1
|
Gouriou E, Schneider C. Brain and muscles magnetic stimulation in a drug-free case of Parkinson's disease: Motor improvements concomitant to neuroplasticty. Heliyon 2024; 10:e35563. [PMID: 39170374 PMCID: PMC11336729 DOI: 10.1016/j.heliyon.2024.e35563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Noninvasive stimulation of the nervous system is of growing interest in Parkinson's disease (PD) to slow-down motor decline and decrease medication and its side-effects. Repetitive transcranial magnetic stimulation (rTMS) used in PD to modulate the excitability of the primary motor cortex (M1) provided controversial results, in part because of interactions with medication. This warrants to administer rTMS in drug-free patients. Repetitive peripheral magnetic stimulation (rPMS of muscles) has not yet been tested in PD. Its influence on M1 plasticity (as tested by TMS, transcranial magnetic stimulation) and sensorimotor disorders in other health conditions makes it worth be explored in PD. Thus, rTMS and rPMS were tested in a drug-free woman (52 years old, PD-diagnosed 10 years ago) in four different rTMS + rPMS combinations (one week apart): sham-sham, real-real, real-sham, sham-real. rTMS was applied over M1 contralateral to the most impaired bodyside, and rPMS on muscles of the legs, trunk, and arms, bilaterally. M1 plasticity (TMS measures) and motor symptoms and function (clinical outcomes) were measured at different timepoints. The real-real session induced the largest motor improvements, with possible summation of effects between sessions, and maintenance at follow-up (80 days later). This was paralleled by changes of M1 facilitation and inhibition. This sheds a new light on the link between TMS measures of M1 plasticity and motor changes in PD and informs on the remaining potential for neuroplasticity and functional improvement after 10 years of PD with no antiparkinsonian drug. De novo patients with PD (drug-free) should be motivated to participate in future randomized clinical trials to further test the slow-down or delay of motor decline under noninvasive neurostimulation regimens, whatever the stage of the disease.
Collapse
Affiliation(s)
- Estelle Gouriou
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
| | - Cyril Schneider
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
2
|
Monaco A, Cattaneo R, Di Nicolantonio S, Strada M, Altamura S, Ortu E. Central effects of trigeminal electrical stimulation. Cranio 2023:1-24. [PMID: 38032105 DOI: 10.1080/08869634.2023.2280153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This is a review of the literature on the main neuromodulation techniques, focusing on the possibility of introducing sensory threshold ULFTENS into them. Electro neuromodulation techniques have been in use for many years as promising methods of therapy for cognitive and emotional disorders. One of the most widely used forms of stimulation for orofacial pain is transcutaneous trigeminal stimulation on three levels: supraorbital area, dorsal surface of the tongue, and anterior skin area of the tragus. The purpose of this review is to trigger interest on using dental ULFTENS as an additional trigeminal neurostimulation and neuromodulation technique in the context of TMD. In particular, we point out the possibility of using ULFTENS at a lower activation level than that required to trigger a muscle contraction that is capable of triggering effects at the level of the autonomic nervous system, with extreme ease of execution and few side effects.
Collapse
Affiliation(s)
- Annalisa Monaco
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Ruggero Cattaneo
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | | | - Marco Strada
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Serena Altamura
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Ortu
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Grosse L, Schnabel JF, Börner-Schröder C, Späh MA, Meuche AC, Sollmann N, Breuer U, Warken B, Hösl M, Heinen F, Berweck S, Schröder SA, Bonfert MV. Safety and Feasibility of Functional Repetitive Neuromuscular Magnetic Stimulation of the Gluteal Muscles in Children and Adolescents with Bilateral Spastic Cerebral Palsy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1768. [PMID: 38002859 PMCID: PMC10670153 DOI: 10.3390/children10111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Background: For children and adolescents affected by bilateral spastic cerebral palsy (BSCP), non-invasive neurostimulation with repetitive neuromuscular magnetic stimulation (rNMS) combined with physical exercises, conceptualized as functional rNMS (frNMS), represents a novel treatment approach. Methods: In this open-label study, six children and two adolescents (10.4 ± 2.5 years) with BSCP received a frNMS intervention targeting the gluteal muscles (12 sessions within 3 weeks). Results: In 77.1% of the sessions, no side effects were reported. In 16.7%, 6.3% and 5.2% of the sessions, a tingling sensation, feelings of pressure/warmth/cold or very shortly lasting pain appeared, respectively. frNMS was highly accepted by families (100% adherence) and highly feasible (97.9% of treatment per training protocol). A total of 100% of participants would repeat frNMS, and 87.5% would recommend it. The Canadian Occupational Performance Measure demonstrated clinically important benefits for performance in 28% and satisfaction in 42% of mobility-related tasks evaluated by caregivers for at least one follow-up time point (6 days and 6 weeks post intervention). Two patients accomplished goal attainment for one mobility-related goal each. One patient experienced improvement for both predefined goals, and another participant experienced improvement in one and outreach of the other goal as assessed with the goal attainment scale. Conclusions: frNMS is a safe and well-accepted neuromodulatory approach that could improve the quality of life, especially in regard to activity and participation, of children and adolescents with BSCP. Larger-scaled studies are needed to further explore the effects of frNMS in this setting.
Collapse
Affiliation(s)
- Leonie Grosse
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Julian F. Schnabel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Corinna Börner-Schröder
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Malina A. Späh
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Anne C. Meuche
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Ute Breuer
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Birgit Warken
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Matthias Hösl
- Gait and Motion Analysis Laboratory, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Steffen Berweck
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Sebastian A. Schröder
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Michaela V. Bonfert
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany (S.B.)
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| |
Collapse
|
4
|
Börner-Schröder C, Lang M, Urban G, Zaidenstadt E, Staisch J, Hauser A, Hannibal I, Huß K, Klose B, Lechner MF, Sollmann N, Landgraf MN, Heinen F, Bonfert MV. Neuromodulation in Pediatric Migraine using Repetitive Neuromuscular Magnetic Stimulation: A Feasibility Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1764. [PMID: 38002855 PMCID: PMC10670480 DOI: 10.3390/children10111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Migraine has a relevant impact on pediatric health. Non-pharmacological modalities for its management are urgently needed. This study assessed the safety, feasibility, acceptance, and efficacy of repetitive neuromuscular magnetic stimulation (rNMS) in pediatric migraine. A total of 13 patients with migraine, ≥6 headache days during baseline, and ≥1 myofascial trigger point in the upper trapezius muscles (UTM) received six rNMS sessions within 3 weeks. Headache frequency, intensity, and medication intake were monitored using headache calendars; headache-related impairment and quality of life were measured using PedMIDAS and KINDL questionnaires. Muscular involvement was assessed using pressure pain thresholds (PPT). Adherence yielded 100%. In 82% of all rNMS sessions, no side effects occurred. All participants would recommend rNMS and would repeat it. Headache frequency, medication intake, and PedMIDAS scores decreased from baseline to follow-up (FU), trending towards statistical significance (p = 0.089; p = 0.081, p = 0.055). A total of 7 patients were classified as responders, with a ≥25% relative reduction in headache frequency. PPT above the UTM significantly increased from pre- to post-assessment, which sustained until FU (p = 0.015 and 0.026, respectively). rNMS was safe, feasible, well-accepted, and beneficial on the muscular level. The potential to reduce headache-related symptoms together with PPT changes of the targeted UTM may underscore the interplay of peripheral and central mechanisms conceptualized within the trigemino-cervical complex.
Collapse
Affiliation(s)
- Corinna Börner-Schröder
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Magdalena Lang
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Giada Urban
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Erik Zaidenstadt
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Jacob Staisch
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Ari Hauser
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Iris Hannibal
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Kristina Huß
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Birgit Klose
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Matthias F. Lechner
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Mirjam N. Landgraf
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Michaela V. Bonfert
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (C.B.-S.); (I.H.); (M.N.L.); (F.H.)
- LMU Center for Children with Medical Complexity-iSPZ Hauner, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| |
Collapse
|
5
|
Grosse L, Meuche AC, Parzefall B, Börner C, Schnabel JF, Späh MA, Klug P, Sollmann N, Klich L, Hösl M, Heinen F, Berweck S, Schröder SA, Bonfert MV. Functional Repetitive Neuromuscular Magnetic Stimulation (frNMS) Targeting the Tibialis Anterior Muscle in Children with Upper Motor Neuron Syndrome: A Feasibility Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1584. [PMID: 37892247 PMCID: PMC10605892 DOI: 10.3390/children10101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023]
Abstract
Non-invasive neurostimulation as an adjunctive intervention to task-specific motor training is an approach to foster motor performance in patients affected by upper motor neuron syndrome (UMNS). Here, we present first-line data of repetitive neuromuscular magnetic stimulation (rNMS) in combination with personalized task-specific physical exercises targeting the tibialis anterior muscle to improve ankle dorsiflexion (functional rNMS (frNMS)). The main objective of this pilot study was to assess the feasibility in terms of adherence to frNMS, safety and practicability of frNMS, and satisfaction with frNMS. First, during 10 training sessions, only physical exercises were performed (study period (SP) A). After a 1 week break, frNMS was delivered during 10 sessions (SPC). Twelve children affected by UMNS (mean age 8.9 ± 1.6 years) adhered to 93% (SPA) and 94% (SPC) of the sessions, and omittance was not related to the intervention itself in any case. frNMS was safe (no AEs reported in 88% of sessions, no AE-related discontinuation). The practicability of and satisfaction with frNMS were high. Patient/caregiver-reported outcomes revealed meaningful benefits on the individual level. The strength of the ankle dorsiflexors (MRC score) clinically meaningfully increased in four participants as spasticity of ankle plantar flexors (Tardieu scores) decreased in four participants after SPC. frNMS was experienced as a feasible intervention for children affected by UMNS. Together with the beneficial effects achieved on the individual level in some participants, this first study supports further real-world, large-scale, sham-controlled investigations to investigate the specific effects and distinct mechanisms of action of frNMS.
Collapse
Affiliation(s)
- Leonie Grosse
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Anne C. Meuche
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Barbara Parzefall
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Corinna Börner
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Julian F. Schnabel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Malina A. Späh
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Pia Klug
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Luisa Klich
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Matthias Hösl
- Gait and Motion Analysis Laboratory, Schoen Clinic Vogtareuth, Krankenhausstr. 20, 83569 Vogtareuth, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Steffen Berweck
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Sebastian A. Schröder
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Michaela V. Bonfert
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
6
|
Grosse L, Späh MA, Börner C, Schnabel JF, Meuche AC, Parzefall B, Breuer U, Warken B, Sitzberger A, Hösl M, Heinen F, Berweck S, Schröder SA, Bonfert MV. Addressing gross motor function by functional repetitive neuromuscular magnetic stimulation targeting to the gluteal muscles in children with bilateral spastic cerebral palsy: benefits of functional repetitive neuromuscular magnetic stimulation targeting the gluteal muscles. Front Neurol 2023; 14:1161532. [PMID: 37564737 PMCID: PMC10410564 DOI: 10.3389/fneur.2023.1161532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
Background Impaired selective motor control, weakness and spasticity represent the key characteristics of motor disability in the context of bilateral spastic cerebral palsy. Independent walking ability is an important goal and training of the gluteal muscles can improve endurance and gait stability. Combining conventional physical excercises with a neuromodulatory, non-invasive technique like repetitive neuromuscular magnetic stimulation probably enhances effects of the treatment. This prospective study aimed to assess the clinical effects of repetitive neuromuscular magnetic stimulation in combination with a personalized functional physical training offered to children and adolescents with bilateral spastic cerebral palsy. Methods Eight participants Gross Motor Function Classification System level II and III (10.4 ± 2y5m; 50% Gross Motor Function Classification System level II) received a personalized intervention applying functional repetitive neuromuscular magnetic stimulation (12 sessions within 3 weeks; 12,600 total stimuli during each session). At baseline and follow up the following assessments were performed: 10-m-walking-test, 6-min-walking-test, GMFM-66. Six weeks after the end of treatment the patient-reported outcome measure Gait Outcome Assessment List was completed. Results GMFM-66 total score improved by 1.4% (p = 0.002), as did scoring in domain D for standing (1.9%, p = 0.109) and domain E for walking, jumping and running (2.6%, p = 0.021). Gait speed or distance walked during 6 min did not improve from baseline to follow up. Patient-reported outcome showed improvement in 4 patients in altogether 14 ratings. Caregiver-reported outcome reported benefits in 3 participants in altogether 10 ratings. Conclusion Repetitive neuromuscular magnetic stimulation promises to be a meaningful, non-invasive treatment approach for children and adolescents with bilateral spastic cerebral palsy that could be offered in a resource-efficient manner to a broad number of patients. To further investigate the promising effects of repetitive neuromuscular magnetic stimulation and its mechanisms of action, larger-scaled, controlled trials are needed as well as comprehensive neurophysiological investigations.
Collapse
Affiliation(s)
- Leonie Grosse
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Malina A. Späh
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Corinna Börner
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian F. Schnabel
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne C. Meuche
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Parzefall
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ute Breuer
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Birgit Warken
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexandra Sitzberger
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Hösl
- Gait and Motion Analysis Laboratory, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | - Florian Heinen
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Berweck
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | - Sebastian A. Schröder
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michaela V. Bonfert
- LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Sollmann N, Schandelmaier P, Weidlich D, Stelter J, Joseph GB, Börner C, Schramm S, Beer M, Zimmer C, Landgraf MN, Heinen F, Karampinos DC, Baum T, Bonfert MV. Headache frequency and neck pain are associated with trapezius muscle T2 in tension-type headache among young adults. J Headache Pain 2023; 24:84. [PMID: 37438700 DOI: 10.1186/s10194-023-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Tension-type headache (TTH) is the most prevalent primary headache disorder. Neck pain is commonly associated with primary headaches and the trigemino-cervical complex (TCC) refers to the convergence of trigeminal and cervical afferents onto neurons of the brainstem, thus conceptualizes the emergence of headache in relation to neck pain. However, no objective biomarkers exist for the myofascial involvement in primary headaches. This study aimed to investigate the involvement of the trapezius muscles in primary headache disorders by quantitative magnetic resonance imaging (MRI), and to explore associations between muscle T2 values and headache frequency and neck pain. METHODS This cohort study prospectively enrolled fifty participants (41 females, age range 20-31 years): 16 subjects with TTH only (TTH-), 12 with mixed-type TTH plus migraine (TTH+), and 22 healthy controls (HC). The participants completed fat-suppressed T2-prepared three-dimensional turbo spin-echo MRI, a headache diary (over 30 days prior to MRI), manual palpation (two weeks before MRI), and evaluation of neck pain (on the day of MRI). The bilateral trapezius muscles were manually segmented, followed by muscle T2 extraction. Associations between muscle T2 and the presence of neck pain as well as the number of days with headache (considering the 30 days prior to imaging using the headache calendar) were analyzed using regression models (adjusting for age, sex, and body mass index). RESULTS The TTH+ group demonstrated the highest muscle T2 values (right side: 31.4 ± 1.2 ms, left side: 31.4 ± 0.8 ms) as compared to the TTH- group or HC group (p < 0.001). Muscle T2 was significantly associated with the number of headache days (β-coefficient: 2.04, p = 0.04) and the presence of neck pain (odds ratio: 2.26, p = 0.04). With muscle T2 as the predictor, the area under the curve for differentiating between HC and the TTH+ group was 0.82. CONCLUSIONS Increased T2 of trapezius muscles may represent an objective imaging biomarker for myofascial involvement in primary headache disorders, which could help to improve patient phenotyping and therapy evaluation. Pathophysiologically, the increased muscle T2 values could be interpreted as a surrogate of neurogenic inflammation and peripheral sensitization within myofascial tissues.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Paul Schandelmaier
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jonathan Stelter
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gabby B Joseph
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mirjam N Landgraf
- Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Heinen
- Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michaela V Bonfert
- Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Schramm S, Börner C, Reichert M, Baum T, Zimmer C, Heinen F, Bonfert MV, Sollmann N. Functional magnetic resonance imaging in migraine: A systematic review. Cephalalgia 2023; 43:3331024221128278. [PMID: 36751858 DOI: 10.1177/03331024221128278] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Migraine is a highly prevalent primary headache disorder. Despite a high burden of disease, key disease mechanisms are not entirely understood. Functional magnetic resonance imaging is an imaging method using the blood-oxygen-level-dependent signal, which has been increasingly used in migraine research over recent years. This systematic review summarizes recent findings employing functional magnetic resonance imaging for the investigation of migraine. METHODS We conducted a systematic search and selection of functional magnetic resonance imaging applications in migraine from April 2014 to December 2021 (PubMed and references of identified articles according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines). Methodological details and main findings were extracted and synthesized. RESULTS Out of 224 articles identified, 114 were included after selection. Repeatedly emerging structures of interest included the insula, brainstem, limbic system, hypothalamus, thalamus, and functional networks. Assessment of functional brain changes in response to treatment is emerging, and machine learning has been used to investigate potential functional magnetic resonance imaging-based markers of migraine. CONCLUSIONS A wide variety of functional magnetic resonance imaging-based metrics were found altered across the brain for heterogeneous migraine cohorts, partially correlating with clinical parameters and supporting the concept to conceive migraine as a brain state. However, a majority of findings from previous studies have not been replicated, and studies varied considerably regarding image acquisition and analyses techniques. Thus, while functional magnetic resonance imaging appears to have the potential to advance our understanding of migraine pathophysiology, replication of findings in large representative datasets and precise, standardized reporting of clinical data would likely benefit the field and further increase the value of observations.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
9
|
Feasibility of Functional Repetitive Neuromuscular Magnetic Stimulation (frNMS) Targeting the Gluteal Muscle in a Child with Cerebral Palsy: A Case Report. Phys Occup Ther Pediatr 2022; 43:338-350. [PMID: 37016574 DOI: 10.1080/01942638.2022.2138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Motor impairment due to spasticity, weakness, and insufficient selective motor control is a key feature of cerebral palsy (CP). For standing and walking, the gluteal muscles play an important role. Physical therapy represents an evidence-based treatment to promote strength and endurance but may be limited to address selective motor control. Treatment incorporating neurostimulating techniques may increase the therapeutic benefits in these situations. PURPOSE The aim of this case report was to evaluate the feasibility, safety and clinical effects of a customized protocol of functional repetitive neuromuscular magnetic stimulation (frNMS). METHODS This case report describes a frNMS protocol applied to the gluteal muscles in an 8-year old boy with bilateral spastic CP. The protocol combines 12 sessions of customized physiotherapeutic exercises with simultaneous electromagnetic stimulation. RESULTS frNMS protocol was adhered to as planned, no relevant adverse events were observed. At day fourafter the intervention the patient reported clinical benefits and improvements of standing and walking assessed by Gross Motor Function Measure dimensions D (+5.1%) and E (+4.2%) were documented. Body sway as measured by center of pressure displacement during posturography decreased. CONCLUSION Clinical studies are warranted to assess effects of frNMS and its mechanisms of action in a controlled setting.
Collapse
|
10
|
Börner C, Renner T, Trepte-Freisleder F, Urban G, Schandelmaier P, Lang M, Lechner MF, Koenig H, Klose B, Albers L, Krieg SM, Baum T, Heinen F, Landgraf MN, Sollmann N, Bonfert MV. Response Predictors of Repetitive Neuromuscular Magnetic Stimulation in the Preventive Treatment of Episodic Migraine. Front Neurol 2022; 13:919623. [PMID: 35989916 PMCID: PMC9384696 DOI: 10.3389/fneur.2022.919623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRepetitive neuromuscular magnetic stimulation (rNMS) of the trapezius muscles showed beneficial effects in preventing episodic migraine. However, clinical characteristics that predict a favorable response to rNMS are unknown. The objective of this analysis is to identify such predictors.MethodsThirty participants with a diagnosis of episodic migraine (mean age: 24.8 ± 4.0 years, 29 females), who were prospectively enrolled in two non-sham-controlled studies evaluating the effects of rNMS were analyzed. In these studies, the interventional stimulation of the bilateral trapezius muscles was applied in six sessions and distributed over two consecutive weeks. Baseline and follow-up assessments included the continuous documentation of a headache calendar over 30 days before and after the stimulation period, the Migraine Disability Assessment Score (MIDAS) questionnaire (before stimulation and 90 days after stimulation), and measurements of pain pressure thresholds (PPTs) above the trapezius muscles by algometry (before and after each stimulation session). Participants were classified as responders based on a ≥25% reduction in the variable of interest (headache frequency, headache intensity, days with analgesic intake, MIDAS score, left-sided PPTs, right-sided PPTs). Post-hoc univariate and multivariate binary logistic regression analyses were performed.ResultsLower headache frequency (P = 0.016) and intensity at baseline (P = 0.015) and a migraine diagnosis without a concurrent tension-type headache component (P = 0.011) were significantly related to a ≥25% reduction in headache frequency. Higher headache frequency (P = 0.052) and intensity at baseline (P = 0.014) were significantly associated with a ≥25% reduction in monthly days with analgesic intake. Lower right-sided PPTs at baseline were significantly related to a ≥25% increase in right-sided PPTs (P = 0.0.015) and left-sided PPTs (P =0.030). Performance of rNMS with higher stimulation intensities was significantly associated with a ≥25% reduction in headache intensity (P = 0.046).ConclusionsClinical headache characteristics at baseline, the level of muscular hyperalgesia, and stimulation intensity may inform about how well an individual patient responds to rNMS. These factors may allow an early identification of patients that would most likely benefit from rNMS.
Collapse
Affiliation(s)
- Corinna Börner
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tabea Renner
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Florian Trepte-Freisleder
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Giada Urban
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul Schandelmaier
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Lang
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthias F. Lechner
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Helene Koenig
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Birgit Klose
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lucia Albers
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjam N. Landgraf
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- *Correspondence: Nico Sollmann
| | - Michaela V. Bonfert
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
11
|
Guo M, Wang J, Tang C, Deng J, Zhang J, Xiong Z, Liu S, Guan Y, Zhou J, Zhai F, Luan G, Li T. Vagus nerve stimulation for refractory posttraumatic epilepsy: Efficacy and predictors of seizure outcome. Front Neurol 2022; 13:954509. [PMID: 35968289 PMCID: PMC9366668 DOI: 10.3389/fneur.2022.954509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Traumatic brain injury (TBI) has been recognized as an important and common cause of epilepsy since antiquity. Posttraumatic epilepsy (PTE) is usually associated with drug resistance and poor surgical outcomes, thereby increasing the burden of the illness on patients and their families. Vagus nerve stimulation (VNS) is an adjunctive treatment for medically refractory epilepsy. This study aimed to determine the efficacy of VNS for refractory PTE and to initially evaluate the potential predictors of efficacy. Methods We retrospectively collected the outcomes of VNS with at least a 1-year follow-up in all patients with refractory PTE. Subgroups were classified as responders and non-responders according to the efficacy of VNS (≥50% or <50% reduction in seizure frequency). Preoperative data were analyzed to screen for potential predictors of VNS efficacy. Results In total, forty-five patients with refractory PTE who underwent VNS therapy were enrolled. Responders were found in 64.4% of patients, and 15.6% of patients achieved seizure freedom at the last follow-up. In addition, the responder rate increased over time, with 37.8, 44.4, 60, and 67.6% at the 3-, 6-, 12-, and 24-month follow-ups, respectively. After multivariate analysis, generalized interictal epileptic discharges (IEDs) were found to be a negative predictor (OR: 4.861, 95% CI: 1.145–20.632) of VNS efficacy. Conclusion The results indicated that VNS therapy was effective in refractory PTE patients and was well tolerated over a 1-year follow-up period. Patients with focal or multifocal IEDs were recognized to have better efficacy after VNS therapy.
Collapse
Affiliation(s)
- Mengyi Guo
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chongyang Tang
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhonghua Xiong
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Siqi Liu
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guoming Luan
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy Research, Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Tianfu Li
| |
Collapse
|
12
|
Börner C, Staisch J, Lang M, Hauser A, Hannibal I, Huß K, Klose B, Lechner MF, Sollmann N, Heinen F, Landgraf MN, Bonfert MV. Repetitive Neuromuscular Magnetic Stimulation for Pediatric Headache Disorders: Muscular Effects and Factors Affecting Level of Response. Brain Sci 2022; 12:brainsci12070932. [PMID: 35884738 PMCID: PMC9320292 DOI: 10.3390/brainsci12070932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Repetitive neuromuscular magnetic stimulation (rNMS) for pediatric headache disorders is feasible, safe, and alleviates headache symptoms. This study assesses muscular effects and factors affecting response to rNMS. A retrospective chart review included children with headaches receiving six rNMS sessions targeting the upper trapezius muscles. Pressure pain thresholds (PPT) were measured before and after rNMS, and at 3-month follow-up (FU). Mean headache frequency, duration, and intensity within the last 3 months were documented. In 20 patients (14.1 ± 2.7 years), PPT significantly increased from pre- to post-treatment (p < 0.001) sustaining until FU. PPT changes significantly differed between primary headache and post-traumatic headache (PTH) (p = 0.019−0.026). Change in headache frequency was significantly higher in patients with than without neck pain (p = 0.032). A total of 60% of patients with neck pain responded to rNMS (≥25%), while 20% of patients without neck pain responded (p = 0.048). 60% of patients receiving rNMS twice a week were responders, while 33% of patients receiving rNMS less or more frequently responded to treatment, respectively. Alleviation of muscular hyperalgesia was demonstrated sustaining for 3 months, which was emphasized in PTH. The rNMS sessions may positively modulate headache symptoms regardless of headache diagnosis. Patients with neck pain profit explicitly well. Two rNMS sessions per week led to the highest reduction in headache frequency.
Collapse
Affiliation(s)
- Corinna Börner
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jacob Staisch
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Magdalena Lang
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Ari Hauser
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Iris Hannibal
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Kristina Huß
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Birgit Klose
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Matthias F. Lechner
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Florian Heinen
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Mirjam N. Landgraf
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
| | - Michaela V. Bonfert
- LMU Hospital, Department of Pediatrics—Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany; (C.B.); (J.S.); (M.L.); (A.H.); (I.H.); (K.H.); (B.K.); (M.F.L.); (F.H.); (M.N.L.)
- LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität, Lindwurm Str. 4, 80337 Munich, Germany
- Correspondence:
| |
Collapse
|
13
|
Staisch J, Börner C, Lang M, Hauser A, Hannibal I, Huß K, Klose B, Lechner MF, Sollmann N, Heinen F, Landgraf MN, Bonfert MV. Repetitive neuromuscular magnetic stimulation in children with headache. Eur J Paediatr Neurol 2022; 39:40-48. [PMID: 35660103 DOI: 10.1016/j.ejpn.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/20/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Repetitive neuromuscular magnetic stimulation (rNMS) was previously applied in adult patients with episodic migraine, showing beneficial effects on headache characteristics, high safety, and convincing satisfaction. This study aims to assess rNMS as a personalized intervention in pediatric headache. METHODS Retrospective chart review including patients with migraine, TTH, mixed type headache, or PTH, who had received at least one test rNMS session targeting the upper trapezius muscles (UTM). RESULTS 33 patients (13.9 ± 2.5 years; 61% females) were included in the primary analysis, resulting in a total of 182 rNMS sessions. 43 adverse events were documented for 40 of those sessions (22%). Most common side effects were tingling (32.6%), muscle sore (25.5%), shoulder (9.3%) and back pain (9.3%). Secondly, in patients (n = 20) undergoing the intervention, headache frequency (p = 0.017) and minimum and maximum intensities (p = 0.017; p = 0.023) significantly decreased from baseline to 3-month after intervention. 11 patients (44%) were classified as ≥25% responders, with 7 patients (28%) experiencing a ≥75% reduction of headache days. After 73% of interventions, patients reported rNMS helped very well or well. A majority of patients would repeat (88.5%) and recommend rNMS (96.2%) to other patients. CONCLUSION rNMS seems to meet the criteria of safety, feasibility, and acceptance among children and adolescents with three age-typical headache disorders. A significant reduction in headache frequency and intensity during a 3 months follow-up was documented. Larger, prospective, randomized, sham-controlled studies are urgently needed to confirm if rNMS may become a new valuable non-invasive, non-pharmacological treatment option for pediatric headache disorders.
Collapse
Affiliation(s)
- Jacob Staisch
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Corinna Börner
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany; Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Magdalena Lang
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Ari Hauser
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Iris Hannibal
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Kristina Huß
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Birgit Klose
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Matthias F Lechner
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Florian Heinen
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Mirjam N Landgraf
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany; LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
14
|
Schneider C, Zangrandi A, Sollmann N, Bonfert MV, Beaulieu LD. Checklist on the Quality of the Repetitive Peripheral Magnetic Stimulation (rPMS) Methods in Research: An International Delphi Study. Front Neurol 2022; 13:852848. [PMID: 35392633 PMCID: PMC8981720 DOI: 10.3389/fneur.2022.852848] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
An increasing number of clinical research studies have used repetitive peripheral magnetic stimulation (rPMS) in recent years to alleviate pain or improve motor function. rPMS is non-invasive, painless, and administrated over peripheral nerve, spinal cord roots, or a muscle using a coil affixed to the skin and connected to a rapid-rate magnetic stimulator. Despite the clinical impact and scientific interest, the methodological inconsistencies or incomplete details and findings between studies could make the rPMS demonstration difficult to replicate. Given the lack of guidelines in rPMS literature, the present study aimed at developing a checklist to improve the quality of rPMS methods in research. An international panel of experts identified among those who had previously published on the topic were enrolled in a two-round web-based Delphi study with the aim of reaching a consensus on the items that should be reported or controlled in any rPMS study. The consensual rPMS checklist obtained comprises 8 subject-related items (e.g., age, sex), 16 methodological items (e.g., coil type, pulse duration), and 11 stimulation protocol items (e.g., paradigm of stimulation, number of pulses). This checklist will contribute to new interventional or exploratory rPMS research to guide researchers or clinicians on the methods to use to test and publish rPMS after-effects. Overall, the checklist will guide the peer-review process on the quality of rPMS methods reported in a publication. Given the dynamic nature of a consensus between international experts, it is expected that future research will affine the checklist.
Collapse
Affiliation(s)
- Cyril Schneider
- Noninvasive Stimulation Laboratory (NovaStim), Neuroscience Division, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Cyril Schneider
| | - Andrea Zangrandi
- Noninvasive Stimulation Laboratory (NovaStim), Neuroscience Division, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Michaela Veronika Bonfert
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Munich, Germany
| | | | | |
Collapse
|
15
|
Yan L, Qian Y, Li H. Transcutaneous Vagus Nerve Stimulation Combined with Rehabilitation Training in the Intervention of Upper Limb Movement Disorders After Stroke: A Systematic Review. Neuropsychiatr Dis Treat 2022; 18:2095-2106. [PMID: 36147448 PMCID: PMC9488604 DOI: 10.2147/ndt.s376399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Stroke often leaves behind a wide range of functional impairments, of which limb movement disorders are more common. Approximately 85% of patients have varying degrees of upper limb motor impairment. In recent years, transcutaneous vagus nerve stimulation combined with rehabilitation training has been gradually used in the rehabilitation of upper limb motor dysfunction after stroke and appears to have some therapeutic benefits. PURPOSE We conducted the systematic review to evaluate the efficacy and safety of transcutaneous vagus nerve stimulation combined with rehabilitation training in the rehabilitation of upper limb motor dysfunction after stroke. METHODS Six databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure Database (CNKI), Wanfang Database, and China Science and Technology Journal Database (VIP), were searched for January 1, 2016 to January 30, 2022. Randomized controlled trials using TVNS combined with rehabilitation training to intervene in upper limb motor dysfunction after stroke were included, and meta-analysis was performed using Review Manager 5.4.1 software. RESULTS Total of 101 participants from 4 studies were included in this systematic review. These studies were evaluated using the Cochrane Review's Handbook 5.1 evaluation criteria and PEDro scores, and meta-analysis was performed on the collected data. The systematic review shows a significant effect of TVNS combined with rehabilitation training on the Upper Extremity Fugl-Meyer Score (MD=3.58, 95% CI [2.34, 4.82], P<0.00001, I2=0%), Function Independent Measure Score (MD=3.86, 95% CI [0.45, 7.27], P=0.03, I2=0%) and the Wolf Motor Function Test Score (MD=3.58, 95% CI [1.97, 5.18], P<0.0001, I2=0%). CONCLUSION Based on UE-FM, FIM, and WMFT scores, TVNS combined with rehabilitation training showed some improvement in upper limb motor dysfunction in post-stroke patients, but its long-term effects, stimulation sites, stimulation parameters, combined mode with rehabilitation training, and adverse effects still need further observation. REGISTRATION PROSPERO: CRD42022312453 (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022312453).
Collapse
Affiliation(s)
- Long Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Yulin Qian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Hong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| |
Collapse
|
16
|
Alqahtani M, Barmherzig R, Lagman-Bartolome AM. Approach to Pediatric Intractable Migraine. Curr Neurol Neurosci Rep 2021; 21:38. [PMID: 34089140 DOI: 10.1007/s11910-021-01128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Intractable migraine in children and adolescents is a significant cause of disability and decreased quality of life (QoL) in this population. Challenges include lack of unifying definition for intractable migraine, and limited data on best-practice management in this age group, with most current treatment pathways extrapolated from adult studies or expert consensus. RECENT FINDINGS A comprehensive approach in the evaluation and management of intractable migraine in this age group encompasses excluding secondary causes of headache; making an accurate diagnosis; identifying and appropriately managing modifiable risk factors; and initiating appropriate pharmacologic therapy to reduce disability, improve health-related quality of life, reduce risk of progression, and develop adaptive pain coping strategies. Several strategies for management of pediatric intractable migraine including use of acute medications, bridge therapy in outpatient setting, emerging therapies for preventive therapy, and a stepwise combination therapy for management of pediatric intractable migraine in emergency and inpatient setting are presented based on available clinical data, safety/tolerability, availability, cost-effectiveness, and expert consensus. This descriptive review of the available literature focuses on approach to therapy for acute intractable migraine in a pediatric population including outpatient, emergency department (ED), and inpatient management.
Collapse
Affiliation(s)
- Mohammed Alqahtani
- Division of Neurology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Rebecca Barmherzig
- Pediatric Headache Program, Division of Neurology, Children's Hospital of Philadelphia (CHOP), 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Ana Marissa Lagman-Bartolome
- Division of Neurology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada. .,Centre for Headache, Women's College Hospital, University of Toronto, 76 Grenville Street, Toronto, Ontario, M5B1S2, Canada.
| |
Collapse
|