1
|
Neugebauer J, Reinson K, Bellusci M, Park JH, Hikmat O, Bertini E, Schiff M, Rahman S. Current global vitamin and cofactor prescribing practices for primary mitochondrial diseases: Results of a European reference network survey. J Inherit Metab Dis 2025; 48:e12805. [PMID: 39529390 PMCID: PMC11670042 DOI: 10.1002/jimd.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Primary mitochondrial diseases (PMD) account for a group of approximately 400 different genetic disorders with diverse clinical presentations and pathomechanisms. Although each individual disorder is rare, collectively they represent one of the largest groups in the field of inherited metabolic disorders. The complexity of PMD results in a continued lack of therapeutic options, necessitating a predominantly symptomatic treatment approach for affected patients. While a subset of diseases responds exceptionally well to treatment with specific vitamins or cofactors, for most PMD systematic reviews were not able to show significant benefit. This is in discrepancy to their continued frequent use among specialists. To gain further insight into the current clinical practice of vitamin and cofactor supplementation among clinicians treating children and adults affected by PMD, we conducted a worldwide cross-sectional questionnaire study exploring the choice of substances and the specific diseases where they are applied. To our knowledge, this is the first global study exploring this topic and featuring a high response rate from paediatricians. The vast majority (95%, 106/112) of responding specialists recommended the use of vitamins and cofactors, either in an agnostic approach irrespective of the specific PMD or directed to the treatment of specific diseases or phenotypes. Our study highlights significant regional and specialty-specific differences in supplementation practices. We provide some preliminary insights into specialist-based opinions regarding the use of vitamins and cofactors in PMD and highlight the need for more rigorous clinical and preclinical investigations and/or clear consensus statements.
Collapse
Affiliation(s)
- Julia Neugebauer
- Department of Paediatric GastroenterologyNephrology and Metabolic Medicine, Charité – Universitaetsmedizin BerlinBerlinGermany
- Center for Chronically Sick ChildrenCharité – Universitaetsmedizin BerlinBerlinGermany
| | - Karit Reinson
- Department of Clinical Genetics, Genetics and Personalized Medicine ClinicTartu University HospitalTartuEstonia
- Department of Genetics and Personalized Medicine, Institute of Clinical MedicineUniversity of TartuTartuEstonia
| | - Marcello Bellusci
- Reference Center for Inherited Metabolic Disorders MetabERNMitochondrial Disorders Research Group (imas12) ‘12 de Octubre’ University HospitalMadridSpain
| | - Julien H. Park
- Department of General PaediatricsUniversity Hospital MuensterMuensterGermany
| | - Omar Hikmat
- Department of Paediatrics and Adolescent MedicineHaukeland University HospitalNorway
- Department of Clinical Medicine (K1)University of BergenNorway
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disease, Translational Pediatrics and Clinical GeneticsBambino Gesu' Children's Hospital, IRCCSRomeItaly
| | - Manuel Schiff
- Université Paris CitéInstitut Imagine, Genetics of Mitochondrial Disorders, INSERM UMRParisFrance
- Reference Centre for Mitochondrial Disorders and Reference Centre for Metabolic Disease, AP‐HPNecker‐Enfants Malades HospitalParisFrance
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Savvidou A, Sofou K, Eklund EA, Aronsson J, Darin N. Manifestations of X-linked pyruvate dehydrogenase complex deficiency in female PDHA1 carriers. Eur J Neurol 2024; 31:e16283. [PMID: 38497591 PMCID: PMC11235877 DOI: 10.1111/ene.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND PURPOSE Pyruvate dehydrogenase complex deficiency is in up to 90% caused by pathogenic variants in the X-linked PDHA1 gene. We aimed to investigate female relatives of index patients with PDHA1-related disease to (i) describe the prevalence of female PDHA1 carriers, (ii) determine whether they had symptoms and signs, and (iii) delineate the associated phenotype. METHODS In a national population-based study, we identified 37 patients with pathogenic variants in PDHA1. Sanger sequencing for the presence of the pathogenic variant was performed in their mothers and female relatives. The identified female carriers were clinically assessed, and their medical records were reviewed. RESULTS The proportion carrying a de novo variant was 86%. We identified seven female PDHA1 carriers from five families. Five of them exhibited clinical features of the disease and were previously undiagnosed; all had signs of peripheral axonal neuropathy, four presented with strokelike episodes including two with Leigh-like lesions, and three had facial stigmata. CONCLUSIONS PDHA1-related disease is underrecognized in heterozygous female carriers. Peripheral axonal neuropathy, strokelike and Leigh-like changes, and facial dysmorphism should raise suspicion of the disorder. Genetic analysis and clinical examination of potential female carriers are important for genetic counseling and have implications for treatment.
Collapse
Affiliation(s)
- Antri Savvidou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Queen Silvia Children's Hospital, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Kalliopi Sofou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Queen Silvia Children's Hospital, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Erik A. Eklund
- Section of Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | | | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Queen Silvia Children's Hospital, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
3
|
Verma A, Lehman AN, Gokcan H, Cropcho L, Black D, Dobrowolski SF, Vockley J, Bedoyan JK. Amino acid ratio combinations as biomarkers for discriminating patients with pyruvate dehydrogenase complex deficiency from other inborn errors of metabolism. Mol Genet Genomic Med 2024; 12:e2283. [PMID: 37688338 PMCID: PMC10767461 DOI: 10.1002/mgg3.2283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Pyruvate dehydrogenase complex deficiency (PDCD) is a mitochondrial neurometabolic disorder of energy deficit, with incidence of about 1 in 42,000 live births annually in the USA. The median and mean ages of diagnosis of PDCD are about 12 and 31 months, respectively. PDCD is a major cause of primary lactic acidosis with concomitant elevation in blood alanine (Ala) and proline (Pro) concentrations depending on phenotypic severity. Alanine/Leucine (Ala/Leu) ≥4.0 and Proline/Leucine (Pro/Leu) ≥3.0 combination cutoff from dried blood spot specimens was used as a biomarker for early identification of neonates/infants with PDCD. Further investigations were needed to evaluate the sensitivity (SN), specificity (SP), and clinical utility of such amino acid (AA) ratio combination cutoffs in discriminating PDCD from other inborn errors of metabolism (IEM) for early identification of such patients. METHODS We reviewed medical records of patients seen at UPMC in the past 11 years with molecularly or enzymatically confirmed diagnosis. We collected plasma AA analysis data from samples prior to initiation of therapeutic interventions such as total parenteral nutrition and/or ketogenic diet. Conditions evaluated included organic acidemias, primary mitochondrial disorders (MtDs), fatty acid oxidation disorders (FAOD), other IEMs on current newborn screening panels, congenital cardiac great vessel anomalies, renal tubular acidosis, and non-IEMs. The utility of specific AA ratio combinations as biomarkers were evaluated using receiver operating characteristic curves, correlation analysis, principal component analysis, and cutoff SN, SP, and positive predictive value determined from 201 subjects with broad age range. RESULTS Alanine/Lysine (Ala/Lys) and Ala/Leu as well as (Ala + Pro)/(Leu + Lys) and Ala/Leu ratio combinations effectively discriminated subjects with PDCD from those with other MtDs and IEMs on current newborn screening panels. Specific AA ratio combinations were significantly more sensitive in identifying PDCD than Ala alone or combinations of Ala and/or Pro in the evaluated cohort of subjects. Ala/Lys ≥3.0 and Ala/Leu ≥5.0 as well as (Ala + Pro)/(Leu + Lys) ≥2.5 and Ala/Leu ≥5.0 combination cutoffs identified patients with PDCD with 100% SN and ~85% SP. CONCLUSIONS With the best predictor of survival and positive cognitive outcome in PDCD being age of diagnosis, PDCD patients would benefit from use of such highly SN and SP AA ratio combination cutoffs as biomarkers for early identification of at-risk newborns, infants, and children, for early intervention(s) with known and/or novel therapeutics for this disorder.
Collapse
Affiliation(s)
- Anisha Verma
- West Virginia School of Osteopathic MedicineLewisburgWest VirginiaUSA
| | - April N. Lehman
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Hatice Gokcan
- Department of ChemistryCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Lorna Cropcho
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Danielle Black
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Steven F. Dobrowolski
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jerry Vockley
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jirair K. Bedoyan
- UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Croci C, Cataldi M, Baratto S, Bruno C, Trucco F, Doccini S, Romano A, Nesti C, Santorelli FM, Fiorillo C. Recurrent Sensory-Motor Neuropathy Mimicking CIDP as Predominant Presentation of PDH Deficiency. Neuropediatrics 2023; 54:211-216. [PMID: 36693417 DOI: 10.1055/a-2018-4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.
Collapse
Affiliation(s)
- Carolina Croci
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Matteo Cataldi
- Department of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federica Trucco
- Department of Neurorehabilitation, University of Milan, Milan, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandro Romano
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
6
|
Garg D, Mohammad S, Shukla A, Sharma S. Genetic Links to Episodic Movement Disorders: Current Insights. Appl Clin Genet 2023; 16:11-30. [PMID: 36883047 PMCID: PMC9985884 DOI: 10.2147/tacg.s363485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Episodic or paroxysmal movement disorders (PxMD) are conditions, which occur episodically, are transient, usually have normal interictal periods, and are characterized by hyperkinetic disorders, including ataxia, chorea, dystonia, and ballism. Broadly, these comprise paroxysmal dyskinesias (paroxysmal kinesigenic and non-kinesigenic dyskinesia [PKD/PNKD], paroxysmal exercise-induced dyskinesias [PED]) and episodic ataxias (EA) types 1-9. Classification of paroxysmal dyskinesias has traditionally been clinical. However, with advancement in genetics and the discovery of the molecular basis of several of these disorders, it is becoming clear that phenotypic pleiotropy exists, that is, the same variant may give rise to a variety of phenotypes, and the classical understanding of these disorders requires a new paradigm. Based on molecular pathogenesis, paroxysmal disorders are now categorized as synaptopathies, transportopathies, channelopathies, second-messenger related disorders, mitochondrial or others. A genetic paradigm also has an advantage of identifying potentially treatable disorders, such as glucose transporter 1 deficiency syndromes, which necessitates a ketogenic diet, and ADCY5-related disorders, which may respond to caffeine. Clues for a primary etiology include age at onset below 18 years, presence of family history and fixed triggers and attack duration. Paroxysmal movement disorder is a network disorder, with both the basal ganglia and the cerebellum implicated in pathogenesis. Abnormalities in the striatal cAMP turnover pathway may also be contributory. Although next-generation sequencing has restructured the approach to paroxysmal movement disorders, the genetic underpinnings of several entities remain undiscovered. As more genes and variants continue to be reported, these will lead to enhanced understanding of pathophysiological mechanisms and precise treatment.
Collapse
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College and Hospital, Manipal, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Hospital, New Delhi, India
| |
Collapse
|
7
|
Abu-hadid O, Jimenez-Shahed J. An overview of the pharmacotherapeutics for dystonia: advances over the past decade. Expert Opin Pharmacother 2022; 23:1927-1940. [DOI: 10.1080/14656566.2022.2147823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- O. Abu-hadid
- Icahn School of Medicine at Mount Sinai, New York City, NY
| | | |
Collapse
|
8
|
Agarwal PA, Kuipers DJS, Fevga C, Agrawal S, Ravat SH, Breedveld GJ, Sethi K, Bonifati V. Isolated Paroxysmal Non-kinesigenic Dystonia Associated with Homozygous PDHB Variant in an Indian Family. Mov Disord 2022; 37:2166-2167. [PMID: 35838632 DOI: 10.1002/mds.29158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Pankaj A Agarwal
- Movement Disorders Clinic, Department of Neurology, Global Hospitals, Mumbai, India.,Department of Neurology, Global Hospitals, Mumbai, India.,Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christina Fevga
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shruti Agrawal
- Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Sangeeta H Ravat
- Department of Neurology, Global Hospitals, Mumbai, India.,Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kapil Sethi
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Méneret A, Garcin B, Frismand S, Lannuzel A, Mariani LL, Roze E. Treatable Hyperkinetic Movement Disorders Not to Be Missed. Front Neurol 2021; 12:659805. [PMID: 34925200 PMCID: PMC8671871 DOI: 10.3389/fneur.2021.659805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperkinetic movement disorders are characterized by the presence of abnormal involuntary movements, comprising most notably dystonia, chorea, myoclonus, and tremor. Possible causes are numerous, including autoimmune disorders, infections of the central nervous system, metabolic disturbances, genetic diseases, drug-related causes and functional disorders, making the diagnostic process difficult for clinicians. Some diagnoses may be delayed without serious consequences, but diagnosis delays may prove detrimental in treatable disorders, ranging from functional disabilities, as in dopa-responsive dystonia, to death, as in Whipple's disease. In this review, we focus on treatable disorders that may present with prominent hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Aurélie Méneret
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Béatrice Garcin
- Service de Neurologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Solène Frismand
- Département de Neurologie, Hôpital universitaire de Nancy, Nancy, France
| | - Annie Lannuzel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Département de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France
- Faculté de Médecine, Université Des Antilles, Pointe-à-Pitre, France
- Centre D'investigation Clinique Antilles Guyane, Pointe-à-Pitre, France
| | - Louise-Laure Mariani
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Emmanuel Roze
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| |
Collapse
|
10
|
Harvey S, King MD, Gorman KM. Paroxysmal Movement Disorders. Front Neurol 2021; 12:659064. [PMID: 34177764 PMCID: PMC8232056 DOI: 10.3389/fneur.2021.659064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal movement disorders (PxMDs) are a clinical and genetically heterogeneous group of movement disorders characterized by episodic involuntary movements (dystonia, dyskinesia, chorea and/or ataxia). Historically, PxMDs were classified clinically (triggers and characteristics of the movements) and this directed single-gene testing. With the advent of next-generation sequencing (NGS), how we classify and investigate PxMDs has been transformed. Next-generation sequencing has enabled new gene discovery (RHOBTB2, TBC1D24), expansion of phenotypes in known PxMDs genes and a better understanding of disease mechanisms. However, PxMDs exhibit phenotypic pleiotropy and genetic heterogeneity, making it challenging to predict genotype based on the clinical phenotype. For example, paroxysmal kinesigenic dyskinesia is most commonly associated with variants in PRRT2 but also variants identified in PNKD, SCN8A, and SCL2A1. There are no radiological or biochemical biomarkers to differentiate genetic causes. Even with NGS, diagnosis rates are variable, ranging from 11 to 51% depending on the cohort studied and technology employed. Thus, a large proportion of patients remain undiagnosed compared to other neurological disorders such as epilepsy, highlighting the need for further genomic research in PxMDs. Whole-genome sequencing, deep-sequencing, copy number variant analysis, detection of deep-intronic variants, mosaicism and repeat expansions, will improve diagnostic rates. Identifying the underlying genetic cause has a significant impact on patient care, modification of treatment, long-term prognostication and genetic counseling. This paper provides an update on the genetics of PxMDs, description of PxMDs classified according to causative gene rather than clinical phenotype, highlighting key clinical features and providing an algorithm for genetic testing of PxMDs.
Collapse
Affiliation(s)
- Susan Harvey
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Danti FR, Invernizzi F, Moroni I, Garavaglia B, Nardocci N, Zorzi G. Pediatric Paroxysmal Exercise-Induced Neurological Symptoms: Clinical Spectrum and Diagnostic Algorithm. Front Neurol 2021; 12:658178. [PMID: 34140924 PMCID: PMC8203909 DOI: 10.3389/fneur.2021.658178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Paroxysmal exercise-induced neurological symptoms (PENS) encompass a wide spectrum of clinical phenomena commonly presenting during childhood and characteristically elicited by physical exercise. Interestingly, few shared pathogenetic mechanisms have been identified beyond the well-known entity of paroxysmal exercise-induced dyskinesia, PENS could be part of more complex phenotypes including neuromuscular, neurodegenerative, and neurometabolic disease, epilepsies, and psychogenetic disorders. The wide and partially overlapping phenotypes and the genetic heterogeneity make the differential diagnosis frequently difficult and delayed; however, since some of these disorders may be treatable, a prompt diagnosis is mandatory. Therefore, an accurate characterization of these symptoms is pivotal for orienting more targeted biochemical, radiological, neurophysiological, and genetic investigations and finally treatment. In this article, we review the clinical, genetic, pathophysiologic, and therapeutic landscape of paroxysmal exercise induced neurological symptoms, focusing on phenomenology and differential diagnosis.
Collapse
Affiliation(s)
- Federica Rachele Danti
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Nardo Nardocci
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Zorzi
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
12
|
Liao JY, Salles PA, Shuaib UA, Fernandez HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021; 128:447-471. [PMID: 33929620 DOI: 10.1007/s00702-021-02335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
The paroxysmal dyskinesias are a diverse group of genetic disorders that manifest as episodic movements, with specific triggers, attack frequency, and duration. With recent advances in genetic sequencing, the number of genetic variants associated with paroxysmal dyskinesia has dramatically increased, and it is now evident that there is significant genotype-phenotype overlap, reduced (or incomplete) penetrance, and phenotypic variability. In addition, a variety of genetic conditions can present with paroxysmal dyskinesia as the initial symptom. This review will cover the 34 genes implicated to date and propose a diagnostic workflow featuring judicious use of whole-exome or -genome sequencing. The goal of this review is to provide a common understanding of paroxysmal dyskinesias so basic scientists, geneticists, and clinicians can collaborate effectively to provide diagnoses and treatments for patients.
Collapse
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philippe A Salles
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - Umar A Shuaib
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Sen K, Grahame G, Bedoyan JK, Gropman AL. Novel presentations associated with a PDHA1 variant - Alternating hemiplegia in Hemizygote proband and Guillain Barre Syndrome in Heterozygote mother. Eur J Paediatr Neurol 2021; 31:27-30. [PMID: 33592356 PMCID: PMC9745742 DOI: 10.1016/j.ejpn.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022]
Abstract
We report a 5-year-old male with a PDHA1 variant who presented with alternating hemiplegia of childhood and later developed developmental regression, basal ganglia injury and episodic lactic acidosis. Enzyme assay in lymphocytes confirmed a diagnosis of Pyruvate Dehydrogenase Complex (PDC) deficiency. His mother who was heterozygous for the same variant suffered from ophthalmoplegia, chronic migraine and developed flaccid paralysis at 36 years of age. PDHA1 is the most common genetic cause of PDC deficiency and presents with a myriad of neurological phenotypes including neonatal form with lactic acidosis, non-progressive infantile encephalopathy, Leigh syndrome subtype and intermittent ataxia. The presentations in our 2 patients contribute to the clinical heterogeneity of this neurogenetic condition.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, Washington DC, USA.
| | - George Grahame
- Center for Inherited Disorders of Energy Metabolism, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jirair K Bedoyan
- Center for Inherited Disorders of Energy Metabolism, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, USA
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, Washington DC, USA
| |
Collapse
|
14
|
Tiet MY, Lin Z, Gao F, Jennings MJ, Horvath R. Targeted Therapies for Leigh Syndrome: Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:885-897. [PMID: 34308912 PMCID: PMC8673543 DOI: 10.3233/jnd-210715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Leigh syndrome (LS) is the most frequent paediatric clinical presentation of mitochondrial disease. The clinical phenotype of LS is highly heterogeneous. Though historically the treatment for LS is largely supportive, new treatments are on the horizon. Due to the rarity of LS, large-scale interventional studies are scarce, limiting dissemination of information of therapeutic options to the wider scientific and clinical community. OBJECTIVE We conducted a systematic review of pharmacological therapies of LS following the guidelines for FAIR-compliant datasets. METHODS We searched for interventional studies within Clincialtrials.gov and European Clinical trials databases. Randomised controlled trials, observational studies, case reports and case series formed part of a wider MEDLINE search. RESULTS Of the 1,193 studies initially identified, 157 met our inclusion criteria, of which 104 were carried over into our final analysis. Treatments for LS included very few interventional trials using EPI-743 and cysteamine bitartrate. Wider literature searches identified case series and reports of treatments repleting glutathione stores, reduction of oxidative stress and restoration of oxidative phosphorylation. CONCLUSIONS Though interventional randomised controlled trials have begun for LS, the majority of evidence remains in case reports and case series for a number of treatable genes, encoding cofactors or transporter proteins of the mitochondria. Our findings will form part of the international expert-led Solve-RD efforts to assist clinicians initiating treatments in patients with treatable variants of LS.
Collapse
Affiliation(s)
- May Yung Tiet
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Zhiyuan Lin
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Fei Gao
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Matthew James Jennings
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Oh J, Koo C, Kim KW, Lee JS. Potential role of stress-induced gluconeogenesis in disease aggravation and mortality in pyruvate dehydrogenase deficiency: A case-based hypothesis. Med Hypotheses 2020; 146:110432. [PMID: 33303308 DOI: 10.1016/j.mehy.2020.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Pyruvate dehydrogenase (PDH) deficiency is an inherited metabolic disorder caused by a defect in any subunit of the pyruvate dehydrogenase complex (PDHC), which has an essential role in glucose metabolism. The causes of disease progression in PDH deficiency are not fully understood yet. Based on repeated observations of a patient with PDH deficiency at our center, we hypothesized that stress-induced gluconeogenesis contributes to rapid exacerbation of the disease. This link has not been established previously.
Collapse
Affiliation(s)
- Jiyoung Oh
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chungmo Koo
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Sung Lee
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. Curr Opin Pediatr 2020; 32:707-718. [PMID: 33105273 PMCID: PMC7774245 DOI: 10.1097/mop.0000000000000954] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease is a highly heterogeneous but collectively common inherited metabolic disorder, affecting at least one in 4300 individuals. Therapeutic management of mitochondrial disease typically involves empiric prescription of enzymatic cofactors, antioxidants, and amino acid and other nutrient supplements, based on biochemical reasoning, historical experience, and consensus expert opinion. As the field continues to rapidly advance, we review here the preclinical and clinical evidence, and specific dosing guidelines, for common mitochondrial medicine therapies to guide practitioners in their prescribing practices. RECENT FINDINGS Since publication of Mitochondrial Medicine Society guidelines for mitochondrial medicine therapies management in 2009, data has emerged to support consideration for using additional therapeutic agents and discontinuation of several previously used agents. Preclinical animal modeling data have indicated a lack of efficacy for vitamin C as an antioxidant for primary mitochondrial disease, but provided strong evidence for vitamin E and N-acetylcysteine. Clinical data have suggested L-carnitine may accelerate atherosclerotic disease. Long-term follow up on L-arginine use as prophylaxis against or acute treatment for metabolic strokes has provided more data supporting its clinical use in individuals with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome and Leigh syndrome. Further, several precision therapies have been developed for specific molecular causes and/or shared clinical phenotypes of primary mitochondrial disease. SUMMARY We provide a comprehensive update on mitochondrial medicine therapies based on current evidence and our single-center clinical experience to support or refute their use, and provide detailed dosing guidelines, for the clinical management of mitochondrial disease. The overarching goal of empiric mitochondrial medicines is to utilize therapies with favorable benefit-to-risk profiles that may stabilize and enhance residual metabolic function to improve cellular resiliency and slow clinical disease progression and/or prevent acute decompensation.
Collapse
Affiliation(s)
- Isabella Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward Shadiack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca D. Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Clinical characteristics and diagnostic clues to Neurometabolic causes of dystonia. J Neurol Sci 2020; 419:117167. [DOI: 10.1016/j.jns.2020.117167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022]
|
18
|
Ortigoza-Escobar JD. A Proposed Diagnostic Algorithm for Inborn Errors of Metabolism Presenting With Movements Disorders. Front Neurol 2020; 11:582160. [PMID: 33281718 PMCID: PMC7691570 DOI: 10.3389/fneur.2020.582160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited metabolic diseases or inborn errors of metabolism frequently manifest with both hyperkinetic (dystonia, chorea, myoclonus, ataxia, tremor, etc.) and hypokinetic (rigid-akinetic syndrome) movement disorders. The diagnosis of these diseases is in many cases difficult, because the same movement disorder can be caused by several diseases. Through a literature review, two hundred and thirty one inborn errors of metabolism presenting with movement disorders have been identified. Fifty-one percent of these diseases exhibits two or more movement disorders, of which ataxia and dystonia are the most frequent. Taking into account the wide range of these disorders, a methodical evaluation system needs to be stablished. This work proposes a six-step diagnostic algorithm for the identification of inborn errors of metabolism presenting with movement disorders comprising red flags, characterization of the movement disorders phenotype (type of movement disorder, age and nature of onset, distribution and temporal pattern) and other neurological and non-neurological signs, minimal biochemical investigation to diagnose treatable diseases, radiological patterns, genetic testing and ultimately, symptomatic, and disease-specific treatment. As a strong action, it is emphasized not to miss any treatable inborn error of metabolism through the algorithm.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
19
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
20
|
Galosi S, Nardecchia F, Leuzzi V. Treatable Inherited Movement Disorders in Children: Spotlight on Clinical and Biochemical Features. Mov Disord Clin Pract 2020; 7:154-166. [PMID: 32071932 DOI: 10.1002/mdc3.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 12/26/2022] Open
Abstract
Background About 80% of monogenic metabolic diseases causing movement disorders (MDs) emerges during the first 2 decades of life, and a number of these conditions offers the opportunity of a disease-modifying treatment. The implementation of enlarged neonatal screening programs and the impressive rapid increase of the identification of new conditions are enhancing our potential to recognize and treat several diseases causing MDs, changing their outcome and phenotypic spectrum. Methods and Findings A literature review of monogenic disorders causing MDs amenable to treatment was conducted focusing on early clinical signs and diagnostic biomarkers. A classification in 3 broad categories based on the therapeutic approach has been proposed. Some disorders result in irreversible neurotoxic lesions that can only be prevented if treated in a presymptomatic stage, and others present with a progressive neurological impairment that a timely diagnosis and treatment may reverse or improve. Some MDs are the result of the failure of intracellular energy supply or altered glucose transport. The treatment in these conditions includes vitamins or a metabolic shift from a carbohydrate to a fatty acid catabolism, respectively. Finally, a group of highly treatable MDs are the result of defects of neurotransmitter metabolism. In these disorders, the supplementation of precursors or mimetics of neurotransmitters can deeply change the disease natural history. Conclusions To prevent serious and irreversible neurological impairment, the diagnostic work-up of MDs in children should consider a number of clinical red flags and biomarkers denoting specifically treatable diseases.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience Sapienza University Rome Italy
| | | | - Vincenzo Leuzzi
- Department of Human Neuroscience Sapienza University Rome Italy
| |
Collapse
|
21
|
Abstract
Paroxysmal dyskinesias (PxD) comprise a group of heterogeneous syndromes characterized by recurrent attacks of mainly dystonia and/or chorea, without loss of consciousness. PxD have been classified according to their triggers and duration as paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia and paroxysmal exertion-induced dyskinesia. Of note, the spectrum of genetic and nongenetic conditions underlying PxD is continuously increasing, but not always a phenotype–etiology correlation exists. This creates a challenge in the diagnostic work-up, increased by the fact that most of these episodes are unwitnessed. Furthermore, other paroxysmal disorders, included those of psychogenic origin, should be considered in the differential diagnosis. In this review, some key points for the diagnosis are provided, as well as the appropriate treatment and future approaches discussed.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article provides an overview of the clinical features and disorders associated with movement disorders in childhood. This article discusses movement disorder phenomena and their clinical presentation in infants and children and presents a diagnostic approach to suspected genetic disorders with a focus on treatable conditions. RECENT FINDINGS Technologic advances in molecular genetic testing over the past decade continue to lead to the discovery of new diseases. This article discusses the clinical presentation and early experience with treatment for several recently described genetic forms of infantile-onset and childhood-onset dystonia and chorea. SUMMARY The clinical spectrum of pediatric movement disorders is broad and heterogeneous, ranging from acute or transient self-limited conditions to conditions that cause profound lifelong motor disability. Most movement disorders in childhood are chronic, and the large number of rare, genetic conditions associated with pediatric movement disorders can pose a significant diagnostic challenge. Recognition of distinctive diagnostic clues in the history and examination can facilitate the diagnosis of potentially treatable disorders.
Collapse
|
23
|
Finsterer J. Cerebral imaging in adult mitochondrial disorders. J Neurol Sci 2019; 404:29-35. [PMID: 31323519 DOI: 10.1016/j.jns.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Among the organs/tissues affected in mitochondrial disorders (MIDs), the brain is the second most frequently affected. Cerebral imaging may correlate with clinical findings but not necessarily. This review summarises and discusses current knowledge and recent advances concerning cerebral abnormalities on imaging in adult MIDs (≥18y). METHODS Systematic literature review. RESULTS The most common cerebral abnormalities in imaging in adult MIDs are, as in pediatric MIDs, white matter lesions, grey matter lesions, atrophy, optic atrophy, stroke-like lesions, calcifications, and ischemic stroke. Cerebral lesions may remain stable over years but some may undergo dynamic changes within shorter or longer period of times. Typical dynamic lesions are stroke-like lesions and grey matter lesions in the sense of progression or regression. Since cerebral lesions on imaging may or may not go along with clinical manifestations, it is crucial to screen all MID patients for cerebral involvement, which can be effectively accomplished by application of the MRI. CONCLUSIONS Cerebral imaging is of paramount importance for diagnosing and monitoring cerebral involvement in MIDs. Cerebral imaging in MIDs contributes to the understanding of the pathogenesis of cerebral involvement in MIDs.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Postfach 20, 1180 Vienna, Austria.
| |
Collapse
|
24
|
Méneret A, Roze E. GLUT1 Deficiency in a Patient Diagnosed as Cerebral Palsy: Is NGS a Valuable Tool to Be Considered in All Cases of CP to Detect Underlying Genetic Disorders? Mov Disord Clin Pract 2019; 6:277-279. [PMID: 31061833 PMCID: PMC6476600 DOI: 10.1002/mdc3.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Aurélie Méneret
- Department of NeurologyPitié‐Salpêtrière Hospital, APHPParisFrance
- Faculty of Medicine of Sorbonne UniversityInserm U 1127, CNRS UMR 7225, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F‐75013, ParisFrance
| | - Emmanuel Roze
- Department of NeurologyPitié‐Salpêtrière Hospital, APHPParisFrance
- Faculty of Medicine of Sorbonne UniversityInserm U 1127, CNRS UMR 7225, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F‐75013, ParisFrance
| |
Collapse
|
25
|
Mohammad SS, Paget SP, Dale RC. Current therapies and therapeutic decision making for childhood-onset movement disorders. Mov Disord 2019; 34:637-656. [PMID: 30919519 DOI: 10.1002/mds.27661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Movement disorders differ in children to adults. First, neurodevelopmental movement disorders such as tics and stereotypies are more prevalent than parkinsonism, and second, there is a genomic revolution which is now explaining many early-onset dystonic syndromes. We outline an approach to children with movement disorders starting with defining the movement phenomenology, determining the level of functional impairment due to abnormal movements, and screening for comorbid psychiatric conditions and cognitive impairments which often contribute more to disability than the movements themselves. The rapid improvement in our understanding of the etiology of movement disorders has resulted in an increasing focus on precision medicine, targeting treatable conditions and defining modifiable disease processes. We profile some of the key disease-modifying therapies in metabolic, neurotransmitter, inflammatory, and autoimmune conditions and the increasing focus on gene or cellular therapies. When no disease-modifying therapies are possible, symptomatic therapies are often all that is available. These classically target dopaminergic, cholinergic, alpha-adrenergic, or GABAergic neurochemistry. Increasing interest in neuromodulation has highlighted that some clinical syndromes respond better to DBS, and further highlights the importance of "disease-specific" therapies with a future focus on individualized therapies according to the genomic findings or disease pathways that are disrupted. We summarize some pragmatic applications of symptomatic therapies, neuromodulation techniques, and some rehabilitative interventions and provide a contemporary overview of treatment in childhood-onset movement disorders. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shekeeb S Mohammad
- Kids Neuroscience Centre, The Kids Research Institute at the Children's Hospital at Westmead, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.,Movement Disorders Unit, T.Y. Nelson Department of Neurology, the Children's Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Simon P Paget
- Kids Rehab, the Children's Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Kids Research Institute at the Children's Hospital at Westmead, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.,Movement Disorders Unit, T.Y. Nelson Department of Neurology, the Children's Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Abstract
Inborn errors of metabolism comprise a wide array of diseases and complications in the pediatric patient. The rarity of these disorders limits the ability to conduct and review robust literature regarding the disease states, mechanisms of dysfunction, treatments, and outcomes. Often, treatment plans will be based on the pathophysiology associated with the disorder and theoretical agents that may be involved in the metabolic process. Medication therapies usually consist of natural or herbal products. Established efficacious pediatric doses for these products are difficult to find in tertiary resources, and adverse effects are routinely limited to single case reports. This review article attempts to summarize some of the more common inborn errors of metabolism in a manner that is applicable to pharmacists who will provide care for these patients.
Collapse
|
27
|
Rossi M, Balint B, Millar Vernetti P, Bhatia KP, Merello M. Genetic Dystonia-ataxia Syndromes: Clinical Spectrum, Diagnostic Approach, and Treatment Options. Mov Disord Clin Pract 2018; 5:373-382. [PMID: 30363394 PMCID: PMC6174447 DOI: 10.1002/mdc3.12635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Dystonia and ataxia are manifestations of numerous disorders, and indeed, an ever-expanding spectrum of genes causing diseases that encompass dystonia and ataxia are discovered with the advances of genetic techniques. In recent years, a pathophysiological link between both clinical features and the role of the cerebellum in the genesis of dystonia, in some cases, has been proposed. In clinical practice, the genetic diagnosis of dystonia-ataxia syndromes is a major issue for genetic counseling, prognosis and, occasionally, specific treatment. METHODS For this pragmatic and educational review, we conducted a comprehensive and structured literature search in Pubmed, OMIM, and GeneReviews using the key words "dystonia" and "ataxia" to identify those genetic diseases that may combine dystonia with ataxia. RESULTS There are a plethora of genetic diseases causing dystonia and ataxia. We propose a series of clinico-radiological algorithms to guide their differential diagnosis depending on the age of onset, additional neurological or systemic features, and imaging findings. We suggest a sequential diagnostic approach to dystonia-ataxia syndromes. We briefly highlight the pathophysiological links between dystonia and ataxia and conclude with a review of specific treatment implications. CONCLUSIONS The clinical approach presented in this review is intended to improve the diagnostic success of clinicians when faced with patients with dystonia-ataxia syndromes.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Bettina Balint
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology, Queen SquareLondonWC1N3BGUK
- Department of NeurologyUniversity HospitalHeidelbergGermany
- Neuroimmunology Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
| | - Patricio Millar Vernetti
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Kailash P. Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology, Queen SquareLondonWC1N3BGUK
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)
| |
Collapse
|
28
|
Abstract
Paroxysmal dyskinesias (PD) are hyperkinetic movement disorders where patients usually retain consciousness. Paroxysmal dyskinesias can be kinesigenic (PKD), nonkinesigenic (PNKD), and exercise induced (PED). These are usually differentiated from each other based on their phenotypic and genotypic characteristics. Genetic causes of PD are continuing to be discovered. Genes found to be involved in the pathogenesis of PD include MR-1, PRRT2, SLC2A1, and KCNMA1. The differential diagnosis is broad as PDs can mimic psychogenic events, seizure, or other movement disorders. This review also includes secondary causes of PDs, which can range from infections, metabolic, structural malformations to malignancies. Treatment is usually based on the correct identification of type of PD. PKD responds well to antiepileptic medications, whereas PNKD and PED respond to avoidance of triggers and exercise, respectively. In this article, we review the classification, clinical features, genetics, differential diagnosis, and management of PD.
Collapse
Affiliation(s)
- Sara McGuire
- Department of Pediatrics, Section of Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Swati Chanchani
- Department of Pediatrics, Section of Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Divya S Khurana
- Department of Pediatrics, Section of Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| |
Collapse
|
29
|
Meijer IA, Pearson TS. The Twists of Pediatric Dystonia: Phenomenology, Classification, and Genetics. Semin Pediatr Neurol 2018; 25:65-74. [PMID: 29735118 DOI: 10.1016/j.spen.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article aims to provide a practical review of pediatric dystonia from a clinician's perspective. The focus is on the underlying genetic causes, recent findings, and treatable conditions. Dystonia can occur in an isolated fashion or accompanied by other neurological or systemic features. The clinical presentation is often a complex overlap of neurological findings with a large differential diagnosis. We recommend an approach guided by thorough clinical evaluation, brain magnetic resonance imaging (MRI), biochemical analysis, and genetic testing to hone in on the diagnosis. This article highlights the clinical and genetic complexity of pediatric dystonia and underlines the importance of a genetic diagnosis for therapeutic considerations.
Collapse
Affiliation(s)
- Inge A Meijer
- Department of Neurology, Mount Sinai Beth Israel, New York, NY; Department of Pediatrics, Neurology division, Université de Montreal, Montreal, Canada
| | - Toni S Pearson
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO.
| |
Collapse
|
30
|
Wasim M, Awan FR, Khan HN, Tawab A, Iqbal M, Ayesha H. Aminoacidopathies: Prevalence, Etiology, Screening, and Treatment Options. Biochem Genet 2017; 56:7-21. [PMID: 29094226 DOI: 10.1007/s10528-017-9825-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited metabolic disorders which are caused by mutations in the specific genes that lead to impaired proteins or enzymes production. Different metabolic pathways are perturbed due to the deficiency or lack of enzymes. To date, more than 500 IEMs have been reported with most of them being untreatable. However, fortunately 91 such disorders are potentially treatable, if diagnosed at an earlier stage of life. IEMs have been classified into different categories and one class of IEMs, characterized by the physiological disturbances of amino acids is called as aminoacidopathies. Out of 91 treatable IEM, thirteen disorders are amino acid related. Aminoacidopathies can be detected by chromatography and mass spectrometry based analytical techniques (e.g., HPLC, GC-MS, LC-MS/MS) for amino acid level changes, and through genetic assays (e.g., PCR, TaqMan Genotyping, DNA sequencing) at the mutation level in the corresponding genes. Hence, this review is focused to describe thirteen common aminoacidopathies namely: Phenylketonuria (PKU), Maple Syrup Urine Disease (MSUD), Homocystinuria/Methylene Tetrahydrofolate Reductase (MTHFR) deficiency, Tyrosinemia type II, Citrullinemia type I and type II, Argininosuccinic aciduria, Carbamoyl Phosphate Synthetase I (CPS) deficiency, Argininemia (arginase deficiency), Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome, N-Acetylglutamate Synthase (NAGS) deficiency, Ornithine Transcarbamylase (OTC) deficiency, and Pyruvate Dehydrogenase (PDH) complex deficiency. Furthermore, the etiology, prevalence and commonly used analytical techniques for screening of aminoacidopathies are briefly described. This information would be helpful to researchers and clinicians especially from developing countries to initiate newborn screening programs for aminoacidopathies.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Hina Ayesha
- DHQ Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| |
Collapse
|
31
|
Friedman J, Feigenbaum A, Chuang N, Silhavy J, Gleeson JG. Pyruvate dehydrogenase complex-E2 deficiency causes paroxysmal exercise-induced dyskinesia. Neurology 2017; 89:2297-2298. [PMID: 29093066 DOI: 10.1212/wnl.0000000000004689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/11/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jennifer Friedman
- From the University of California San Diego (J.F., A.F., N.C., J.S., J.G.G.); Rady Children's Hospital (J.F., A.F., N.C., J.G.G.); Rady Children's Institute for Genomic Medicine (J.F., J.G.G.), San Diego, CA; and Howard Hughes Medical Institute (J.G.G.), Chevy Chase, MD.
| | - Annette Feigenbaum
- From the University of California San Diego (J.F., A.F., N.C., J.S., J.G.G.); Rady Children's Hospital (J.F., A.F., N.C., J.G.G.); Rady Children's Institute for Genomic Medicine (J.F., J.G.G.), San Diego, CA; and Howard Hughes Medical Institute (J.G.G.), Chevy Chase, MD
| | - Nathaniel Chuang
- From the University of California San Diego (J.F., A.F., N.C., J.S., J.G.G.); Rady Children's Hospital (J.F., A.F., N.C., J.G.G.); Rady Children's Institute for Genomic Medicine (J.F., J.G.G.), San Diego, CA; and Howard Hughes Medical Institute (J.G.G.), Chevy Chase, MD
| | - Jennifer Silhavy
- From the University of California San Diego (J.F., A.F., N.C., J.S., J.G.G.); Rady Children's Hospital (J.F., A.F., N.C., J.G.G.); Rady Children's Institute for Genomic Medicine (J.F., J.G.G.), San Diego, CA; and Howard Hughes Medical Institute (J.G.G.), Chevy Chase, MD
| | - Joseph G Gleeson
- From the University of California San Diego (J.F., A.F., N.C., J.S., J.G.G.); Rady Children's Hospital (J.F., A.F., N.C., J.G.G.); Rady Children's Institute for Genomic Medicine (J.F., J.G.G.), San Diego, CA; and Howard Hughes Medical Institute (J.G.G.), Chevy Chase, MD
| |
Collapse
|
32
|
Jinnah HA, Albanese A, Bhatia KP, Cardoso F, Da Prat G, de Koning TJ, Espay AJ, Fung V, Garcia-Ruiz PJ, Gershanik O, Jankovic J, Kaji R, Kotschet K, Marras C, Miyasaki JM, Morgante F, Munchau A, Pal PK, Rodriguez Oroz MC, Rodríguez-Violante M, Schöls L, Stamelou M, Tijssen M, Uribe Roca C, de la Cerda A, Gatto EM. Treatable inherited rare movement disorders. Mov Disord 2017; 33:21-35. [PMID: 28861905 DOI: 10.1002/mds.27140] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 12/19/2022] Open
Abstract
There are many rare movement disorders, and new ones are described every year. Because they are not well recognized, they often go undiagnosed for long periods of time. However, early diagnosis is becoming increasingly important. Rapid advances in our understanding of the biological mechanisms responsible for many rare disorders have enabled the development of specific treatments for some of them. Well-known historical examples include Wilson disease and dopa-responsive dystonia, for which specific and highly effective treatments have life-altering effects. In recent years, similarly specific and effective treatments have been developed for more than 30 rare inherited movement disorders. These treatments include specific medications, dietary changes, avoidance or management of certain triggers, enzyme replacement therapy, and others. This list of treatable rare movement disorders is likely to grow during the next few years because a number of additional promising treatments are actively being developed or evaluated in clinical trials. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- H A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Alberto Albanese
- Department of Neurology, Humanitas Research Hospital, Rozzano, Italy.,Catholic University, Milan, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Francisco Cardoso
- Department of Internal Medicine, Movement Disorders Clinic, Neurology Service, UFMG, Belo Horizonte, MG, Brazil
| | - Gustavo Da Prat
- Department of Neurology, Affiliated University of Buenos Aires, Buenos Aires, Argentina.,University DelSalvadore, Buenos Aires, Argentina
| | - Tom J de Koning
- Department of Genetics, Pediatrics and Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alberto J Espay
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement Disorders, University of Cincinnati, Ohio, USA
| | - Victor Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital & Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Oscar Gershanik
- Institute of Neuroscience, Favaloro Foundation University Hospital, Buenos Aires, Argentina
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas, USA
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Katya Kotschet
- Clinical Neurosciences, St. Vincent's Health, Melbourne, Australia
| | - Connie Marras
- The Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | | - Francesca Morgante
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alexander Munchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neuroscience, Bangalore, India
| | - Maria C Rodriguez Oroz
- University Hospital Donostia, Madrid, Spain.,BioDonostia Research Institute, Basque Center on Cognition, Brain and Language, San Sebastian, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | | | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany.,German Center for Neurodegenerative Diseases, Tubingen, Germany
| | - Maria Stamelou
- Neurology Clinic, Philipps University Marburg, Marburg, Germany.,Parkinson's Disease and Other Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | - Marina Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Claudia Uribe Roca
- Department of Neurology, British Hospital of Buenos Aires, Buenos Aires, Argentina
| | | | - Emilia M Gatto
- Department of Neurology, Affiliated University of Buenos Aires and University DelSalvadore, Buenos Aires, Argentina
| | | |
Collapse
|
33
|
Miranda M, Bustamante ML. Commentary to medical genetics and genomic medicine in Chile: Chilean experience on molecular diagnosis for neurodegenerative disorders. Mol Genet Genomic Med 2017; 5:305-306. [PMID: 28717656 PMCID: PMC5511793 DOI: 10.1002/mgg3.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this article, the experience in the molecular diagnosis in neurodegenerative disorders in Chile, including present challenges and potential new pathways for development, is explained.![]()
Collapse
Affiliation(s)
- Marcelo Miranda
- Department of NeurologyClínica Las CondesAv. Lo Fontecilla 441Las CondesSantiagoChile
| | - María Leonor Bustamante
- Program of Human GeneticsBiomedical Sciences InstituteAv. Independencia 1027IndependenciaSantiagoChile.,Department of Psychiatry and Mental Health North DivisionFaculty of MedicineUniversity of ChileAv. Independencia 1027IndependenciaSantiagoChile
| |
Collapse
|
34
|
Common genetic etiology between “multiple sclerosis-like” single-gene disorders and familial multiple sclerosis. Hum Genet 2017; 136:705-714. [DOI: 10.1007/s00439-017-1784-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/18/2017] [Indexed: 12/24/2022]
|
35
|
Kolicheski AL, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Kinoshita T, Murakami Y, O'Brien DP. A homozygous PIGN missense mutation in Soft-Coated Wheaten Terriers with a canine paroxysmal dyskinesia. Neurogenetics 2017; 18:39-47. [PMID: 27891564 PMCID: PMC5243907 DOI: 10.1007/s10048-016-0502-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/13/2016] [Indexed: 12/26/2022]
Abstract
Hereditary paroxysmal dyskinesias (PxD) are a heterogeneous group of movement disorders classified by frequency, duration, and triggers of the episodes. A young-adult onset canine PxD has segregated as an autosomal recessive trait in Soft-Coated Wheaten Terriers. The medical records and videos of episodes from 25 affected dogs were reviewed. The episodes of hyperkinesia and dystonia lasted from several minutes to several hours and could occur as often as >10/day. They were not associated with strenuous exercise or fasting but were sometimes triggered by excitement. The canine PxD phenotype most closely resembled paroxysmal non-kinesigenic dyskinesia (PNKD) of humans. Whole genome sequences were generated with DNA from 2 affected dogs and analyzed in comparison to 100 control canid whole genome sequences. The two whole genome sequences from dogs with PxD had a rare homozygous PIGN:c.398C > T transition, which predicted the substitution of an isoleucine for a highly conserved threonine in the encoded enzyme. All 25 PxD-affected dogs were PIGN:c.398T allele homozygotes, whereas there were no c.398T homozygotes among 1185 genotyped dogs without known histories of PxD. PIGN encodes an enzyme involved in the biosynthesis of glycosylphosphatidylinositol (GPI), which anchors a variety of proteins including CD59 to the cell surface. Flow cytometry of PIGN-knockout HEK239 cells expressing recombinant human PIGN with the c.398T variant showed reduced CD59 expression. Mutations in human PIGN have been associated with multiple congenital anomalies-hypotonia-seizures syndrome-1 (MCAHS1). Movement disorders can be a part of MCAHS1, but this is the first PxD associated with altered GPI anchor function.
Collapse
Affiliation(s)
- Ana L Kolicheski
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
36
|
Kara B, Genç HM, Uyur-Yalçın E, Sakarya-Güneş A, Topçu U, Mülayim S, Ceylaner S. Pyruvate dehydrogenase-E1α deficiency presenting as recurrent acute proximal muscle weakness of upper and lower extremities in an 8-year-old boy. Neuromuscul Disord 2017; 27:94-97. [DOI: 10.1016/j.nmd.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 09/26/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023]
|
37
|
Ciara E, Rokicki D, Halat P, Karkucińska-Więckowska A, Piekutowska-Abramczuk D, Mayr J, Trubicka J, Szymańska-Dębińska T, Pronicki M, Pajdowska M, Dudzińska M, Giżewska M, Krajewska-Walasek M, Książyk J, Sperl W, Płoski R, Pronicka E. Difficulties in recognition of pyruvate dehydrogenase complex deficiency on the basis of clinical and biochemical features. The role of next-generation sequencing. Mol Genet Metab Rep 2016; 7:70-6. [PMID: 27144126 PMCID: PMC4840431 DOI: 10.1016/j.ymgmr.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 01/31/2023] Open
Abstract
Pyruvate dehydrogenase complex (PDHc) defect is a well-known cause of mitochondrial disorders (MD) with at least six responsible genes (PDHA1, PDHB, DLAT, DLD, PDHX, PDP1). The aim of this work was to assess the diagnostic value of biochemical methods in recognition of PDHc defect in Polish patients with suspicion of MD. In the first step, Western blot of the E1α subunit was performed on 86 archive muscle bioptates with suspicion of MD. In the second step, Sanger PDHA1 sequencing was performed in 21 cases with low E1α expression. In the third step, 7 patients with negative results of PDHA1 sequencing were subjected to whole-exome sequencing (WES). This protocol revealed 4 patients with PDHA1 and one with DLD mutations. Four additional probands were diagnosed outside the protocol (WES or Sanger sequencing). The molecular characterization of PDHc defect was conducted in a total of 9 probands: 5 according to and 4 off the protocol. Additionally, two affected relatives were recognized by a family study. Altogether we identified seven different PDHA1 changes, including two novel variants [c.464T > C (p.Met155Thr) and c.856_859dupACTT (p.Arg288Leufs*10)] and one DLD variant. The lactate response to glucose load in the PDHA1 subset was compared to a subset of non PDHc-related MD. Opposite responses were observed, with an increase of 23% and decrease of 27%, respectively. The results show that determining lactate response to glucose load and muscle E1α expression may contribute to distinguishing PDHc-related and other MD, however, WES is becoming the method of choice for MD diagnostics.
Collapse
Affiliation(s)
- E Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - D Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - P Halat
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - J Mayr
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - J Trubicka
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - T Szymańska-Dębińska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - M Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - M Pajdowska
- Department of Biochemistry and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - M Dudzińska
- Department of Child Neurology, Chorzowskie Centrum Pediatrii i Onkologii, Chorzów, Poland
| | - M Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - M Krajewska-Walasek
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - J Książyk
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - W Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - R Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - E Pronicka
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland; Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
38
|
Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L, Mercimek-Mahmutoglu S, Ebrahimi-Fakhari D, Warner TT, Durr A, Assmann B, Lohmann K, Kostic V, Klein C. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31:436-57. [PMID: 27079681 DOI: 10.1002/mds.26527] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders,including (I) erroneously assigned loci, (II) duplicated loci, (III) missing symbols or loci, (IV) unconfirmed loci and genes, (V) a combination of causative genes and risk factor genes in the same list, and (VI) discordance between phenotype and list assignment. In this article, we report on the recommendations of the International Parkinson and Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation, and primary familial brain calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion-based list of confirmed genetically determined movement disorders at the time it was last updated.
Collapse
Affiliation(s)
- Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Anthony Lang
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital and Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Darius Ebrahimi-Fakhari
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurology & F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, Department of Molecular Neurosciences, UCL Institute of Neurology, London, UK
| | - Alexandra Durr
- Sorbonne Université, UPMC, Inserm and Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | - Birgit Assmann
- Division of Pediatric Neurology, Department of Pediatrics I, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir Kostic
- Institute of Neurology, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|