1
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 PMCID: PMC11721493 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Lei JH, Zhang L, Wang Z, Peltier R, Xie Y, Chen G, Lin S, Miao K, Deng CX, Sun H. FGFR2-BRD4 Axis Regulates Transcriptional Networks of Histone 3 Modification and Synergy Between Its Inhibitors and PD-1/PD-L1 in a TNBC Mouse Model. Front Immunol 2022; 13:861221. [PMID: 35547739 PMCID: PMC9084888 DOI: 10.3389/fimmu.2022.861221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic reprogramming is an independent mode of gene expression that often involves changes in the transcription and chromatin structure due to tumor initiation and development. In this study, we developed a specifically modified peptide array and searched for a recognized epigenetic reader. Our results demonstrated that BRD4 is not only an acetylation reader but of propionylation as well. We also studied the quantitative binding affinities between modified peptides and epigenetic regulators by isothermal titration calorimetry (ITC). Furthermore, we introduced the Fgfr2-S252W transgenic mouse model to confirm that this acetylation is associated with the activation of c-Myc and drives tumor formation. Targeted disruption of BRD4 in Fgfr2-S252W mouse tumor cells also confirmed that BRD4 is a key regulator of histone 3 acetylation. Finally, we developed a tumor slice culture system and demonstrated the synergy between immune checkpoint blockade and targeted therapy in triple-negative breast cancer (TNBC). These data extend our understanding of epigenetic reprogramming and epigenetics-based therapies.
Collapse
Affiliation(s)
- Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China.,Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lei Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhenyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Heifei, China
| | - Raoul Peltier
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yusheng Xie
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ganchao Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Shiqi Lin
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.,Ministry of Education (MOE) Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Forster RJ, Henshall DC, El Naggar H, Pellegrin Y, Delanty N. Electrochemiluminescent Detection of Epilepsy Biomarker miR-134 using a Metal Complex Light Switch. Bioelectrochemistry 2022; 146:108150. [DOI: 10.1016/j.bioelechem.2022.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
|
4
|
miR-23b-3p Inhibits the Oncogenicity of Colon Adenocarcinoma by Directly Targeting NFE2L3. JOURNAL OF ONCOLOGY 2021; 2021:8493225. [PMID: 34966429 PMCID: PMC8712119 DOI: 10.1155/2021/8493225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Background and Aims MicroR-23b-3p (miR-23b-3p) has been found to be abnormally expressed in a variety of malignant tumors and to play a role in tumor inhibition or promotion. However, the regulatory mechanism of miR-23b-3p in COAD remains unclear. The purpose of this study was to investigate the clinical significance of miR-23b-3p expression in COAD cells and to explore its role and regulatory mechanism in the growth of COAD. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure miR-23b-3p expression in COAD tissues and cell lines. After transfecting miR-23b-3p mimics into two human COAD cell lines (SW620 and LoVo), the cell counting kit-8 (CCK-8), colony formation, and 5-ethynyl-2′-deoxyuridine (EdU) assays were used to detect cell proliferation, the Transwell assay was used to measure cell migration and invasion capacity, and flow cytometry was used to evaluate cell apoptosis in vitro. In addition, a luciferase reporter assay was used to determine whether miR-23b-3p targets NFE2L3. The downstream regulatory mechanisms of miR-23b-3p action in COAD cells were also investigated. For in vivo tumorigenesis assay, COAD cells stably overexpressing miR-23b-3p were injected subcutaneously into the flank of nude mice to obtain tumors. Results Significantly decreased expression of miR-23b-3p was detected in COAD tissues and cell lines. Exogenous miR-23b-3p expression inhibited cell proliferation, migration, and invasion and promoted cell apoptosis of COAD cells in vitro. Nuclear factor erythroid 2 like 3 (NFE2L3) was identified as a direct target gene of miR-23b-3p. In addition, reintroduction of NFE2L3 partially abolished the anticancer effects of miR-23b-3p on COAD cells. Furthermore, miR-23b-3p overexpression hindered the growth of COAD cells in vivo. Conclusion miR-23b-3p inhibited the oncogenicity of COAD cells in vitro and in vivo by directly targeting NFE2L3, suggesting the importance of the miR-23b-3p/NFE2L3 pathway in the development of COAD.
Collapse
|
5
|
Klapproth C, Sen R, Stadler PF, Findeiß S, Fallmann J. Common Features in lncRNA Annotation and Classification: A Survey. Noncoding RNA 2021; 7:77. [PMID: 34940758 PMCID: PMC8708962 DOI: 10.3390/ncrna7040077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are widely recognized as important regulators of gene expression. Their molecular functions range from miRNA sponging to chromatin-associated mechanisms, leading to effects in disease progression and establishing them as diagnostic and therapeutic targets. Still, only a few representatives of this diverse class of RNAs are well studied, while the vast majority is poorly described beyond the existence of their transcripts. In this review we survey common in silico approaches for lncRNA annotation. We focus on the well-established sets of features used for classification and discuss their specific advantages and weaknesses. While the available tools perform very well for the task of distinguishing coding sequence from other RNAs, we find that current methods are not well suited to distinguish lncRNAs or parts thereof from other non-protein-coding input sequences. We conclude that the distinction of lncRNAs from intronic sequences and untranslated regions of coding mRNAs remains a pressing research gap.
Collapse
Affiliation(s)
- Christopher Klapproth
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Rituparno Sen
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), D-97080 Würzburg, Germany;
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
- Facultad de Ciencias, Universidad National de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| |
Collapse
|
6
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
7
|
Bruxel EM, do Canto AM, Bruno DCF, Geraldis JC, Lopes-Cendes I. Multi-omic strategies applied to the study of pharmacoresistance in mesial temporal lobe epilepsy. Epilepsia Open 2021; 7 Suppl 1:S94-S120. [PMID: 34486831 PMCID: PMC9340306 DOI: 10.1002/epi4.12536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults, and hippocampal sclerosis (HS) is a frequent histopathological feature in patients with MTLE. Pharmacoresistance is present in at least one-third of patients with MTLE with HS (MTLE+HS). Several hypotheses have been proposed to explain the mechanisms of pharmacoresistance in epilepsy, including the effect of genetic and molecular factors. In recent years, the increased knowledge generated by high-throughput omic technologies has significantly improved the power of molecular genetic studies to discover new mechanisms leading to disease and response to treatment. In this review, we present and discuss the contribution of different omic modalities to understand the basic mechanisms determining pharmacoresistance in patients with MTLE+HS. We provide an overview and a critical discussion of the findings, limitations, new approaches, and future directions of these studies to improve the understanding of pharmacoresistance in MTLE+HS. However, it is important to point out that, as with other complex traits, pharmacoresistance to anti-seizure medications is likely a multifactorial condition in which gene-gene and gene-environment interactions play an important role. Thus, studies using multidimensional approaches are more likely to unravel these intricate biological processes.
Collapse
Affiliation(s)
- Estela M Bruxel
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda M do Canto
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Danielle C F Bruno
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C Geraldis
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
8
|
Lan L, Sun Y, Jin X, Xie L, Liu L, Cheng L. A Light‐Controllable Chemical Modulation of m
6
A RNA Methylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ling Lan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying‐Jie Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Lan L, Sun YJ, Jin XY, Xie LJ, Liu L, Cheng L. A Light-Controllable Chemical Modulation of m 6 A RNA Methylation. Angew Chem Int Ed Engl 2021; 60:18116-18121. [PMID: 34107156 DOI: 10.1002/anie.202103854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Bioactive small molecules with photo-removable protecting groups have provided spatial and temporal control of corresponding biological effects. We present the design, synthesis, computational and experimental evaluation of the first photo-activatable small-molecule methyltransferase agonist. By blocking the functional N-H group on MPCH with a photo-removable ortho-nitrobenzyl moiety, we have developed a promising photo-caged compound that had completely concealed its biological activity. Short UV light exposure of cells treated with that caged molecule in a few minutes resulted in a considerable hypermethylation of m6 A modification in transcriptome RNAs, implicating a rapid release of the parent active compound. This study validates for the first time the photo-activatable small organic molecular concept in the field of RNA epigenetic research, which represents a novel tool in spatiotemporal and cellular modulation approaches.
Collapse
Affiliation(s)
- Ling Lan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Jie Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, Li Z, Pu L, Zhao X, Zhang T, Dong Z. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY) 2020; 12:9085-9102. [PMID: 32453709 PMCID: PMC7288977 DOI: 10.18632/aging.103176] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis (PF) is a lethal fibrotic lung disease. The role of lncRNAs in multiple diseases has been confirmed, but the role and mechanism of lncRNA zinc finger antisense 1 (ZFAS1) in the progression of PF need to be elucidated further. Here, we found that lncRNA ZFAS1 was upregulated in bleomycin (BLM)-induced PF rats lung tissues and transforming growth factor-β1 (TGF-β1)-treated HFL1 cells, and positively correlated with the expression of solute carrier family 38 member 1 (SLC38A1), which is an important regulator of lipid peroxidation. Moreover, knockdown of lncRNA ZFAS1 significantly alleviated TGF-β1-induced fibroblast activation, inflammation and lipid peroxidation. In vivo experiments showed that inhibition of lncRNA ZFAS1 abolished BLM-induced lipid peroxidation and PF development. Mechanistically, silencing of lncRNA ZFAS1 attenuated ferroptosis and PF progression by lncRNA ZFAS1 acting as a competing endogenous RNA (ceRNA) and sponging miR-150-5p to downregulate SLC38A1 expression. Collectively, our studies demonstrated the role of the lncRNA ZFAS1/miR-150-5p/SLC38A1 axis in the progression of PF, and may provide a new biomarker for the treatment of PF patients.
Collapse
Affiliation(s)
- Yanni Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Nihong Lu
- Department of Respiratory, The Third People's Hospital of Kunming, Kunming 650041, Yunnan, China
| | - Ting Li
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Yongjun Liu
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Wenjuan Wu
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Zhengkun Li
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Lin Pu
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xiaoyuan Zhao
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Tao Zhang
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Zhaoxing Dong
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| |
Collapse
|
11
|
French JA, Perucca E. Time to Start Calling Things by Their Own Names? The Case for Antiseizure Medicines. Epilepsy Curr 2020; 20:69-72. [PMID: 32077329 PMCID: PMC7160876 DOI: 10.1177/1535759720905516] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Medicines currently used in the management of epilepsy have been developed to suppress seizures, and they have no known impact on the underlying disease. Using the term "antiepileptic" to describe these compounds is misleading because it suggests an action on the epilepsy itself. Pharmacological agents that have a merely symptomatic effect should be referred to as antiseizure medicines. Using appropriate terminology is especially important at a time innovative treatments targeting the development of epilepsy and its comorbidities are being actively pursued.
Collapse
Affiliation(s)
| | - Emilio Perucca
- Unit of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Italy.,Clinical Trial Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
12
|
Yang J, Zhao S, Tian F. SP1-mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR-214-3p/MMP2 axis. J Cell Mol Med 2020; 24:554-561. [PMID: 31755246 PMCID: PMC6933388 DOI: 10.1111/jcmm.14762] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence illustrates the critical roles of long non-coding RNAs (lncRNAs) in the diabetes. However, the deepgoing regulation of lncRNA PVT1 in the diabetic cataract (DC) is still unclear. Here, present research investigates the pathologic roles and underlying mechanism by which lncRNA PVT1 regulates the DC pathogenesis. Human lens epithelial (HLE) B-3 cells were induced by the high glucose (HG) to simulate the DC microenvironment models. Results revealed that lncRNA PVT1 expression was up-regulated in the HG-induced HLE B-3 cells as compared to the normal glucose group. Transcription factor SP1 could bind with the promoter region of PVT1 and activate its transcription. Functionally, PVT1 knock-down could repress the proliferation and promote the apoptosis of HLE B-3 cells. Mechanistically, PVT1 acted as the 'miRNA sponge' to target miR-214-3p/MMP2 axis. This finding revealed a novel insight of lncRNA PVT1 for the DC pathogenesis, providing an inspiration for the DC mechanism.
Collapse
Affiliation(s)
- Jun Yang
- Tianjin Medical University Eye HospitalTianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and OphthalmologyTianjinChina
| | - Shaozhen Zhao
- Tianjin Medical University Eye HospitalTianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and OphthalmologyTianjinChina
| | - Fang Tian
- Tianjin Medical University Eye HospitalTianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and OphthalmologyTianjinChina
| |
Collapse
|