron microscopy, and flow cytometry. Next, mitochondrial function and morphology were observed using Jc-1 staining, seahorse assay, western blotting, MitoTracker staining, and transmission electron microscopy. Moreover, open field test, elevated plus test, and Morris water maze were applied for animal behavior. Results Results revealed that HAH disrupted mitochondrial function and promoted neuronal apoptosis and necroptosis both in HT-22 cells and in mouse hippocampal neurons. Moreover, the mitochondrial membrane potential and adenosine triphosphate production decreased in neurons after HAH, while oxidative stress and mitochondrial fission increased. Behavioral studies suggested that HAH induced anxiety-like behavior and impaired spatial memory, while it had no effect on athletic ability. Discussion These findings demonstrated that HAH promotes mitochondrial dysfunction and apoptosis of mouse neurons, thus providing new insights into the role of mitochondrial function and neuronal cell death in acute high-altitude cerebral hypoxia.
Collapse
Affiliation(s)
- Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Huilin Quan
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zuolin Shi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tianzi Zhao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yuan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fang Yuan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
9
|
Li Y, Li C, Luo T, Yue T, Xiao W, Yang L, Zhang Z, Han F, Long P, Hu Y. Progress in the Treatment of High Altitude Cerebral Edema: Targeting REDOX Homeostasis. J Inflamm Res 2023; 16:2645-2660. [PMID: 37383357 PMCID: PMC10296571 DOI: 10.2147/jir.s415695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
With the increasing of altitude activities from low-altitude people, the study of high altitude cerebral edema (HACE) has been revived. HACE is a severe acute mountain sickness associated with exposure to hypobaric hypoxia at high altitude, often characterized by disturbance of consciousness and ataxia. As for the pathogenesis of HACE, previous studies suggested that it might be related to the disorder of cerebral blood flow, the destruction of blood-brain barrier and the injury of brain parenchyma cells caused by inflammatory factors. In recent years, studies have confirmed that the imbalance of REDOX homeostasis is also involved in the pathogenesis of HACE, which mainly leads to abnormal activation of microglia and destruction of tight junction of vascular endothelial cells through the excessive production of mitochondrial-related reactive oxygen species. Therefore, this review summarizes the role of REDOX homeostasis and the potential of the treatment of REDOX homeostasis in HACE, which is of great significance to expand the understanding of the pathogenesis of HACE. Moreover, it will also be helpful to further study the possible therapy of HACE related to the key link of REDOX homeostasis.
Collapse
Affiliation(s)
- Yubo Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Chengming Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Zaiyuan Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Fei Han
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Yonghe Hu
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Sheng B, Li YZ, Wu AP, Wang DD, Yang PP. Salidroside attenuates oxygen and glucose deprivation-induced neuronal injury by inhibiting ferroptosis. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.369611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
11
|
Zhou J, Yan S, Guo X, Gao Y, Chen S, Li X, Zhang Y, Wang Q, Zheng T, Chen L. Salidroside protects pancreatic β-cells against pyroptosis by regulating the NLRP3/GSDMD pathway in diabetic conditions. Int Immunopharmacol 2023; 114:109543. [PMID: 36508922 DOI: 10.1016/j.intimp.2022.109543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
The NACHT, LRP, and PYD domains-containing protein 3 (NLRP3) inflammasome-evoked chronic inflammation is involved in the pathogenesis of diabetes mellitus (DM), and the NLRP3/gasdermin D (GSDMD)-mediated canonical pathway of pyroptosis leads to the loss of pancreatic β-cells and failure of pancreatic function in DM. A previous study demonstrated that salidroside (SAL) alleviates the pathological hyperplasia of pancreatic β-cells in db/db mice. However, it is not clear whether the NLRP3/GSDMD pathway-mediated pyroptosis can be regulated by SAL. In addition, the action of SAL on pancreatic β-cells in DM remains poorly understood. Thus, this study aimed to investigate the effects and underlying mechanisms of SAL on pancreatic β-cell pyroptosis. Rat insulinoma (INS-1) cells were cultured in a medium containing either high glucose (HG) or HG plus high insulin (HG-HI), and the effects of SAL on cell viability, AMP-activated protein kinase (AMPK) activity, reactive oxygen species (ROS) generation, NLRP3/GSDMD activation, and pyroptotic body formation were assessed. Streptozocin-induced DM mice were used to further investigate the effects of SAL on pancreatic pyroptosis. The results revealed aberrances on cell viability, AMPK activity, ROS generation, NLRP3/GSDMD activation, and pyroptotic body formation in HG- and HG-HI-exposed INS-1 cells; these abnormal effects were corrected by SAL in both a concentration- and AMPK-dependent manner. Moreover, SAL administration activated AMPK, suppressed NLRP3/GSDMD signaling, and protected pancreatic β-cells against pyroptosis in DM mice. These findings suggest that SAL promotes AMPK activation to suppress NLRP3/GSDMD-related pyroptosis in pancreatic β-cells under DM conditions.
Collapse
Affiliation(s)
- Jun Zhou
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Yan
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Guo
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yanguo Gao
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shiqi Chen
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaohan Li
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qibin Wang
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tao Zheng
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Li Chen
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
12
|
Hou Y, Zhang Y, Jiang S, Xie N, Zhang Y, Meng X, Wang X. Salidroside intensifies mitochondrial function of CoCl 2-damaged HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154568. [PMID: 36610162 DOI: 10.1016/j.phymed.2022.154568] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salidroside (Sal), an active component from Rhodiola crenulata, has been confirmed to exert neuroprotective effects against hypoxia. However, its molecular mechanisms of intensifying mitochondrial function still largely unknown. In the present study, we aimed to explore the mechanisms by which Sal heightened mitochondrial function in CoCl2-induced HT22 hypoxic injury. METHODS The hypoxic condition of HT22 cells was performed by CoCl2 stimulus. We then investigated the effects of Sal on the viability of hypoxic HT22 cells by cell counting kit-8. The contents of lactate dehydrogenase (LDH) release in cultured supernatant were detected by using commercial biochemical kit. Superoxide free radical scavenging activity, total antioxidant capacity assay kit with ferric reducing ability of plasma and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) methods were employed to detect the free radical scavenging ability and antioxidant capacity of Sal. Meanwhile, intracellular reactive oxygen species (ROS), Ca2+ and mitochondrial membrane potential (MMP) were determined by corresponding specific labeled probes. Mitochondrial morphology was tested by Mito-tracker green with confocal microscopy. Hoechst 33342 and Annexin V-FITC/propidium iodide staining were also employed to evaluate the effect of Sal on cell apoptosis. Oxygen consumption rate (OCR), real-time ATP production and proton efflux rate were measured using a Seahorse analyzer. Additionally, the potential interactions of Sal with PI3K-AKT signaling pathway-related proteins were predicted and tested by molecular docking, molecular dynamics simulation (MDS) and localized surface plasmon resonance (LSPR) techniques, respectively. Furthermore, the protein levels of p-PI3K, PI3K, p-AKT, AKT, p-JNK, JNK, p-p38 and p38 were estimated by western blot analysis. RESULTS Sal alleviated CoCl2-induced hypoxic injury in HT22 cells as evidenced by increased cell viability and decreased LDH release. In vitro antioxidant test confirmed that Sal had marvelous antioxidant abilities. The protected mitochondrial function by Sal treatment was illustrated by the decrease of ROS, Ca2+, mitochondrial fragment and the increase of MMP. In addition, Sal ameliorated the apoptosis of HT22 cells by decreasing Hoechst 33342 positive cells and the rate of apoptotic cells. Enhancement of energy metabolism in HT22 by Sal was demonstrated by increased OCR, real-time ATP generation and proton efflux rate. The molecular docking confirmed the potential binding of Sal to PI3K, AKT and CaMK II proteins with calculated binding energy of -1.32, -4.21 and -4.38 kcal/mol, respectively. The MDS test revealed the average hydrogen bond of complex Sal-PI3K and Sal-AKT were 0.79 and 4.46, respectively. The results of LSPR verified the potential binding of Sal to proteins PI3K, AKT and HIF-1α with affinity values of 5.20 × 10 - 3, 2.83 × 10 - 3 and 3.97 × 10 - 3 KD, respectively. Western blot analysis further argued that Sal consolidated the levels of p-PI3K and p-AKT. Meanwhile, Sal could downregulate the proteins expression of p-JNK and p-p38. CONCLUSION Collectively, our findings suggested that Sal can intensify mitochondrial function of CoCl2-simulated hypoxia injury in HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. Sal is a potential agent for mitochondrial protection against hypoxia with the underlying molecular mechanisms of energy metabolism being further elucidated.
Collapse
Affiliation(s)
- Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengnan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Jin M, Wang C, Xu Y, Zhang Z, Wu X, Ye R, Zhang Q, Han D. Pharmacological effects of salidroside on central nervous system diseases. Biomed Pharmacother 2022; 156:113746. [DOI: 10.1016/j.biopha.2022.113746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022] Open
|
14
|
Sonidegib Suppresses Production of Inflammatory Mediators and Cell Migration in BV2 Microglial Cells and Mice Treated with Lipopolysaccharide via JNK and NF-κB Inhibition. Int J Mol Sci 2022; 23:ijms231810590. [PMID: 36142500 PMCID: PMC9503982 DOI: 10.3390/ijms231810590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Our structure-based virtual screening of the FDA-approved drug library has revealed that sonidegib, a smoothened antagonist clinically used to treat basal cell carcinoma, is a potential c-Jun N-terminal kinase 3 (JNK3) inhibitor. This study investigated the binding of sonidegib to JNK3 via 19F NMR and its inhibitory effect on JNK phosphorylation in BV2 cells. Pharmacological properties of sonidegib to exert anti-inflammatory and anti-migratory effects were also characterized. We found that sonidegib bound to the ATP binding site of JNK3 and inhibited JNK phosphorylation in BV2 cells, confirming our virtual screening results. Sonidegib also inhibited the phosphorylation of MKK4 and c-Jun, the upstream and downstream signals of JNK, respectively. It reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors, including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and nitric oxide (NO), and the expression of inducible NO synthase and cyclooxygenase-2. The LPS-induced cell migration was suppressed by sonidegib. Sonidegib inhibited the LPS-induced IκBα phosphorylation, thereby blocking NF-κB nuclear translocation. Consistent with these findings, orally administered sonidegib attenuated IL-6 and TNF-α levels in the brains of LPS-treated mice. Collectively, our results indicate that sonidegib suppresses inflammation and cell migration in LPS-treated BV2 cells and mice by inhibiting JNK and NF-κB signaling. Therefore, sonidegib may be implicated for drug repurposing to alleviate neuroinflammation associated with microglial activation.
Collapse
|
15
|
Xie N, Fan F, Jiang S, Hou Y, Zhang Y, Cairang N, Wang X, Meng X. Rhodiola crenulate alleviates hypobaric hypoxia-induced brain injury via adjusting NF-κB/NLRP3-mediated inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154240. [PMID: 35691080 DOI: 10.1016/j.phymed.2022.154240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhodiola crenulate (R. crenulate), a famous Tibetan medicine, has been demonstrated to possess superiorly protective effects in high-altitude hypoxic brain injury (HHBI). However, its mechanisms on HHBI are still largely unknown. METHODS Herein, the protective effects and underlying mechanisms of R. crenulate on HHBI of BABL/c mice were explored through in vivo experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE) (0.5, 1.0 and 2.0 g/kg) was given by gavage for 7 days. Pathological changes and neuronal viability of mice hippocampus and cortex were evaluated using H&E and Nissl staining, respectively. The brain water content (BWC) in mice was determined by calculating the ratio of dry to wet weight of brain tissue. And serum of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH-Px) and lactate dehydrogenase (LDH) were detected via commercial biochemical kits. Synchronously, the contents of total antioxidant capacity (T-AOC), lactic acid (LA), adenosine triphosphate (ATP), succinate dehydrogenase (SDH), pyruvate kinase (PK), Ca2+-Mg2+-ATPcase, Na+-K+-ATPcase, TNF-α, IL-1β and IL-6 in brain tissue were quantitative analysis by corresponding ELISA assay. Subsequently, NLRP3, ZO-1, claudin-5, occluding, p-p65, p65, ASC, cleaved-caspase-1, caspase-1 and IL-18 were determined by immunofluorescent and western blot analyses. RESULTS The results demonstrated that RCE remarkably alleviated pathological damage, BWC, as well enhanced neuronal viability. Furthermore, the oxidative stress injuries were reversely abrogated after RCE treatment, evidenced by the increases of SOD, GSH-Px and T-AOC, while the decreases of MDA and LDH contents. Marvelously, the administration of RCE rectified and balanced the abnormal energy metabolism via elevating the levels of ATP, SDH, PK, Ca2+-Mg2+-ATPcase and Na+-K+-ATPcase, and lowering LA. Simultaneously, the expression of tight junction proteins (ZO-1, claudin-5 and occludin) was enhanced, illustrating RCE treatment might maintain the integrity of blood-brain barrier (BBB). Additionally, RCE treatment confined the contents of IL-6, IL-1β and TNF-α, and attenuated fluorescent signal of NLRP3 protein. Concurrently, the results of western blot indicated that RCE treatment dramatically restrained p-p65/p65, ASC, NLRP3, cleaved-caspase-1/caspase-1 and IL-18 protein expressions in brain tissues of mice. CONCLUSION RCE may afford a protectively intervention in HHBI of mice through suppressing the oxidative stress, improving energy metabolism and the integrity of BBB, and subsiding inflammatory responses via the NF-κB/NLRP3 signaling pathway. As a promising agent for the treatment of mice HHBI, the deep-crossing molecular mechanisms of R. crenulate still needs to be further elucidated to identify novel core hub targets.
Collapse
Affiliation(s)
- Na Xie
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengnan Jiang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | | | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|