1
|
Huang F, Huang S, Sun K, Chen Y, Xie G, Bao J, Fan Y. Protective effect of compound K against podocyte injury in chronic kidney disease by maintaining mitochondrial homeostasis. Sci Rep 2025; 15:435. [PMID: 39748100 PMCID: PMC11696807 DOI: 10.1038/s41598-024-84704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy. Here, we unveil the profound therapeutic potential of CK in a folic acid (FA)-induced CKD mouse model, demonstrating its ability to restore renal function and mitigate podocyte injury. CK exerted its nephroprotective effects by reinforcing inter-podocyte junctions, suppressing aberrant podocyte motility, and preventing podocyte detachment and apoptosis, thereby safeguarding the glomerular filtration barrier. Mechanistically, we identified mitochondrial dysregulation as a key driver of excessive oxidative stress, which is commonly associated with podocyte damage. CK remarkably restored mitochondrial homeostasis by attenuating pathological mitochondrial fission and enhancing mitophagy, thereby rebalancing the delicate mitochondrial network. Intriguingly, CK may disrupt the formation of the Drp1-Bax dimer, a crucial mediator of mitochondrial apoptosis, further averting podocyte loss. Collectively, our findings highlight CK as a potent nephroprotective agent, offering a novel therapeutic avenue for CKD management and redefining possibilities in the battle against progressive renal disease.
Collapse
Affiliation(s)
- Fugang Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shuo Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ke Sun
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yanhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Guanqun Xie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Liu TY, Hao Y, Mao Q, Zhou N, Liu MH, Wu J, Wang Y, Yang MR. Tanreqing Injection Inhibits Activation of NLRP3 Inflammasome in Macrophages Infected with Influenza A Virus by Promoting Mitophagy. Chin J Integr Med 2025; 31:19-27. [PMID: 38910190 DOI: 10.1007/s11655-024-3905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 06/25/2024]
Abstract
OBJECTIVE To investigate the inhibitory effect of Tanreqing Injection (TRQ) on the activation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome in macrophages infected with influenza A virus and the underlying mechanism based on mitophagy pathway. METHODS The inflammatory model of murine macrophage J774A.1 induced by influenza A virus [strain A/Puerto Rico/8/1934 (H1N1), PR8] was constructed and treated by TRQ, while the mitochondria-targeted antioxidant Mito-TEMPO and autophagy specific inhibitor 3-methyladenine (3-MA) were used as controls to intensively study the anti-inflammatory mechanism of TRQ based on mitophagy-mitochondrial reactive oxygen species (mtROS)-NLRP3 inflammasome pathway. The levels of NLRP3, Caspase-1 p20, microtubule-associated protein 1 light chain 3 II (LC3II) and P62 proteins were measured by Western blot. The release of interleukin-1β (IL-1β) was tested by enzyme linked immunosorbent assay, the mtROS level was detected by flow cytometry, and the immunofluorescence and co-localization of LC3 and mitochondria were observed under confocal laser scanning microscopy. RESULTS Similar to the effect of Mito-TEMPO and contrary to the results of 3-MA treatment, TRQ could significantly reduce the expressions of NLRP3, Caspase-1 p20, and autophagy adaptor P62, promote the expression of autophagy marker LC3II, enhance the mitochondrial fluorescence intensity, and inhibit the release of mtROS and IL-1β (all P<0.01). Moreover, LC3 was co-localized with mitochondria, confirming the type of mitophagy. CONCLUSION TRQ could reduce the level of mtROS by promoting mitophagy in macrophages infected with influenza A virus, thus inhibiting the activation of NLRP3 inflammasome and the release of IL-1β, and attenuating the inflammatory response.
Collapse
Affiliation(s)
- Tian-Yi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qin Mao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Na Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Meng-Hua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ming-Rui Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Myette RL, Trentin-Sonoda M, Landry C, Holterman CE, Lin T, Burger D, Kennedy CR. Damage-Associated Molecular Patterns and Pattern Recognition Receptors in the Podocyte. J Am Soc Nephrol 2025; 36:136-143. [PMID: 39331471 PMCID: PMC11706563 DOI: 10.1681/asn.0000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
Podocytes possess immune system components allowing for a variety of innate responses to endogenous and exogenous stimuli. Recently, several groups have linked inappropriate innate immune signaling to podocyte injury, particularly chronic, sustained injury; however, the immune capabilities of podocytes have not been fully elucidated. Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from damaged cells, including podocytes, and can elicit an inflammatory response and recruit immune cells to areas of injury. This is performed through binding to pattern recognition receptors. Believed largely to be protective and responsive to injury or infection, recent evidence suggests signaling through DAMP pathways can aggravate and promote chronic diseases already associated with inflammation. The purpose of this narrative review was to highlight current knowledge with respect to specific podocyte DAMPs and pattern recognition receptors and to provide insight into ongoing work and possible future research avenues to advance our understanding of podocyte immune mechanisms.
Collapse
Affiliation(s)
- Robert L. Myette
- Division of Pediatric Nephrology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mayra Trentin-Sonoda
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Chloé Landry
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chet E. Holterman
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tony Lin
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher R.J. Kennedy
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Cai Y, Chen S, Jiang X, Wu Q, Guo B, Wang F. [Inhibition of miR-30d-5p promotes mitochondrial autophagy and alleviates high glucose-induced injury in podocytes]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:756-764. [PMID: 39668610 PMCID: PMC11736342 DOI: 10.3724/zdxbyxb-2024-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES To study the role of microRNA (miR)-30d-5p in high glucose-induced podocyte injury. METHODS Podocytes were hyperglycated with 30 mmol/L glucose, transfected with miR-30d-5p inhibitor and mimic, and then treated with 1 mg/mL 3-methyladenine (3-MA). The transfection efficiency of miR-30d-5p was quantified by reverse transcription PCR. Apoptosis was detected by flow cytometry. The expressions of nephrin, microtubule-associated protein light chain (LC) 3Ⅱ/LC3Ⅰ, P62, autophagy-related gene (ATG) 5, PTEN induced putative kinase (PINK) 1 and Parkin gene (PARK2) were detected by Western blotting. The mito-chondrial membrane potential was detected by JC-1 fluorescent probe, and adenosine triphosphate (ATP) content in cells was detected by relevant kits. RESULTS Under high glucose induction, podocyte apoptosis increased, miR-30d-5p and P62 expressions were upregulated, while nephrin, ATG5, PINK1, PARK2 and LC3Ⅱ/LC3Ⅰ expressions decreased (all P<0.01). MiR-30d-5p inhibitor reversed the effect of high glucose on apoptosis, and the expression of ATG5, PINK1, PARK2, nephrin, LC3Ⅱ/LC3Ⅰ and P62 (all P<0.01). High glucose induced loss of mitochondrial membrane potential and ATP content in podocytes, while inhibition of miR-30d-5p increased them. Autophagy inhibitors 3-MA and miR-30d-5p mimics reversed the effects of miR-30d-5p inhibition on apoptosis, autophagy and mitochondrial function of podocytes induced by high glucose (all P<0.05). CONCLUSIONS Inhibition of miR-30d-5p may promote mitochondrial autophagy (mitophagy) by promoting the expression of ATG5, PINK1, PARK2 and alleviating high glucose-induced podocyte damage.
Collapse
Affiliation(s)
- Ying Cai
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China.
| | - Sheng Chen
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Xiaoli Jiang
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qiyuan Wu
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Bei Guo
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China
| | - Fang Wang
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315000, Zhejiang Province, China.
| |
Collapse
|
5
|
Liu B, Chen L, Gao M, Dai M, Zheng Y, Qu L, Zhang J, Gong G. A comparative study of the efficiency of mitochondria-targeted antioxidants MitoTEMPO and SKQ1 under oxidative stress. Free Radic Biol Med 2024; 224:117-129. [PMID: 39178922 DOI: 10.1016/j.freeradbiomed.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
MitoTEMPO (MT) and Visomitin (SKQ1) are regareded as mitochondria-targeted antioxidants, which inhibit production of mitochondrial reactive oxygen species (ROS). However, the differences in function between MT and SKQ1 remain unexplored. Herein, we investigated the differential potency of MT and SKQ1 in mitigating oxidative stress under different conditions. The results indicated that high levels of SKQ1 induced cell death. The appropriate concentrations of MT and SKQ1 can prevent or rescue cell damage triggered by hydrogen peroxide (H2O2) and menadione (MEN). MT and SKQ1 reduced ROS levels and reversed the down-regulation of antioxidant defence genes and enzymes. These effects can alleviate the damage to lipids, proteins, and deoxyribonucleic acid (DNA) caused by oxidative stress and restore adenosine 5' triphosphate (ATP) generation. Subsequently, we found that MT administration in ischemic reperfusion kidney injury in mice provided superior renal protection compared to SKQ1, as evidenced by reduced plasma levels of kidney injury markers, improved renal morphology, decreased apoptosis, restored mitochondrial function, and enhanced antioxidant capacity. Overall, our findings suggest that MT is safer and has greater potential than SKQ1 as a therapeutic agent to mitigate oxidative stress damage or oxidative renal injury.
Collapse
Affiliation(s)
- Bilin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Institute of Biophysics, Chinese Academy of Science, Beijing 100101, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Lei Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Meng Gao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Mengting Dai
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yejing Zheng
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Linke Qu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Junming Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
6
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
7
|
Li J, Zhang D, Zhang Y, Ge J, Yang C. Mitochondria-specific antioxidant MitoTEMPO alleviates senescence of bone marrow mesenchymal stem cells in ovariectomized rats. J Cell Physiol 2024; 239:e31323. [PMID: 38801103 DOI: 10.1002/jcp.31323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Senescence in bone marrow mesenchymal stem cells (BMSCs), triggered by excessive oxidative stress, plays a crucial role in the onset of postmenopausal osteoporosis. Recent studies underscore the importance of mitochondrial rehabilitation and quality control as key determinants in the modulation of oxidative stress and cellular senescence. MitoTEMPO, a mitochondria-targeted antioxidant, has been shown to mitigate the heightened levels of reactive oxygen species (ROS). In our research, we observed that BMSCs from ovariectomized (OVX) rats displayed premature senescence, which was attributed to combined mitochondrial and lysosomal dysfunction, a condition that worsens with extended estrogen deprivation. Treatment with MitoTEMPO effectively reversed these effects, reinstating lysosomal functionality and suppressing the mitochondrial unfolded protein response (UPRmt). Subsequent in vivo experiments corroborated these observations, revealing that MitoTEMPO administration in OVX rats curtailed trabecular bone loss and reduced the expression of p53, HSP60, and CLPP in the trabecular bone region of the proximal tibia. Overall, our findings suggest that MitoTEMPO holds promise as a therapeutic agent to counteract senescence in OVX-BMSCs, offering a potential strategy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Yang K, Li T, Geng Y, Zou X, Peng F, Gao W. The role of mitophagy in the development of chronic kidney disease. PeerJ 2024; 12:e17260. [PMID: 38680884 PMCID: PMC11056108 DOI: 10.7717/peerj.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Chronic kidney disease (CKD) represents a significant global health concern, with renal fibrosis emerging as a prevalent and ultimate manifestation of this condition. The absence of targeted therapies presents an ongoing and substantial challenge. Accumulating evidence suggests that the integrity and functionality of mitochondria within renal tubular epithelial cells (RTECs) often become compromised during CKD development, playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted mitochondrial dynamics but also contributes to the advancement of renal fibrosis in CKD. While numerous studies have examined mitochondrial metabolism, ROS (reactive oxygen species) production, inflammation, and apoptosis in kidney diseases, the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as well as its influence on CKD progression and prognosis, have not undergone systematic investigation. The role of mitophagy in AKI has been relatively clear, but the role of mitophagy in CKD is still rare. This article presents a comprehensive review of the current state of research on regulating mitophagy as a potential treatment for CKD. The objective is to provide fresh perspectives, viable strategies, and practical insights into CKD therapy, thereby contributing to the enhancement of human living conditions and patient well-being.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Ting Li
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yingpu Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiangyu Zou
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Fujun Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Wei Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
9
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
10
|
Hou FQ, Wu XY, Gong MX, Wei JJ, Yi Y, Wei Y, He ZX, Gong QH, Gao JM. Trilobatin rescues fulminant hepatic failure by targeting COX2: Involvement of ROS/TLR4/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155059. [PMID: 37672856 DOI: 10.1016/j.phymed.2023.155059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Fulminant hepatic failure (FHF) lacks efficient therapies notwithstanding increased comprehending of the inflammatory response and oxidative stress play crucial roles in the pathogenesis of this type of hepatic damage. Trilobatin (TLB), a naturally occurring food additive, is endowed with anti-inflammation and antioxidant properties. PURPOSE In current study, we evaluated the effect of TLB on FHF with a mouse model with d-galactosamine/lipopolysaccharide (GalN/LPS)-induced FHF and LPS-stimulated Kupffer cells (KCs) injury. METHODS Mice were randomly divided into seven groups: control group, TLB 40 mg/kg + control group, GalN/LPS group, TLB 10 mg/kg + GalN/LPS group, TLB 20 mg/kg + GalN/LPS group, TLB 40 mg/kg + GalN/LPS group, bifendate 150 mg/kg + GalN/LPS group. The mice were administered intragastrically TLB (10, 20 and 40 mg/kg) for 7 days (twice a day) prior to injection of GalN (700 mg/kg)/LPS (100 µg/kg). The KCs were pretreated with TLB (2.5, 5, 10 μM) for 2 h or its analogue (10 μM) or COX2 inhibitor (10 μM), and thereafter challenged by LPS (1 μg/ml) for 24 h. RESULTS TLB effectively rescued GalN/LPS-induced FHF. Furthermore, TLB inhibited TLR 4/NLRP3/pyroptosis pathway, and caspase 3-dependent apoptosis pathway, along with reducing excessive cellular and mitochondrial ROS generation and enhancing mitochondrial biogenesis. Intriguingly, TLB directly bound to COX2 as reflected by transcriptomics, molecular docking technique and surface plasmon resonance assay. Furthermore, TLB failed to attenuate LPS-induced inflammation and oxidative stress in KCs in the absence of COX2. CONCLUSION Our findings discover a novel pharmacological effect of TLB: protecting against FHF-induced pyroptosis and apoptosis through mediating ROS/TLR4/NLRP3 signaling pathway and reducing inflammation and oxidative stress. TLB may be a promising agent with outstanding safety profile to treat FHF.
Collapse
Affiliation(s)
- Fang-Qin Hou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiao-Yu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Miao-Xian Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jia-Jia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhi-Xu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
11
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
12
|
Long J, Huang Y, Wang G, Tang Z, Shan Y, Shen S, Ni X. Mitochondrial ROS Accumulation Contributes to Maternal Hypertension and Impaired Remodeling of Spiral Artery but Not IUGR in a Rat PE Model Caused by Maternal Glucocorticoid Exposure. Antioxidants (Basel) 2023; 12:antiox12050987. [PMID: 37237853 DOI: 10.3390/antiox12050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Increased maternal glucocorticoid levels have been implicated as a risk factor for preeclampsia (PE) development. We found that pregnant rats exposed to dexamethasone (DEX) showed hallmarks of PE features, impaired spiral artery (SA) remodeling, and elevated circulatory levels of sFlt1, sEng IL-1β, and TNFα. Abnormal mitochondrial morphology and mitochondrial dysfunction in placentas occurred in DEX rats. Omics showed that a large spectrum of placental signaling pathways, including oxidative phosphorylation (OXPHOS), energy metabolism, inflammation, and insulin-like growth factor (IGF) system were affected in DEX rats. MitoTEMPO, a mitochondria-targeted antioxidant, alleviated maternal hypertension and renal damage, and improved SA remodeling, uteroplacental blood flow, and the placental vasculature network. It reversed several pathways, including OXPHOS and glutathione pathways. Moreover, DEX-induced impaired functions of human extravillous trophoblasts were associated with excess ROS caused by mitochondrial dysfunction. However, scavenging excess ROS did not improve intrauterine growth retardation (IUGR), and elevated circulatory sFlt1, sEng, IL-1β, and TNFα levels in DEX rats. Our data indicate that excess mitochondrial ROS contributes to trophoblast dysfunction, impaired SA remodeling, reduced uteroplacental blood flow, and maternal hypertension in the DEX-induced PE model, while increased sFlt1 and sEng levels and IUGR might be associated with inflammation and an impaired energy metabolism and IGF system.
Collapse
Affiliation(s)
- Jing Long
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yan Huang
- Reproductive Medicine Center, General Hospital of Southern Theatre Command, Guangzhou 510010, China
| | - Gang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Zhengshan Tang
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yali Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shiping Shen
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xin Ni
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| |
Collapse
|
13
|
Zhao J, Li J, Li G, Chen M. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1059576. [PMID: 36588561 PMCID: PMC9794868 DOI: 10.3389/fcvm.2022.1059576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is essential for the homeostasis of cells. Appropriate production of ROS is an important signaling molecule, but excessive ROS production can damage cells. ROS and ROS-associated proteins can act as damage associated molecular pattern molecules (DAMPs) to activate the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in cardiovascular diseases. Previous studies have shown that there are connected sites, termed mitochondria-associated membranes (MAMs), between mitochondria and the endoplasmic reticulum. In cardiovascular disease progression, MAMs play multiple roles, the most important of which is the ability to mediate ROS generation, which further activates the NLPR3 inflammasome, exacerbating the progression of disease. In this review, the following topics will be covered: 1. Molecular structures on MAMs that can mediate ROS generation; 2. Specific mechanisms of molecule-mediated ROS generation and the molecules' roles in cardiovascular disease, 3. The effects of MAMs-mediated ROS on the NLRP3 inflammasome in cardiovascular disease. The purpose of this review is to provide a basis for subsequent clinical treatment development.
Collapse
Affiliation(s)
- Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mao Chen
| |
Collapse
|
14
|
Yao M, Liu Y, Sun M, Qin S, Xin W, Guan X, Zhang B, He T, Huang Y. The molecular mechanisms and intervention strategies of mitophagy in cardiorenal syndrome. Front Physiol 2022; 13:1008517. [PMID: 36353377 PMCID: PMC9638141 DOI: 10.3389/fphys.2022.1008517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiorenal syndrome (CRS) is defined as a disorder of the heart and kidney, in which acute or chronic injury of one organ may lead to acute or chronic dysfunction of the other. It is characterized by high morbidity and mortality, resulting in high economic costs and social burdens. However, there is currently no effective drug-based treatment. Emerging evidence implicates the involvement of mitophagy in the progression of CRS, including cardiovascular disease (CVD) and chronic kidney disease (CKD). In this review, we summarized the crucial roles and molecular mechanisms of mitophagy in the pathophysiology of CRS. It has been reported that mitophagy impairment contributes to a vicious loop between CKD and CVD, which ultimately accelerates the progression of CRS. Further, recent studies revealed that targeting mitophagy may serve as a promising therapeutic approach for CRS, including clinical drugs, stem cells and small molecule agents. Therefore, studies focusing on mitophagy may benefit for expanding innovative basic research, clinical trials, and therapeutic strategies for CRS.
Collapse
Affiliation(s)
- Mengying Yao
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Department of Cardiology, Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shaozong Qin
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wang Xin
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xu Guan
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting He
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yinghui Huang, ; Ting He,
| | - Yinghui Huang
- Department of Nephrology, The key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yinghui Huang, ; Ting He,
| |
Collapse
|
15
|
TAK-242 Ameliorates Hepatic Fibrosis by Regulating the Liver-Gut Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4949148. [PMID: 36017390 PMCID: PMC9398794 DOI: 10.1155/2022/4949148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Objective. The aims of this study were to investigate the impact of TAK-242 on the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear transcription factor-κB (NF-κB) signal transduction pathway in rats with hepatic fibrosis (HF) using the liver gut axis and to investigate the molecular mechanism of its intervention on HF. Methods. SPF grade SD male rats were randomly allocated to the control, model, and TAK-242 groups. For 8 weeks, the model and TAK-242 groups received 3 mL·kg-1 (the initial dose 5 mL·kg-1) intraperitoneal injections of 40% CCL4 olive oil solution. TAK-242 (5 mg·kg-1) was administered once a day for 5 days after modeling. The pathological alterations of liver and small intestine tissues in each group were observed using H&E and Masson staining. ELISA was used to measure serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBIL), total bilirubin (TBIL), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). RT-qPCR was utilized to identify the mRNA expression level of IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB in rat liver and small intestine tissues. The protein level of IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB protein in rat liver and small intestine tissues was determined utilizing Western blot and IHC. Results. TAK-242 significantly reduced AST, ALT, TBIL, and DBIL expression in HF rats’ serum (
) and alleviated liver tissue injury. Hematoxylin-eosin (H&E) and Masson staining revealed inflammatory cell infiltration and fibrous proliferation in the liver and small intestine tissue in the model group and partial cell swelling in the TAK-242 group, which indicated a considerable improvement compared to the model group. RT-qPCR, Western blot, and IHC data indicated that TAK-242 reduced the IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB expression in the liver and small intestine tissues of HF rats. Conclusion. TAK-242 might downregulate the TLR4/MyD88/NF-κB signal pathway through the liver-gut axis, suppress the inflammatory response, and eventually alleviate HF in rats.
Collapse
|