1
|
Marten LM, Krätzner R, Salomons GS, Fernandez Ojeda M, Dechent P, Gärtner J, Huppke P, Dreha-Kulaczewski S. Long term follow-up in GAMT deficiency - Correlation of therapy regimen, biochemical and in vivo brain proton MR spectroscopy data. Mol Genet Metab Rep 2024; 38:101053. [PMID: 38469086 PMCID: PMC10926185 DOI: 10.1016/j.ymgmr.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/13/2024] Open
Abstract
GAMT deficiency is a rare autosomal recessive disease within the group of cerebral creatine deficiency syndromes. Cerebral creatine depletion and accumulation of guanidinoacetate (GAA) lead to clinical presentation with intellectual disability, seizures, speech disturbances and movement disorders. Treatment consists of daily creatine supplementation to increase cerebral creatine, reduction of arginine intake and supplementation of ornithine for reduction of toxic GAA levels. This study represents the first long-term follow-up over a period of 14 years, with detailed clinical data, biochemical and multimodal neuroimaging findings. Developmental milestones, brain MRI, quantitative single voxel 1H magnetic resonance spectroscopy (MRS) and biochemical analyses were assessed. The results reveal insights into the dose dependent effects of creatine/ornithine supplementation and expand the phenotypic spectrum of GAMT deficiency. Of note, the creatine concentrations, which were regularly monitored over a long follow-up period, increased significantly over time, but did not reach age matched control ranges. Our patient is the second reported to show normal neurocognitive outcome after an initial delay, stressing the importance of early diagnosis and treatment initiation.
Collapse
Affiliation(s)
- Lara M. Marten
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Germany
| | - Ralph Krätzner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Germany
| | - Gajja S. Salomons
- Amsterdam UMC location University of Amsterdam, Dept of Laboratory Medicine, Laboratory Genetic Metabolic Diseases and Dept of Pediatrics Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Matilde Fernandez Ojeda
- Amsterdam UMC location University of Amsterdam, Dept of Laboratory Medicine, Laboratory Genetic Metabolic Diseases and Dept of Pediatrics Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, University Medical Center Goettingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Germany
| | - Peter Huppke
- Department of Neuropediatrics, Jena University Hospital, Germany
| | | |
Collapse
|
2
|
Yıldız Y, Ardıçlı D, Göçmen R, Yalnızoğlu D, Topçu M, Coşkun T, Tokatlı A, Haliloğlu G. Electro-clinical features and long-term outcomes in guanidinoacetate methyltransferase (GAMT) deficiency. Eur J Paediatr Neurol 2024; 49:66-72. [PMID: 38394710 DOI: 10.1016/j.ejpn.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE To evaluate clinical characteristics and long-term outcomes in patients with guanidinoacetate methyltransferase (GAMT) deficiency with a special emphasis on seizures and electroencephalography (EEG) findings. METHODS We retrospectively analyzed the clinical and molecular characteristics, seizure types, EEG findings, neuroimaging features, clinical severity scores, and treatment outcomes in six patients diagnosed with GAMT deficiency. RESULTS Median age at presentation and diagnosis were 11.5 months (8-12 months) and 63 months (18 months -11 years), respectively. Median duration of follow-up was 14 years. Global developmental delay (6/6) and seizures (5/6) were the most common symptoms. Four patients presented with febrile seizures. The age at seizure-onset ranged between 8 months and 4 years. Most common seizure types were generalized tonic seizures (n = 4) and motor seizures resulting in drop attacks (n = 3). Slow background activity (n = 5) and generalized irregular sharp and slow waves (n = 3) were the most common EEG findings. Burst-suppression and electrical status epilepticus during slow-wave sleep (ESES) pattern was present in one patient. Three of six patients had drug-resistant epilepsy. Post-treatment clinical severity scores showed improvement regarding movement disorders and epilepsy. All patients were seizure-free in the follow-up. CONCLUSIONS Epilepsy is one of the main symptoms in GAMT deficiency with various seizure types and non-specific EEG findings. Early diagnosis and initiation of treatment are crucial for better seizure and cognitive outcomes. This long-term follow up study highlights to include cerebral creatine deficiency syndromes in the differential diagnosis of patients with global developmental delay and epilepsy and describes the course under treatment.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Didem Ardıçlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Rahşan Göçmen
- Hacettepe University Faculty of Medicine, Department of Radiology, Turkey.
| | - Dilek Yalnızoğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| | - Meral Topçu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Turgay Coşkun
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey
| | - Ayşegül Tokatlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Göknur Haliloğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| |
Collapse
|
3
|
Ream MA, Lam WK, Grosse SD, Ojodu J, Jones E, Prosser LA, Rose AM, Comeau AM, Tanksley S, Powell CM, Kemper AR. Evidence and Recommendation for Guanidinoacetate Methyltransferase Deficiency Newborn Screening. Pediatrics 2023; 152:e2023062100. [PMID: 37465909 PMCID: PMC10527896 DOI: 10.1542/peds.2023-062100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 07/20/2023] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder of creatine biosynthesis due to pathogenic variants in the GAMT gene that lead to cerebral creatine deficiency and neurotoxic levels of guanidinoacetate. Untreated, GAMT deficiency is associated with hypotonia, significant intellectual disability, limited speech development, recurrent seizures, behavior problems, and involuntary movements. The birth prevalence of GAMT deficiency is likely between 0.5 and 2 per million live births. On the basis of small case series and sibling data, presymptomatic treatment with oral supplements of creatine, ornithine, and sodium benzoate, and a protein-restricted diet to reduce arginine intake, appear to substantially improve health and developmental outcomes. Without newborn screening, diagnosis typically happens after the development of significant impairment, when treatment has limited utility. GAMT deficiency newborn screening can be incorporated into the tandem-mass spectrometry screening that is already routinely used for newborn screening, with about 1 per 100 000 newborns screening positive. After a positive screen, diagnosis is established by finding an elevated guanidinoacetate concentration and low creatine concentration in the blood. Although GAMT deficiency is significantly more rare than other conditions included in newborn screening, the feasibility of screening, the low number of positive results, the relative ease of diagnosis, and the expected benefit of presymptomatic dietary therapy led to a recommendation from the Advisory Committee on Heritable Disorders in Newborns and Children to the Secretary of Health and Human Services that GAMT deficiency be added to the Recommended Uniform Screening Panel. This recommendation was accepted in January 2023.
Collapse
Affiliation(s)
- Margie A. Ream
- Division of Child Neurology, Nationwide Children’s Hospital, Columbus, Ohio
| | - Wendy K.K. Lam
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina
| | - Scott D. Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jelili Ojodu
- Association of Public Health Laboratories, Silver Spring, Maryland
| | - Elizabeth Jones
- Association of Public Health Laboratories, Silver Spring, Maryland
| | - Lisa A. Prosser
- Susan B. Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Angela M. Rose
- Susan B. Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Anne Marie Comeau
- New England Newborn Screening Program, Department of Pediatrics, UMass Chan School of Medicine, Worcester, Massachusetts
| | - Susan Tanksley
- Texas Department of State Health Services, Laboratory Services Section, Austin, Texas
| | - Cynthia M. Powell
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex R. Kemper
- Division of Primary Care Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio
| |
Collapse
|
4
|
Meera P, Uusi-Oukari M, Wallner M, Lipshutz GS. Guanidinoacetate (GAA) is a potent GABA A receptor GABA mimetic: Implications for neurological disease pathology. J Neurochem 2023; 165:445-454. [PMID: 36726215 DOI: 10.1111/jnc.15774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Impairment of excretion and enzymatic processing of nitrogen, for example, because of liver or kidney failure, or with urea cycle and creatine synthesis enzyme defects, surprisingly leads to primarily neurologic symptoms, yet the exact mechanisms remain largely mysterious. In guanidinoacetate N-methyltransferase (GAMT) deficiency, the guanidino compound guanidinoacetate (GAA) increases dramatically, including in the cerebrospinal fluid (CSF), and has been implicated in mediating the neurological symptoms in GAMT-deficient patients. GAA is synthesized by arginine-glycine amidinotransferase (AGAT), a promiscuous enzyme that not only transfers the amidino group from arginine to glycine, but also to primary amines in, for example, GABA and taurine to generate γ-guanidinobutyric acid (γ-GBA) and guanidinoethanesulfonic acid (GES), respectively. We show that GAA, γ-GBA, and GES share structural similarities with GABA, evoke GABAA receptor (GABAA R) mediated currents (whereas creatine [methylated GAA] and arginine failed to evoke discernible currents) in cerebellar granule cells in mouse brain slices and displace the high-affinity GABA-site radioligand [3 H]muscimol in total brain homogenate GABAA Rs. While γ-GBA and GES are GABA agonists and displace [3 H]muscimol (EC50 /IC50 between 10 and 40 μM), GAA stands out as particularly potent in both activating GABAA Rs (EC50 ~6 μM) and also displacing the GABAA R ligand [3 H]muscimol (IC50 ~3 μM) at pathophysiologically relevant concentrations. These findings stress the role of substantially elevated GAA as a primary neurotoxic agent in GAMT deficiency and we discuss the potential role of GAA in arginase (and creatine transporter) deficiency which show a much more modest increase in GAA concentrations yet share the unique hyperexcitability neuropathology with GAMT deficiency. We conclude that orthosteric activation of GABAA Rs by GAA, and potentially other GABAA R mimetic guanidino compounds (GCs) like γ-GBA and GES, interferes with normal inhibitory GABAergic neurotransmission which could mediate, and contribute to, neurotoxicity.
Collapse
Affiliation(s)
- Pratap Meera
- Department of Neurobiology, University of California, Los Angeles, California, USA
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Martin Wallner
- Departments of Surgery, University of California, Los Angeles, California, USA
| | - Gerald S Lipshutz
- Departments of Surgery, University of California, Los Angeles, California, USA.,Molecular & Medical Pharmacology, University of California, Los Angeles, California, USA.,Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, California, USA.,Semel Institute for Neuroscience, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Bianchi M, Rossi L, Pierigè F, De Angeli P, Aliano MP, Carducci C, Di Carlo E, Pascucci T, Nardecchia F, Leuzzi V, Magnani M. Engineering new metabolic pathways in isolated cells for the degradation of guanidinoacetic acid and simultaneous production of creatine. Mol Ther Methods Clin Dev 2022; 25:26-40. [PMID: 35317049 PMCID: PMC8917272 DOI: 10.1016/j.omtm.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/19/2022] [Indexed: 11/23/2022]
Abstract
Here we report, for the first time, the engineering of human red blood cells (RBCs) with an entire metabolic pathway as a potential strategy to treat patients with guanidinoacetate methyltransferase (GAMT) deficiency, capable of reducing the high toxic levels of guanidinoacetate acid (GAA) and restoring proper creatine levels in blood and tissues. We first produced a recombinant form of native human GAMT without any tags to encapsulate into RBCs. Due to the poor solubility and stability features of the recombinant enzyme, both bioinformatics studies and extensive optimization work were performed to select a mutant GAMT enzyme, where only four critical residues were replaced, as a lead candidate. However, GAMT-loaded RBCs were ineffective in GAA consumption and creatine production because of the limiting intra-erythrocytic S-adenosyl methionine (SAM) content unable to support GAMT activity. Therefore, a recombinant form of human methionine adenosyl transferase (MAT) was developed. RBCs co-entrapped with both GAMT and MAT enzymes performed, in vitro, as a competent cellular bioreactor to remove GAA and produce creatine, fueled by physiological concentrations of methionine and the ATP generated by glycolysis. Our results highlight that metabolic engineering of RBCs is possible and represents proof of concept for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.,EryDel, Via Antonio Meucci 3, 20091 Bresso, Milan, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Pietro De Angeli
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Mattia Paolo Aliano
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Tiziana Pascucci
- Department of Psychology and "Daniel Bovet" Center, Sapienza University, 00184 Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00142 Rome, Italy
| | - Francesca Nardecchia
- Division of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy
| | - Vincenzo Leuzzi
- Division of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.,EryDel, Via Antonio Meucci 3, 20091 Bresso, Milan, Italy
| |
Collapse
|
6
|
Shen M, Yang G, Chen Z, Yang K, Dong H, Yin C, Cheng Y, Zhang C, Gu F, Yang Y, Tian Y. Identification of novel variations in SLC6A8 and GAMT genes causing cerebral creatine deficiency syndrome. Clin Chim Acta 2022; 532:29-36. [PMID: 35588794 DOI: 10.1016/j.cca.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Cerebral creatine deficiency syndromes (CCDSs) are a group of rare mendelian disorders mainly characterized by intellectual disability, movement anomaly, behavior disorder and seizures. SLC6A8, GAMT, and GATM are known genes responsible for CCDS. In this study, seven pediatric patients with developmental delay were recruited and submitted to a series of clinical evaluation, laboratory testing, and genetic analysis. The clinical manifestations and core biochemical indications of each child were basically consistent with the diagnosis of CCDS. Genetic diagnosis determined that all patients were positive for SLC6A8 or GAMT variation. A total of 12 variants were identified in this cohort, including six novel ones. The frequency of these variants, the Revel scores and the conservatism of the affected amino acids support their pathogenicity. Our findings expanded the mutation spectrum of CCDS disorders, and provided solid evidence for the counseling to affected families.
Collapse
Affiliation(s)
- Ming Shen
- Research Center for Translational Medicine Laboratory, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Guangming Yang
- Research Center for Translational Medicine Laboratory, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chengliang Yin
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuxuan Cheng
- Birth Defects Prevention and Control Technology Research Center, Medical Research and Innovation Department, Chinese PLA General Hospital, Beijing, China
| | - Chunyan Zhang
- Birth Defects Prevention and Control Technology Research Center, Medical Research and Innovation Department, Chinese PLA General Hospital, Beijing, China
| | - Fangyan Gu
- Clinical Biobank Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaping Tian
- Birth Defects Prevention and Control Technology Research Center, Medical Research and Innovation Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Ingoglia F, Chong JL, Pasquali M, Longo N. Creatine metabolism in patients with urea cycle disorders. Mol Genet Metab Rep 2021; 29:100791. [PMID: 34471603 PMCID: PMC8387902 DOI: 10.1016/j.ymgmr.2021.100791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
The urea cycle generates arginine that is one of the major precursors for creatine biosynthesis. Here we evaluate levels of creatine and guanidinoacetate (the precursor in the synthesis of creatine) in plasma samples (ns = 207) of patients (np = 73) with different types of urea cycle disorders (ornithine transcarbamylase deficiency (ns = 22; np = 7), citrullinemia type 1 (ns = 60; np = 22), argininosuccinic aciduria (ns = 81; np = 31), arginase deficiency (ns = 44; np = 13)). The concentration of plasma guanidinoacetate positively correlated (p < 0.001, R2 = 0.64) with levels of arginine, but not with glycine in all patients with urea cycle defects, rising to levels above normal in most samples (34 out of 44) of patients with arginase deficiency. In contrast to patients with guanidinoacetate methyltransferase deficiency (a disorder of creatine synthesis characterized by elevated guanidinoacetate concentrations), creatine levels were normal (32 out of 44) or above normal (12 out of 44) in samples from patients with arginase deficiency. Creatine levels correlated significantly, but poorly (p < 0.01, R2 = 0.1) with guanidinoacetate levels and, despite being overall in the normal range in patients with all other urea cycle disorders, were occasionally below normal in some patients with argininosuccinic acid synthase and lyase deficiency. Creatine levels positively correlated with levels of methionine (p < 0.001, R2 = 0.16), the donor of the methyl group for creatine synthesis. The direct correlation of arginine levels with guanidinoacetate in patients with urea cycle disorders explains the increased concentration of guanidino compounds in arginase deficiency. Low creatine levels in some patients with other urea cycle defects might be explained by low protein intake (creatine is naturally present in meat) and relative or absolute intracellular arginine deficiency.
Collapse
Key Words
- AGAT, arginine glycine amidinotransferase
- ASL, argininosuccinate lyase
- ASS, argininosuccinate synthase
- Arginase deficiency
- Arginine
- CT1, creatine transporter 1
- Creatine
- Creatine deficiency
- GAA, guanidinoacetate
- GAMT, guanidino acetate methyltransferase
- Guanidinoacetate
- NOS, nitric oxide synthase
- ORNT1, ornithine transporter 1
- OTC, ornithine transcarbamylase
- SLC6A8, solute carrier family 6 member 8 gene
- UCD, urea cycle disorders
- Urea cycle defect
Collapse
Affiliation(s)
- Filippo Ingoglia
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Jean-Leon Chong
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
8
|
Hart K, Rohrwasser A, Wallis H, Golsan H, Shao J, Anderson T, Wang X, Szabo-Fresnais N, Morrissey M, Kay DM, Wojcik M, Galvin-Parton PA, Longo N, Caggana M, Pasquali M. Prospective identification by neonatal screening of patients with guanidinoacetate methyltransferase deficiency. Mol Genet Metab 2021; 134:60-64. [PMID: 34389248 DOI: 10.1016/j.ymgme.2021.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited metabolic disorder that impairs the synthesis of creatine (CRE). Lack of CRE in the brain can cause intellectual disability, autistic-like behavior, seizures, and movement disorders. Identification at birth and immediate therapy can prevent intellectual disability and seizures. Here we report the first two cases of GAMT deficiency identified at birth by newborn screening (NBS) in Utah and New York. METHODS NBS dried blood spots were analyzed by tandem mass spectrometry (MS/MS) using either derivatized or non-derivatized assays to detect guanidinoacetate (GUAC) and CRE. For any positive samples, a second-tier test using a more selective method, ultra-performance liquid chromatography (UPLC) combined with MS/MS, was performed to separate GUAC from potential isobaric interferences. RESULTS NBS for GAMT deficiency began in Utah on June 1, 2015 using a derivatized method for the detection of GUAC and CRE. In May 2019, the laboratory and method transitioned to a non-derivatized method. GAMT screening was added to the New York State NBS panel on October 1, 2018 using a derivatized method. In New York, a total of 537,408 babies were screened, 23 infants were referred and one newborn was identified with GAMT deficiency. In Utah, a total of 273,902 infants were screened (195,425 with the derivatized method, 78,477 with the non-derivatized method), three infants referred and one was identified with GAMT deficiency. Mean levels of GUAC and CRE were similar between methods (Utah derivatized: GUAC = 1.20 ± 0.43 μmol/L, CRE = 238 ± 96 μmol/L; Utah non-derivatized: GUAC = 1.23 ± 0.61 μmol/L, CRE = 344 ± 150 μmol/L, New York derivatized: GUAC = 1.34 ± 0.57 μmol/L, CRE = 569 ± 155 μmol/L). With either Utah method, similar concentrations of GUAC are observed in first (collected around 1 day of age) and the second NBS specimens (routinely collected at 7-16 days of age), while CRE concentrations decreased in the second NBS specimens. Both infants identified with GAMT deficiency started therapy by 2 weeks of age and are growing and developing normally at 7 (Utah) and 4 (New York) months of age. CONCLUSIONS Newborn screening allows for the prospective identification of GAMT deficiency utilizing elevated GUAC concentration as a marker. First-tier screening may be incorporated into existing methods for amino acids and acylcarnitines without the need for new equipment or staff. Newborn screening performed by either derivatized or non-derivatized methods and coupled with second-tier testing, has a very low false positive rate and can prospectively identify affected children. SummaryCerebral creatine deficiency syndromes caused by defects in creatine synthesis can result in intellectual disability, and are preventable if therapy is initiated early in life. This manuscript reports the identification of two infants with GAMT deficiency (one of the cerebral creatine deficiency syndromes) by newborn screening and demonstrates NBS feasibility using a variety of methods.
Collapse
Affiliation(s)
- Kim Hart
- Utah Department of Health, Salt Lake City, UT, USA.
| | | | - Heidi Wallis
- Utah Department of Health, Salt Lake City, UT, USA; Association for Creatine Deficiencies, Carlsbad, CA, USA
| | | | - Jianyin Shao
- Utah Department of Health, Salt Lake City, UT, USA
| | | | - Xiaoli Wang
- Utah Department of Health, Salt Lake City, UT, USA
| | | | - Mark Morrissey
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Denise M Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Matthew Wojcik
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Nicola Longo
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA; Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Michele Caggana
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA; Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency. Genes (Basel) 2021; 12:genes12081201. [PMID: 34440375 PMCID: PMC8391262 DOI: 10.3390/genes12081201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022] Open
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is one of three cerebral creatine (Cr) deficiency syndromes due to pathogenic variants in the GAMT gene (19p13.3). GAMT-D is characterized by the accumulation of guanidinoacetic acid (GAA) and the depletion of Cr, which result in severe global developmental delay (and intellectual disability), movement disorder, and epilepsy. The GAMT knockout (KO) mouse model presents biochemical alterations in bodily fluids, the brain, and muscles, including increased GAA and decreased Cr and creatinine (Crn) levels, which are similar to those observed in humans. At the behavioral level, only limited and mild alterations have been reported, with a large part of analyzed behaviors being unaffected in GAMT KO as compared with wild-type mice. At the cerebral level, decreased Cr and Crn and increased GAA and other guanidine compound levels have been observed. Nevertheless, the effects of Cr deficiency and GAA accumulation on many neurochemical, morphological, and molecular processes have not yet been explored. In this review, we summarize data regarding behavioral and cerebral GAMT KO phenotypes, and focus on uncharted behavioral alterations that are comparable with the clinical symptoms reported in GAMT-D patients, including intellectual disability, poor speech, and autistic-like behaviors, as well as unexplored Cr-induced cerebral alterations.
Collapse
|
10
|
Ghirardini E, Calugi F, Sagona G, Di Vetta F, Palma M, Battini R, Cioni G, Pizzorusso T, Baroncelli L. The Role of Preclinical Models in Creatine Transporter Deficiency: Neurobiological Mechanisms, Biomarkers and Therapeutic Development. Genes (Basel) 2021; 12:genes12081123. [PMID: 34440297 PMCID: PMC8392480 DOI: 10.3390/genes12081123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain- and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Brain Diseases, Metabolic, Inborn/therapy
- Central Nervous System/pathology
- Creatine/deficiency
- Creatine/metabolism
- Disease Models, Animal
- Humans
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Mental Retardation, X-Linked/therapy
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Rats
Collapse
Affiliation(s)
- Elsa Ghirardini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
| | - Francesco Calugi
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Federica Di Vetta
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Biology, University of Pisa, I-56126 Pisa, Italy
| | - Martina Palma
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Laura Baroncelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Correspondence:
| |
Collapse
|
11
|
Modi BP, Khan HN, van der Lee R, Wasim M, Haaxma CA, Richmond PA, Drögemöller B, Shah S, Salomons G, van der Kloet FM, Vaz FM, van der Crabben SN, Ross CJ, Wasserman WW, van Karnebeek CD, Awan FR. Adult GAMT deficiency: A literature review and report of two siblings. Mol Genet Metab Rep 2021; 27:100761. [PMID: 33996490 PMCID: PMC8093930 DOI: 10.1016/j.ymgmr.2021.100761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/02/2022] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine deficiency disorder and an inborn error of metabolism presenting with progressive intellectual and neurological deterioration. As most cases are identified and treated in early childhood, adult phenotypes that can help in understanding the natural history of the disorder are rare. We describe two adult cases of GAMT deficiency from a consanguineous family in Pakistan that presented with a history of global developmental delay, cognitive impairments, excessive drooling, behavioral abnormalities, contractures and apparent bone deformities initially presumed to be the reason for abnormal gait. Exome sequencing identified a homozygous nonsense variant in GAMT: NM_000156.5:c.134G>A (p.Trp45*). We also performed a literature review and compiled the genetic and clinical characteristics of all adult cases of GAMT deficiency reported to date. When compared to the adult cases previously reported, the musculoskeletal phenotype and the rapidly progressive nature of neurological and motor decline seen in our patients is striking. This study presents an opportunity to gain insights into the adult presentation of GAMT deficiency and highlights the need for in-depth evaluation and reporting of clinical features to expand our understanding of the phenotypic spectrum.
Collapse
Affiliation(s)
- Bhavi P. Modi
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Correspondence to: B. P. Modi, University of British Columbia, BC Children's Hospital Research Institute, 938 W 28 Ave, Vancouver, BC V5Z 4H4, Canada.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Charlotte A. Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Phillip A. Richmond
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suleman Shah
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Gajja Salomons
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Frans M. van der Kloet
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Fred M. Vaz
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Dept. of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, the Netherlands
| | | | - Colin J. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
- United for Metabolic Diseases, the Netherlands
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Correspondence to: F. R. Awan, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.
| |
Collapse
|
12
|
Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, Ferreira CR, van Karnebeek CDM. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis 2021; 16:170. [PMID: 33845862 PMCID: PMC8042729 DOI: 10.1186/s13023-021-01727-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disability (collectively 'treatable IDs'). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identification of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. METHODS Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classification of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is available. Data on clinical symptoms, diagnostic testing, treatment strategies, effects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. RESULTS Our review identified 116 treatable IDs (139 genes), of which 44 newly identified, belonging to 17 ICIMD categories. The most frequent therapeutic interventions were nutritional, pharmacological and vitamin and trace element supplementation. Evidence level varied from 1 to 3 (trials, cohort studies, case-control studies) for 19% and 4-5 (case-report, expert opinion) for 81% of treatments. Reported effects included improvement of clinical deterioration in 62%, neurological manifestations in 47% and development in 37%. CONCLUSION The number of treatable IDs identified by our literature review increased by more than one-third in eight years. Although there has been much attention to gene-based and enzyme replacement therapy, the majority of effective treatments are nutritional, which are relatively affordable, widely available and (often) surprisingly effective. We present a diagnostic algorithm (adjustable to local resources and expertise) and the updated App to facilitate a swift and accurate workup, prioritizing treatable IDs. Our digital tool is freely available as Native and Web App (www.treatable-id.org) with several novel features. Our Treatable ID endeavor contributes to the Treatabolome and International Rare Diseases Research Consortium goals, enabling clinicians to deliver rapid evidence-based interventions to our rare disease patients.
Collapse
Affiliation(s)
| | - Saskia B Wortmann
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Marina J Koelewijn
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura A Tseng
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | | | - Sylvia Stöckler-Ipsiroglu
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, V6H 3V4, Canada
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands.
- Department of Pediatrics - Metabolic Diseases, Amalia Children's Hospital, Geert Grooteplein 10, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Liu J, Huang J, Xin P, Liu G, Wu J. Biomedical applications of methionine-based systems. Biomater Sci 2021; 9:1961-1973. [PMID: 33537687 DOI: 10.1039/d0bm02180f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methionine (Met), an essential amino acid in the human body, possesses versatile features based on its chemical modification, cell metabolism and metabolic derivatives. Benefitting from its multifunctional properties, Met holds immense potential for biomedical applications. In this review, we systematically summarize the recent progress in Met-based strategies for biomedical applications. First, given the unique structural characteristics of Met, two chemical modification methods are briefly introduced. Subsequently, due to the disordered metabolic state of tumor cells, applications of Met in cancer treatment and diagnosis are summarized in detail. Furthermore, the efficacy of S-adenosylmethionine (SAM), as the most important metabolic derivative of Met, for treating liver diseases is mentioned. Finally, we analyze the current challenges and development trends of Met in the biomedical field, and suggest that Met-restriction therapy might be a promising approach to treat COVID-19.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | |
Collapse
|
14
|
Bahl S, Cordeiro D, MacNeil L, Schulze A, Mercimek-Andrews S. Urine creatine metabolite panel as a screening test in neurodevelopmental disorders. Orphanet J Rare Dis 2020; 15:339. [PMID: 33267903 PMCID: PMC7709238 DOI: 10.1186/s13023-020-01617-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cerebral creatine deficiency disorders (CCDD) are inherited metabolic disorders of creatine synthesis and transport. Urine creatine metabolite panel is helpful to identify these disorders. METHODS We reviewed electronic patient charts for all patients that underwent urine creatine metabolite panel testing in the metabolic laboratory at our institution. RESULTS There were 498 tests conducted on 413 patients. Clinical, molecular genetics and neuroimaging features were available in 318 patients. Two new patients were diagnosed with creatine transporter deficiency: one female and one male, both had markedly elevated urine creatine. Urine creatine metabolite panel was also used as a monitoring test in our metabolic laboratory. Diagnostic yield of urine creatine metabolite panel was 0.67% (2/297). There were six known patients with creatine transporter deficiency. The prevalence of creatine transporter deficiency was 2.64% in our study in patients with neurodevelopmental disorders who underwent screening or monitoring of CCDS at our institution. CONCLUSION Even though the diagnostic yield of urine creatine metabolite panel is low, it can successfully detect CCDD patients, despite many neurodevelopmental disorders are not a result of CCDD. To the best of our knowledge, this study is the first Canadian study to report diagnostic yield of urine creatine metabolite panel for CCDD from a single center.
Collapse
Affiliation(s)
- Shalini Bahl
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, USA
| | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, USA
| | - Lauren MacNeil
- Metabolic Laboratory, Department of Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, USA.,Department of Medical Genetics, University of Alberta, Edmonton, AB, USA
| | - Andreas Schulze
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, USA.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, USA.,Department of Pediatrics, University of Toronto, Toronto, ON, USA
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, USA. .,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, USA. .,Department of Pediatrics, University of Toronto, Toronto, ON, USA.
| |
Collapse
|
15
|
Leung K, De Castro SCP, Santos C, Savery D, Prunty H, Gold‐Diaz D, Bennett S, Heales S, Copp AJ, Greene NDE. Regulation of glycine metabolism by the glycine cleavage system and conjugation pathway in mouse models of non-ketotic hyperglycinemia. J Inherit Metab Dis 2020; 43:1186-1198. [PMID: 32743799 PMCID: PMC8436753 DOI: 10.1002/jimd.12295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 01/25/2023]
Abstract
Glycine abundance is modulated in a tissue-specific manner by use in biosynthetic reactions, catabolism by the glycine cleavage system (GCS), and excretion via glycine conjugation. Dysregulation of glycine metabolism is associated with multiple disorders including epilepsy, developmental delay, and birth defects. Mutation of the GCS component glycine decarboxylase (GLDC) in non-ketotic hyperglycinemia (NKH) causes accumulation of glycine in body fluids, but there is a gap in our knowledge regarding the effects on glycine metabolism in tissues. Here, we analysed mice carrying mutations in Gldc that result in severe or mild elevations of plasma glycine and model NKH. Liver of Gldc-deficient mice accumulated glycine and numerous glycine derivatives, including multiple acylglycines, indicating increased flux through reactions mediated by enzymes including glycine-N-acyltransferase and arginine: glycine amidinotransferase. Levels of dysregulated metabolites increased with age and were normalised by liver-specific rescue of Gldc expression. Brain tissue exhibited increased abundance of glycine, as well as derivatives including guanidinoacetate, which may itself be epileptogenic. Elevation of brain tissue glycine occurred even in the presence of only mildly elevated plasma glycine in mice carrying a missense allele of Gldc. Treatment with benzoate enhanced hepatic glycine conjugation thereby lowering plasma and tissue glycine. Moreover, administration of a glycine conjugation pathway intermediate, cinnamate, similarly achieved normalisation of liver glycine derivatives and circulating glycine. Although exogenous benzoate and cinnamate impact glycine levels via activity of glycine-N-acyltransferase, that is not expressed in brain, they are sufficient to lower levels of glycine and derivatives in brain tissue of treated Gldc-deficient mice.
Collapse
Affiliation(s)
- Kit‐Yi Leung
- Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | | | - Chloe Santos
- Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Dawn Savery
- Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Helen Prunty
- Department of Chemical PathologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Diana Gold‐Diaz
- Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Stuart Bennett
- Department of Chemical PathologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon Heales
- Great Ormond Street Institute of Child Health, University College LondonLondonUK
- Department of Chemical PathologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Andrew J. Copp
- Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | | |
Collapse
|
16
|
Inherited Metabolic Disorders Presenting with Ataxia. Int J Mol Sci 2020; 21:ijms21155519. [PMID: 32752260 PMCID: PMC7432519 DOI: 10.3390/ijms21155519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Ataxia is a common clinical feature in inherited metabolic disorders. There are more than 150 inherited metabolic disorders in patients presenting with ataxia in addition to global developmental delay, encephalopathy episodes, a history of developmental regression, coarse facial features, seizures, and other types of movement disorders. Seizures and a history of developmental regression especially are important clinical denominators to consider an underlying inherited metabolic disorder in a patient with ataxia. Some of the inherited metabolic disorders have disease specific treatments to improve outcomes or prevent early death. Early diagnosis and treatment affect positive neurodevelopmental outcomes, so it is important to think of inherited metabolic disorders in the differential diagnosis of ataxia.
Collapse
|
17
|
Rostami P, Hosseinpour S, Ashrafi MR, Alizadeh H, Garshasbi M, Tavasoli AR. Primary creatine deficiency syndrome as a potential missed diagnosis in children with psychomotor delay and seizure: case presentation with two novel variants and literature review. Acta Neurol Belg 2020; 120:511-516. [PMID: 31222513 DOI: 10.1007/s13760-019-01168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022]
Abstract
Creatine is the main source of energy for the brain. Primary creatine deficiency syndromes (PCDSs) are inborn error of metabolism of creatine synthesis. Symptoms of central nervous system involvement are the most common clinical manifestations in these disorders. We reviewed medical records of all genetically confirmed patients diagnosed by whole exome sequencing who were referred to Myelin and Neurodegenerative Disorders Clinic, Children's Medical Center, Tehran, Iran, from May 2016 to Dec 2018. A literature review was conducted on clinical and genomic variability of PCDS to compare our patients with previously reported cases. We report two patients with creatine deficiency among a cohort of 550 registered cases out of which 200 patients had a genetically confirmed neurodegenerative disorder diagnosis. The main complain in the first patient with creatine transporter (CRTR) deficiency was seizure and genetic study in this patient identified a novel hemizygote variant of "c.92 > T; p.Pro31Leu" in the first exon of SLC6A8 gene. The second patient with guanidinoacetate methyltransferase (GAMT) deficiency had an unknown motor and speech delay as the striking manifestation and molecular assay revealed a novel homozygote variant of "c.134G > A; p.Trp45*" in the first exon of GAMT gene. PCDSs usually are associated with nonspecific neurologic symptoms. The first presented case had a mean delayed diagnosis of 5 years. Therefore, in children with unexplained neurologic features including developmental delay and/or regression, mental disability and repeated seizures without any significant findings in metabolic studies, PCDSs can be considered as a differential diagnosis and molecular analysis can be helpful for the precise diagnosis and treatment.
Collapse
Affiliation(s)
- Parastoo Rostami
- Division of Pediatric Endocrinology and Metabolism, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Myelin Disorders Clinic (Iranian Neurometabolic Registry), Pediatric Neurology Division, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic (Iranian Neurometabolic Registry), Pediatric Neurology Division, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Alizadeh
- Division of Pediatric Radiology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic (Iranian Neurometabolic Registry), Pediatric Neurology Division, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Integrated metabolome analysis reveals novel connections between maternal fecal metabolome and the neonatal blood metabolome in women with gestational diabetes mellitus. Sci Rep 2020; 10:3660. [PMID: 32107447 PMCID: PMC7046769 DOI: 10.1038/s41598-020-60540-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM), which is correlated with changes in the gut microbiota, is a risk factor for neonatal inborn errors of metabolism (IEMs). Maternal hyperglycemia exerts epigenetic effects on genes that encode IEM-associated enzymes, resulting in changes in the neonatal blood metabolome. However, the relationship between maternal gut microbiota and the neonatal blood metabolome remains poorly understood. This study aimed at understanding the connections between maternal gut microbiota and the neonatal blood metabolome in GDM. 1H-NMR-based untargeted metabolomics was performed on maternal fecal samples and targeted metabolomics on the matched neonatal dry blood spots from a cohort of 40 pregnant women, including 22 with GDM and 18 controls. Multi-omic association methods (including Co-Inertia Analysis and Procrustes Analysis) were applied to investigate the relationship between maternal fecal metabolome and the neonatal blood metabolome. Both maternal fecal metabolome and the matched neonatal blood metabolome could be separated along the vector of maternal hyperglycemia. A close relationship between the maternal and neonatal metabolomes was observed by multi-omic association approaches. Twelve out of thirty-two maternal fecal metabolites with altered abundances from 872 1H- NMR features (Bonferroni-adjusted P < 0.05) in women with GDM and the controls were identified, among which 8 metabolites contribute (P < 0.05 in a 999-step permutation test) to the close connection between maternal and the neonatal metabolomes in GDM. Four of these eight maternal fecal metabolites, including lysine, putrescine, guanidinoacetate, and hexadecanedioate, were negatively associated (Spearman rank correlation, coefficient value < −0.6, P < 0.05) with maternal hyperglycemia. Biotin metabolism was enriched (Bonferroni-adjusted P < 0.05 in the hypergeometric test) with the four-hyperglycemia associated fecal metabolites. The results of this study suggested that maternal fecal metabolites contribute to the connections between maternal fecal metabolome and the neonatal blood metabolome and may further affect the risk of IEMs.
Collapse
|
19
|
Yoganathan S, Arunachal G, Kratz L, Varman M, Sudhakar SV, Oommen SP, Jain S, Thomas M, Babuji M. Guanidinoacetate Methyltransferase (GAMT) Deficiency, A Cerebral Creatine Deficiency Syndrome: A Rare Treatable Metabolic Disorder. Ann Indian Acad Neurol 2020; 23:419-421. [PMID: 32606564 PMCID: PMC7313585 DOI: 10.4103/aian.aian_172_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sangeetha Yoganathan
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Gautham Arunachal
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Lisa Kratz
- Biochemical Genetics Laboratory, Kennedy Krieger Institute, John Hopkins Hospital, Baltimore, United States of America
| | - Mugil Varman
- Department of Radiodiagnosis, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sniya Valsa Sudhakar
- Department of Radiodiagnosis, Christian Medical College, Vellore, Tamil Nadu, India
| | - Samuel Philip Oommen
- Department of Developmental Paediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shikha Jain
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Manimegalai Babuji
- Department of Dietetics, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Myers KA, Johnstone DL, Dyment DA. Epilepsy genetics: Current knowledge, applications, and future directions. Clin Genet 2018; 95:95-111. [PMID: 29992546 DOI: 10.1111/cge.13414] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
The rapid pace of disease gene discovery has resulted in tremendous advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, and genomes are now available and have led to higher diagnostic rates and insights into the underlying disease processes. As such, the contribution to the care of patients by medical geneticists, neurogeneticists and genetic counselors are significant; the dysmorphic examination, the necessary pre- and post-test counseling, the selection of the appropriate next-generation sequencing-based test(s), and the interpretation of sequencing results require a care provider to have a comprehensive working knowledge of the strengths and limitations of the available testing technologies. As the underlying mechanisms of the encephalopathies and epilepsies are better understood, there may be opportunities for the development of novel therapies based on an individual's own specific genotype. Drug screening with in vitro and in vivo models of epilepsy can potentially facilitate new treatment strategies. The future of epilepsy genetics will also probably include other-omic approaches such as transcriptomes, metabolomes, and the expanded use of whole genome sequencing to further improve our understanding of epilepsy and provide better care for those with the disease.
Collapse
Affiliation(s)
- K A Myers
- Department of Pediatrics, University of McGill, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada
| | - D L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - D A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|